


Physics of Neural Networks 

Series Editors: 
E. Domany J.L. van Hemmen K. Schulten 

Springer-Science+Business Media, LLC Advisory Board: 
H. Axelrad 
R. Eckmiller 
J.A. Hertz 
J.J. Hopfield 
P.I.M. Johannesma 
D. Sherrington 
M.A. Virasoro 



Physics of Neural Networks 

Models of Neural Networks 
E. Domany, J.L. van Hemmen, K. Schulten (Eds.) 

Models of Neural Networks II: Temporal Aspects of Coding and Information 
Processing in Biological Systems 

E. Domany, J.L. van Hemmen, K. Schulten (Eds.) 

Models of Neural Networks III: Association, Generalization, and Representation 
E. Domany, J.L. van Hemmen, K. Schulten (Eds.) 

Neural Networks: An Introduction 
B. Miiller, J. Reinhart 



E. Domany J.L. van Hemmen 
K. Schulten (Eds.) 

Models of 
Neural Networks III 
Association, Generalization, and 
Representation 

With 67 Figures 

, Springer 



Series and Volume Editors: 

Professor Eytan Domany 
Department of Electronics 
Weizmann Institute of Science 
76100 Rehovot 
Israel 

Professor Dr. J. Leo van Hemmen 
Institut fiir Theoretische Physik 
Technische Universităt Miinchen 
D-85747 Garching bei Miinchen 
Germany 

Professor Klaus Schulten 
Department of Physics 
and Beckman Institute 
University of Illinois 
Urbana, IL 61801 
USA 

Library of Congress Cataloging-in-Publication Data 
Models of neural networks III / E. Domany, J.L. van Hemmen, K. 

Schulten, editors. 
p. cm. - (Physics of neural networks) 

Includes bibliographical references and index. 
ISBN 978-1-4612-6882-6 ISBN 978-1-4612-0723-8 (eBook) 
DOI 10.1007/978-1-4612-0723-8 
1. Neural networks (Computer science)-Mathematical models. 

1. Domany, E. (Eytan). II. Hemmen, J.L. van (Jan 
Leonard). III. Schulten, K. (Klaus) IV. Series. 
QA76.87.M59 1995 
006.3-dc20 95-14288 

Printed on acid-free paper. 

© 1996 Springer Science+Business Media New York 
Originally published by Springer-Verlag New York in 1996 
Softcover reprint ofthe hardcover Ist edition 1996 

Ali rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer-Science+Business Media, LLC), except for brief excerpts in 
connection with reviews or scholarly analysis. Use in connection with any form ofinformation stora­
ge and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed is forbidden. 

The use of general descriptive names, trade names, trademarks, etc., in this publication, even 
if the former are not especially identified, is not to be taken as a sign that such names, as 
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely 
byanyone. 

Production coordinated by Publishing Network and managed by Natalie Johnson; manufac­
turing supervised by Jeffrey Taub. 
Typeset by Bytheway Typesetting, Norwich, NY. 

9 8 7 6 5 432 

ISBN 978-1-4612-6882-6 



Preface 

One of the most challenging and fascinating problems of the theory of 
neural nets is that of asymptotic behavior, of how a system behaves as time 
proceeds. This is of particular relevance to many practical applications. 
Here we focus on association, generalization, and representation. We turn 
to the last topic first. 

The introductory chapter, "Global Analysis of Recurrent Neural Net­
works," by Andreas Herz presents an in-depth analysis of how to construct 
a Lyapunov function for various types of dynamics and neural coding. It 
includes a review of the recent work with John Hopfield on integrate-and­
fire neurons with local interactions. 

The chapter, "Receptive Fields and Maps in the Visual Cortex: Models 
of Ocular Dominance and Orientation Columns" by Ken Miller, explains 
how the primary visual cortex may asymptotically gain its specific structure 
through a self-organization process based on Hebbian learning. His argu­
ment since has been shown to be rather susceptible to generalization. 

Association long has been a key issue in the theory of neural nets. Local 
learning rules are quite convenient from the point of view of computer 
science, but they have a serious drawback: They do not see global correla­
tions. In order to produce an extensive storage capacity for zero threshold, 
the couplings on the average should vanish. Accordingly, there is a deep 
truth behind Wills haw's slogan: "What goes up must come down." Mean­
while we have a zoo of local learning rules. In their chapter, "Associative 
Data Storage and Retrieval in Neural Networks," Palm and Sommer trans­
form this zoo into a well-organized structure taking advantage of just a 
simple signal-to-noise ratio analysis. 

Hebb's epoch-making book The Organization of Behavior appeared in 
1949. It proposed one of the most famous local learning rules, viz., the 
Hebbian one. It was preceded by the 1943 paper of McCulloch and Pitts, 
which is quite notorious because of its formal logic. In "Inferences Modeled 
with Neural Networks," Carmesin takes up this lead and integrates it with 
the Hebbian approach, viz., ideas on assemblies and coherence. In so doing 
he provides a natural transition from "association" to "generalization." 

Generalization means that, on the basis of certain known data, one 
extrapolates the meaning of a new set. There has been quite a bit of progress 
in formally understanding the process of generalization, and Opper and 
Kinzel's chapter "Statistical Mechanics of Generalization" summarizes this 
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progress. It starts from scratch, assuming only some basic knowledge of 
statistical mechanics. 

Bayes stands for conditional probabilities. For example, what is the 
probability of having sunshine on the American East coast tomorrow given 
that today's weather has no clouds? The sentence starting with "given 
that ... " is a condition and the question entails an extrapolation. Adding 
one further condition, viz., that it is during the summer, the chance in 
question is about one. MacKay presents a careful and detailed exposition of 
the beneficial influence of "Bayesian Methods for Backpropagation Net­
works." 

The last two chapters return to representation. Optical character recogni­
tion is well known as a playground of neural network ideas. The chapter 
"Penacee: A Neural Net System for Recognizing On-Line Handwriting," by 
Guyon et al., aims at making the underlying concepts also widely known. 
To this end, the setup is explained with great care. Their real-world exam­
ples show that an intelligently built but yet relatively simple structure can 
give rise to excellent performance. 

Robotics has been in the realm of neural networks for a long time; and 
that is understandable. After all, we perform grasping movements ourselves 
with great ease. That is to say, our motor cortex allows us to do so. Cortical 
ideas also have permeated robotics. In their chapter "Topology Represent­
ing Networks in Robotics," Sarkar and Schulten present a detailed algo­
rithm for the visually guided control of grasping movements of a pneumatic 
robot as they are performed by a highly hysteretic five-joint pneumatic 
robot arm. In so doing, they unfold a modified version of the manifold­
representing network algorithm, a Kohonen-type approach. Here, too, gov­
erning asymptotic behavior is the algorithm's goal. 

All of the chapters have one element in common: answering the question 
of how one can understand an algorithm or procedure theoretically. And 
that is what each volume of Models of Neural Networks is after. 

The Editors 
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1 

Global Analysis of Recurrent 
Neural Networks 
Andreas V.M. Herz1 

with 6 figures 

Synopsis. This chapter reviews recurrent neural networks whose retrieval 
dynamics have been analyzed on a global level using Lyapunov functions. 
Discrete-time and continuous-time descriptions are discussed. Special at­
tention is given to distributed network dynamics, models with signal de­
lays, and systems with integrate-and-fire neurons. The examples demon­
strate that Lyapunov's approach provides powerful tools for studying the 
retrieval of fixed-point memories, the recall of temporal associations, and 
the synchronization of action potentials. 

1.1 Global Analysis - Why? 

Information processing may be defined as the systematic manipulation of 
external data through the internal dynamics of some biological system or 
artificial device. In general, such a manipulation requires a highly nontrivial 
mapping between input data and output states. Important parts of this 
task can be accomplished with recurrent neural networks characterized by 
massive nonlinear feedback: Triggered by an appropriate external stimulus, 
such systems relax toward attractors that encode some a priori knowledge 
or previously stored memories. 

Within this approach to information processing, understanding associa­
tive computation is equivalent to knowing the complete attractor structure 
of a neural network, that is, knowing what kind of input drives the net­
work to which of its possibly time-dependent attractors. Understanding 
the computational properties of a recurrent neural network thus requires 
at least three levels of analysis: (1) What can be said about the existence 
and stability of fixed-point solutions? (2) Are there static attractors only, 
or are there also periodic limit cycles and aperiodic attractors, as would be 

IDepartment of Zoology, University of Oxford, Oxford, OXI 3PS, England. 



2 1. Global Analysis of Recurrent Neural Networks 

expected for generic nonlinear systems? (3) What is the structure of the 
basins of attraction? 

Questions about the precise time evolution between the initial network 
state and the final output define a fourth level of analysis. Though less 
important within the framework of attractor neural networks, these ques­
tions are highly relevant for systems that extract information "en route" 
without waiting for the arrival at some attractor [1]. At a fifth level of anal­
ysis, one might finally be interested in questions concerning the structural 
stability of a given network, that is, its robustness under small changes of 
the evolution equations. 

With regard to the computational capabilities of a neural network, ques­
tions about the type of attractor and the structure of basins of attraction 
are of paramount importance. These questions deal with global properties 
of the network dynamics. Accordingly, they cannot be answered using local 
techniques only: A linear stability analysis of fixed-point solutions, the first 
level of analysis, may reveal helpful knowledge about the network behavior 
close to equilibria, but it never can be used to rule out the existence of 
additional time-dependent attractors that may dominate large parts of the 
network's state space. Due to computational constraints, numerical simu­
lations can offer limited additional information only. 

Highly simplified network models provide a partial solution in that they 
often permit the application of global mathematical tools. However, such 
formal networks are characterized by bold approximations of biological 
structures. In the manner of good caricatures, they may nevertheless cap­
ture features that are also essential for more detailed descriptions. 

One of the global mathematical tools is Lyapunov's "direct" or "second 
method" [2]. In the present context, it may be described as follows. Let 
the vector x = (Xl! ... , x N) denote the state variables of a neural network. 
These variables change in time according to some evolution equation, for 
example, a set of coupled differential equations (d/dt)Xi = fi(X) if time is 
modeled as a continuous variable t. A solution will be denoted by x(t). If 
there exists an auxiliary scalar state function L(x) that is bounded below 
and nonincreasing along all trajectories, then the network has to approach a 
solution for which L(t) == L(x(t)) does not vary in time.2 The global dynam­
ics can then be visualized as a downhill march on an "energy landscape" 
generated by L. In this picture, every solution approaches the bottom of 
the valley in which it was initialized. 

2Special care has to be taken with respect to unbounded solutions and con­
tinuous families of solutions with equal L. Note at this point that, in the present 
chapter, formal rigor often will be sacrificed for transparency of presentation. A 
mathematically rigorous introduction to Lyapunov functions can be found in the 
monograph of Rouche, Habets, and Laloy [3]. It also contains - apart from a 
large number of interesting theorems and proofs - some fascinating examples 
that illuminate possible pitfalls due to imprecise definitions. 
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The asymptotic expression for L(t) and the equation (dfdt)L(t) = 0 
contain valuable information about the very nature of the attractors -
the first and second levels of analysis. Notice in particular that a solution 
that corresponds to a local minimum of the Lyapunov function has to be 
asymptotically stable, that is, it attracts every solution sufficiently close to 
it. 

As an example, consider a gradient system 

dXi 8L(x) 
dt = - 8Xi . (1.1) 

Using the chain rule, the time derivative of L is given by 

~L(t) = L 8L dxi = - L dxi N N ( )2 
dt i=l 8X i dt i=l dt 

(1.2) 

The last expression is negative unless x(t) is a fixed-point solution. It follows 
that, if L(x) is bounded below, the system has to relax to an equilibrium. 

The most important feature of Lyapunov's direct method cannot be 
overemphasized: The method does not require any knowledge about the 
precise time evolution of the network; the mere existence of a bounded func­
tion that is nonincreasing along every solution suffices to characterize the 
system's long-time behavior. As a consequence, one can analyze the long­
time dynamics of a feedback network without actually solving its equations 
of motion. Furthermore, most Lyapunov functions studied in this chapter 
play a role similar to that of the Hamiltonian of a conservative system: 
For certain stochastic extensions of the deterministic time evolution, the 
network dynamics approach a Gibbsian equilibrium distribution generated 
by the Lyapunov function of the noiseless dynamics. This has allowed the 
application of powerful techniques from statistical mechanics and has led to 
quantitative results about the performance of recurrent neural networks far 
beyond the limits of a local stability analysis. The existence of a Lyapunov 
function is thus of great conceptual as well as technical importance. 

Lyapunov's method suffers, however, from one serious flaw: No system­
atic technique is known to decide whether a dynamical system admits a 
Lyapunov function or not. Finding Lyapunov functions requires experience, 
intuition, and luck. Fortunately, a wealth of knowledge on both practical 
and theoretical issues has been accumulated over the years. 

The present chapter is intended as an overview of neural network ar­
chitectures and dynamics where Lyapunov's method has been successfully 
employed to study the global network behavior. A general framework for 
modeling the dynamics of biological neural networks is developed in Sec. 
1.2. This framework allows for a classification of various dynamical schemes 
found in the literature and facilitates the formal analysis presented in later 
sections. 
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Recurrent networks that relax to fixed-point attractors only have been 
used as auto-associative memories for static patterns. Section 1.3 reviews 
convergence criteria for a number of prototypical networks: The Hopfield 
model [4], the Little model [5], systems with graded-response neurons [6, 
7], iterated-map networks [8], and networks with distributed dynamics [9, 
10]. A statistical mechanical analysis of networks with block-sequential dy­
namics and results about the convergence to fixed points in networks with 
signal delays conclude the section. 

Neural networks with signal delays can be trained to learn pattern se­
quences. Such systems are analyzed in Sec. 1.4. It is shown that, with 
a discrete-time evolution, these networks can be mapped onto "equiva­
lent networks" with block-sequential updating and no time delays. This 
connection allows for a quantitative analysis of the storage of temporal 
associations in time-delay networks. Next, the time evolution of a single 
neuron with delayed feedback and continuous-time dynamics is discussed. 
Two different Lyapunov functions are presented. The first shows that, un­
der certain conditions, all solutions approach special periodic attractorsj 
the second demonstrates that, under less restrictive conditions, the system 
relaxes to oscillating solutions that need not be periodic. 

The pulselike nature of neural activity has frequently been modeled using 
(coupled) threshold elements that discharge rapidly when they reach a trig­
ger threshold. With uniform positive couplings, some networks composed 
of such integrate-and-fire neurons approach globally synchronized solutions 
where all neurons fire in unison. With more general coupling schemes, the 
systems approach phase-locked solutions where neurons only exhibit lo­
cally synchronized pulse activity. Section 1.5 presents Lyapunov functions 
for such a class of integrate-and-fire models. An additional proof shows that 
the phase-locked solutions are reached in minimal time. 

1.2 A Framework for Neural Dynamics 

Starting with a brief description of the anatomy and physiology of single 
neurons, this section introduces a general framework for modeling neural 
dynamics. 

1.2.1 DESCRIPTION OF SINGLE NEURONS 

Neurons consist of three distinct structures: dendrites, a cell body, and an 
axon. Dendrites are thin nerve fibers that form highly branched structures 
called dendritic trees. They extend from the central part of a neuron, called 
the cell body or soma, which contains the cell nucleus. The axon, a single 
long fiber, projects from the soma and eventually branches into strands 
and substrands. Located along the axon and at its endings are synapses 
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that connect one (presynaptic) neuron to the dendrites and/or cell bodies 
of other (postsynaptic) neurons [11]. 

Neurons communicate via an exchange of electrochemical signals. At 
rest, a cell is held at a negative potential relative to the exterior through 
selective ion pumps in the cell membrane. If the potential at the soma ex­
ceeds a firing threshold due to incoming signals, a strong electrochemical 
pulse is generated. This excitation is called an action potential or spike. It 
is propagated along the axon by an active transport process that results 
in a solitonlike pulse of almost constant size and duration [12]. Following 
the generation of a spike, the membrane potential quickly drops to a sub­
threshold value. After the event, the neuron has to recover for a short time 
of a few milliseconds before it can become active again. This time interval 
is called the refractory period. 

At synapses, action potentials trigger the release of neurotransmitters, 
which are chemical substances that diffuse to the postsynaptic cell where 
they bind to receptors. This process leads to changes of the local mem­
brane properties of the postsynaptic neuron, causing either an increase 
or decrease of the local potential. In the first case, the synapse is called 
an excitatory synapse; in the second case, an inhibitory synapse. Through 
(diffusive) transport processes along the dendritic tree, an incoming signal 
finally arrives at the soma of the postsynaptic neuron where it makes a 
usually minute contribution to the membrane potential. 

How can one construct a mathematical framework for neural dynamics 
that may be used to analyze large networks of interconnected neurons? 

Let me begin with the description of neural output activity. A spike 
is an all-or-none event and thus may be modeled by a binary variable 
as was pointed out by McCulloch and Pitts [13]. It will be denoted by 
Si = ±1, where i enumerates the neurons. This specific representation 
emphasizes the resemblance between McCulloch-Pitts neurons and Ising 
spins.3 Following the conventional notation, Si = 1 means that cell i is 
firing an action potential, and Si = -1 means that the cell is quiescent. 

In an alternative formulation, a quiescent cell is denoted by Si = O. Both 
representations are equivalent if the network parameters are transformed 
appropriately. In the integrate-and-fire models that are discussed in this 
chapter, the duration of action potentials is set to 0 for simplicity. To obtain 
a nonvanishing pulse integral, a spike is modeled by a Dirac 8-function, so 
that, formally speaking, one is dealing with a 0/00 representation of action 
potentials. 

3The Ising model [14] provides an extremely simple and elegant description of 
ferromagnets and has become one of the most thoroughly studied models in solid­
state physics. The formal similarity between certain extensions of this model, 
namely, spin glasses, and neural networks such as the Hopfield model has stim­
ulated the application of statistical mechanics to neural information processing 
(see also Sec. 1.3.6). 



6 1. Global Analysis of Recurrent Neural Networks 

An action potential is generated if the membrane potential Ui exceeds a 
firing threshold Uthresh. Since the trigger process operates without signifi­
cant time lags, spike generation (in the ±1-representation) may be written 

(1.3) 

where sgn(x) denotes the signum function. 
In most of the models that will be analyzed in this chapter, the mem­

brane potential Ui is not reset after the emission of an action potential. An 
important exception are networks with integrate-and-fire neurons whose 
precise reset mechanism is discussed in Sec. 1.2.3. 

Some cortical areas exhibit pronounced coherent activity of many neu­
rons on the time scale of interspike intervals, that is, 10 - 100 ms [15, 16, 
17]. Modeling this phenomenon requires a description of output activity in 
terms of single spikes, for example, by using integrate-and-fire neurons.4 In 
other cases, the exact timing of individual action potentials does not seem 
to carry any relevant information. One then may switch to a description in 
terms of a coarse-grained variable, the short-time-averaged firing rate V. 
Unlike the binary outputs of McCulloch-Pitts neurons, the firing rate is a 
continuous variable. The firing rate varies between 0 and a maximal rate 
Vrnax , which is determined by the refractory period. Within a firing-rate 
description, model neurons are called analog neurons or graded-response 
neurons. 

In such a real-valued representation of output activity, the threshold 
operation (1.3) is replaced by an s-shaped ("sigmoid") transfer function to 
describe the graded response of the firing rate to changes of the membrane 
potential, 

(1.4) 

with gi : IR -+ [0, VrnaxJ. The functions gi can be obtained from neuro­
physiological measurements of the response characteristic of a cell under 
quasi-stationary conditions. 

Once generated by a neuron, say neuron j, an action potential travels as 
a sharp pulse along the axon and arrives at a synapse with neuron i after 
some time lag Tij' The delay depends on the distance traveled by the signal 
and its propagation speed, and may be as long as 10 - 50 ms. It follows that 
the release of neurotransmitter at time t does not depend on the present 
presynaptic activity but that it should be modeled by some function whose 
argument is the earlier activity 8j (t - Tij). Diffusion across the synaptic 
cleft adds a distributed delay that is usually modeled by an integral kernel 
with a single hump. 

What remains in the modeling process is the formalization of the den­
dritic and somatic signal processing. The force driving the membrane poten-

4 Alternative approaches are discussed in the contribution of Gerstner and van 
Hemmen in this volume [18). 



Andreas V.M. Herz 7 

tial Ui up or down will be called the local field and denoted by hi. Formally, 
the local field can always be written as a power series of the synaptic input 
currents. The exact form of the coefficients depends on the microscopic cell 
properties. 

Dendrites and cell bodies are complex extended objects with intricate 
internal dynamics. This implies that, within any accurate microscopic de­
scription, even the dendrites and soma of a single cell have to be repre­
sented by a large number of parameters and dynamical variables [19, 20].5 
However, such a detailed approach cannot be pursued to analyze the time 
evolution of large networks of highly interconnected neurons as they are 
found in the cerebral cortex, where a neuron may be connected with up to 
10,000 other cells [21]. 

The theory of formal neural networks offers a radical solution to this 
fundamental problem. Following a long tradition in statistical physics, the 
theory is built on the premise that detailed properties of single cells are not 
essential for an understanding of the collective behavior of large systems of 
interacting neurons: "Beyond a certain level complex function must be a 
result of the interaction of large numbers of simple elements, each chosen 
from a small variety." [22]. This point of view invites a long and controver­
sial debate about modeling the brain and, more general, modeling complex 
biological systems. Such a discussion is beyond the scope and intention of 
the present chapter. Instead, I will cautiously adopt this position as a pow­
erful working hypothesis whose neurobiological foundations require further 
investigation.6 The advantage is obvious: Under the assumption that the 
function of large neural networks does not depend on microscopic details 
of single cells, and knowing that, in general, many incoming signals are 
necessary to trigger an action potential, it is sufficient to consider just the 
first terms of the power series defining the local field hi. For the rest of this 
chapter, I will use the simplest approach and take only linear terms into 
account. The local field then may be written as 

(1.5) 

For two state neurons, the term Vj(t - r) is replaced by 8j(t - r). The 
weight Jij(r) describes the influence of the presynaptic activity of neuron 
j at time t - r on the local field of neuron i at time t. Input currents due 
to external stimuli are denoted by Ifxt(t). 

5The argument applies to axons as well, but due to the emergent simplicity of 
axonal signal transport - action potentials are characterized by a dynamically 
stabilized, fixed pulse shape - a macroscopic description in terms of all-or-none 
events is justified. 

6Unexpected support for this viewpoint comes from elaborate computer sim­
ulations of the dynamics of single cerebellar Purkinje cells [23]. 
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The temporal details of signal transmission are reflected in the func­
tional dependence of Jij (T) on the delay time T. Axonal signal propagation 
corresponds to a discrete time lag; diffusion processes across the synapses 
and along the dendrites result in delay distributions with single peaks. Dis­
tributed time lags with multiple peaks may be used to include pathways via 
interneurons that are not explicitly represented in the model. A synapse is 
excitatory if Jij(T) > 0 and inhibitory if Jij(T) < O. Self-couplings Jii(T) 
that are strongly negative for small delays may be used to model refractori­
ness [24, 25].7 In network models without synaptic and dendritic delays, 
the local field hi is identical to the total synaptic input current to neuron 
i, which often is denoted by Ii in the neural network literature. 

As shown in this section, there are three main variables to describe the 
activity of single neurons - the membrane potential Ui, the output activity 
Vi or Si, and the local field hi. These three variables correspond to the three 
main parts of a neuron - soma, axon, and dendritic tree. The strongly 
nonlinear dependence of Vi or Si on ui captures the "decision process" of 
a neuron - to fire or not to fire. This decision is based on some evaluation 
of the weighted average hi of incoming signals. To close the last gap in the 
general framework, one has to specify the dynamical relation between the 
membrane potential Ui and the local field hi. 

If there are no transmission delays, Eqs. (1.3)-(1.5) contain only a single 
time argument and no time derivatives, that is, they do not describe any 
dynamical law. It follows that the relation between Ui and hi has to be 
formulated as an evolution equation. If one opts for a description where time 
is treated as a discrete variable, the evolution equation will be a difference 
equation; otherwise, a differential equation. As a first approximation, both 
types of dynamical descriptions may be linear since the main source for 
nonlinear behavior, namely, spike generation, is already described by Eq. 
(1.3) or (1.4). 

1.2.2 DISCRETE-TIME DYNAMICS 

Within a discrete-time approach, time advances in steps of fixed length, 
usually taken to be unity. To obtain a consistent description, all signal 
delays should be nonnegative integers. Accordingly, the temporal integral 
J;max Jij(T)Sj(t-T)dT in Eq. (1.5) is replaced by a sum E~~o Jij(T)Sj(t­
T). 

In a discrete-time model, the most straightforward dynamic relation be­
tween Ui and hi is the shift operation 

(1.6) 

TIn some sense, the same is achieved in integrate-and-fire models where the 
membrane potential is explicitly reset after spike generation. 
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At a first glance, this dynamical relation neglects any inertia of the mem­
brane potential caused by a nonzero transmembrane capacitance. Accord­
ing to Eq. (1.6), the membrane potentials are just time-shifted copies of 
the local fields. Inertia could be included on the single-neuron level by an 
additive term O:Ui(t) on the right-hand side of Eq. (1.6); however, a similar 
effect can be obtained through a proper choice of the update rule for the 
overall network, as will be discussed at the end of this section. 

For two state neurons, Eqs. (1.3), (1.5), and (1.6) may be combined to 
yield the single-neuron dynamics 

(1.7) 

where 
N 'I'max 

hi(t) = L L Jij(r)Sj(t - r) + I;xt(t). (1.8) 
j=1 '1'=0 

The term Uthresh has been absorbed in I;xt without loss of generality. In 
passing, note that, in the exceptional case hi(t) = 0, it is advisable to sup­
plement Eq. (1.7) by the convention Si(t+ 1) = Si(t) for (purely technical) 
reasons that will become apparent in Sec. 1.3.1. 

For analog neurons, Eqs. (1.7) and (1.8) are replaced by 

(1.9) 

and 
N 'I'max 

hi(t) = L L Jij(r)Vj(t - r) + I;xt(t). (1.10) 
j=1 '1'=0 

The membrane potential Ui no longer appears in Eqs. (1.7)-(1.10) as the 
single-neuron description has been reduced from three to two variables­
output activity and local field. Either one might be used as a state variable. 

Neurotransmitters are released in small packages by a stochastic mech­
anism that includes spontaneous release at times when no spikes arrive at 
a synapse [26, 27]. This phenomenon, known as synaptic noise, is the most 
important source of stochasticity in neural signal transmission. 

If one takes synaptic noise into account, the local field becomes a fluctu­
ating quantity hi + IIi, where IIi denotes the stochastic contributions. The 
probability of spike generation then is equal to the probability that the lo­
cal field exceeds the firing threshold. For two state neurons, this probability 
may be written as 

(1.11) 

where Prob denotes probability and f : R -+ [0,1] is a monotone increasing 
function. 
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A careful analysis of synaptic transmission reveals that, under the as­
sumption of linear dendritic processing, the stochastic variable Vi is dis­
tributed according to a Gaussian probability distribution [22, 28]. In that 
case, Eq. (1.11) can be approximated by 

Prob[Si(t + 1) = ±1] = HI ± tanh[.8hi (t)]), (1.12) 

where T == {3-1 is a measure of the noise level. In the limit as T -+ 0, 
one recovers the deterministic threshold dynamics (1. 7). In the physics 
literature, the update rule (1.12) is known as Glauber dynamics [29]. It was 
invented as a heat-bath algorithm for the Ising model [14] and has become 
an important tool for analyzing the collective properties of many-particle 
systems. 

Equations (1.7)-(1.10) describe the time evolution of individual neurons. 
This leaves a number of options for the updating process at the level of the 
overall network [10]. 

First, there is the question of how many neurons may change their state 
at a time. Theoretical investigations of recurrent networks with discrete­
time dynamics have almost exclusively focused on two cases: parallel dy­
namics (PO) and sequential dynamics (SO). In the former case, all neurons 
are updated in perfect synchrony, which has led to the name synchronous 
dynamics. In the latter case, only one neuron is picked at each time to 
evaluate its new state - one-at-a-time updating - while the activities of 
all other neurons remain constant. Parallel updating and sequential up­
dating are two extreme realizations of discrete-time dynamics. Intermedi­
ate schemes will be called distributed dynamics (00) and include block­
sequential iterations where the network is partitioned into fixed clusters of 
simultaneously updated neurons. 

Next, there is the question of how groups (of one or more neurons) are 
selected at each time step. One may have a fixed partition of the network, or 
one may choose random samples at each time step. Alternatively, one may 
study selective mechanisms such as a maximum-field or greedy dynamics 
[30]. Here, the neuron with the largest local field opposite to its own activity 
is updated.8 

Network dynamics are said to be fair sampling if, on an intermediate 
time scale, no neuron is skipped for the updating process on average. The 
terminology emphasizes the similarity with the idea of "fairness" used by 
the computer science community [31]. On a conceptual level, fair sampling 
assures that all neurons have a chance to explore the part of phase space 
accessible to them through their single-neuron dynamics. Most computa-

8The network dynamics of integrate-and-fire neurons also may be viewed as 
a selective update process: Only those neurons whose local fields are larger than 
the threshold are active for the duration of an action potential. After that time, 
both output Si and membrane potential Ui are reset to their rest values. 
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Fig. 1.1. Schematic representation of discrete-time updating schemes. Horizon­
tal axes represent time, ticks on the vertical axes label the neurons. Delays due 
to transmission and computation times are indicated by the finite duration of the 
updating "event" for a given neuron. Clocked networks have ticks on the time 
axis. (a) One-at-a-time or sequential dynamics (SD); (b) synchronous or parallel 
dynamics (PD); (c) distributed dynamics (DD): still clocked, but with arbitrary 
update groups at each time step; (d) fully asynchronous dynamics including over­
lapping delays. 

tionally useful iteration schemes are of this type. All updating schemes with 
a fixed partition or a random selection process are fair sampling. Exceptions 
may only occur in pathological situations within selective algorithms. 

Finally, there is the question of whether signal delays mayor may not 
overlap, as is illustrated in Fig. 1.1. The latter case is of utmost importance 
for the storage and retrieval of pattern sequences, as will be discussed in 
Sec. 1.4. 

Summarizing the above discussion, updating rules for networks with dis­
tributed discrete-time dynamics may be categorized according to the fol­
lowing five criteria: 

1. Description of output activity: (a) discretej (b) continuous. 

2. Single-neuron dynamics: (a) deterministicj (b) stochastic. 

3. Size of group to be updated at each time step: 

(a) all neurons - parallel dynamics (PD)j 

(b) some neurons - distributed dynamics (DD)j 
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(c) one neuron - sequential dynamics (SO). 

4. Selection of the update group at each time step: (a) fixed partition; 
(b) random sample; (c) selective choice. 

5. Handling of delays: (a) overlapping not allowed; (b) overlapping al­
lowed. 

Most discrete-time descriptions appearing in the literature can be classi­
fied by these five criteria. For instance, Caianiello's model [32] uses McCul­
loch-Pitts neurons (rule la) and includes a broad distribution of transmis­
sion delays (rule 5b). All neurons are updated at the same time (rules 3a 
and 4a) according to a deterministic threshold operation (rule 2a). The Lit­
tle model [5] differs from Caianiello's approach in that it describes single 
neurons as stochastic elements (rule 2b) with instantaneous interactions 
only (rule 5a). In the Hopfield model [4], neurons are updated one at a 
time (rule 3c), again without signal delays (rule 5a). 

If neurons are picked in a random order, there is a nonzero chance that a 
neuron will be skipped during an elementary cycle of the network dynamics. 
On the level of macroscopic order parameters, this leads to an effective 
inertia comparable to that generated by an additive term aUi(t) in Eq. 
(1.6).9 

In closing this section, we introduce some helpful notation: Networks with 
deterministic parallel dynamics, continuous neurons, and no transmission 
delays (rules lb, 2a, 3a, 4a, and 5a) will be called iterated-map networks 
(1M); those with (a broad distribution of) transmission delays and a deter­
ministic parallel dynamics (rules 2a, 3a, 4a, and 5b) will be referred to as 
time-delay networks (TO). 

1.2.3 CONTINUOUS-TIME DYNAMICS 

The step size in a discrete-time description is usually identified with the 
duration of an action potential. This implies on the one hand that such 
a description cannot accommodate the time resolution required to study 
the synchronization of action potentials.10 On the other hand, the feed­
back delay implicitly built into any discrete-time description may lead to 
dynamical artefacts such as spurious oscillations. To avoid both problems, 
one may alternatively study networks with continuous-time dynamics. 

9For a derivation of the evolution equations of macroscopic order parameters, 
see for example, reference [33J. 

lODecreasing the step size leads to a complication in the mathematical formula­
tion because one is forced to introduce effective delayed interactions if one wants 
to assure that action potentials last for multiple elementary time steps. 
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Graded-Response Neurons 

Membrane potentials of real neurons are subject to leakage currents due 
to the finite resistivity of biological membranes. Once charged by a short 
input current modeled by the local field hi(t), the membrane potential Ui(t) 
of cell i relaxes to some rest value that is set to 0 for simplicity. 

The physics of charging and leakage is best captured by the linear first­
order differential equation 

(1.13) 

Here, C denotes the input capacitance of a neuron and R is its trans­
membrane resistance. Model neurons whose membrane potential changes 
according to the differential equation (1.13) will be called graded-response 
neurons (GR). 

Inserting Equation (1.5) into (1.13), the time evolution of graded-re­
sponse neurons may be written as 

(1.14) 

where, as in Sec. 1.2.1, the output activity V; depends on the membrane 
potential Uj through the nonlinear response characteristic (1.4). 

Similar to the discrete-time dynamics considered in Sec. 1.2.2, one of the 
original three variables to describe neural activity has become superfluous. 
In Sec. 1.2.2, the membrane potential Ui(t) was expressed through the 
(time-shifted) local field hi ( t -1 ) j now, the local field hi (t) has been replaced 
by the membrane potential Ui(t) and its time derivative Ui(t). 

Integrate-and-Fire Neurons 

Below the firing threshold, (leaky) integrate-and-fire neurons operate in 
the same way as graded-response neurons [Eq. (1.13)]. However, when the 
membrane potential of a cell reaches the threshold Uthresh, the cell produces 
an action potential and resets its potential to Ureset. For convenience, units 
can be chosen such that Uthresh = 1 and Ureset = O. 

Assuming vanishing signal delays and action potentials of negligible du­
ration, the local field hi(t) of neuron i then is given by 

hi(t) = L Jij/j(t) + I;xt(t), 
j 

(1.15) 

where the instantaneous firing rate /j(t) is a sum of Dirac 6-functions, 

/j(t) = L 6(t - tj), (1.16) 
n 
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and the tj are the times at which neuron j generates an action poten­
tial. Throughout the remaining sections on integrate-and-fire neurons, the 
external input 1Ft(t) is assumed to be constant in time, 1fxt(t) = 1Ft. 

The general behavior of the system is now as follows. While none of the 
neurons is producing an action potential, Eq. (1.13) can be integrated to 
yield 

for t ~ to, (1.17) 

where to denotes the last firing time. When the potential Uj of neuron j 
reaches 1 (the threshold), it drops instantaneously to 0. At the same time, 
the potential Ui of each neuron i to which j makes a synapse is increased 
by Jij • 

Because the durations of action potentials and synaptic currents have 
been set equal to 0, the description given so far contains an ambiguity. To 
which value should neuron i be reset if at time t an action potential is 
produced by cell j, if the synapse from j to i is excitatory, Jij > 0, and if 
Ui(t-) > 1 - Jij? In this case, the action potential will raise Ui above 1, 
and cell i should generate its action potential during the flow of synaptic 
current produced by the synapse Jij. When synaptic (and dendritic) time 
constants of the nerve cells to be modeled are longer than the duration of 
action potentials, what should actually happen in the model is that cell j 
should fire when its potential reaches Uthresh = 1, and the synaptic current 
from synapse Jij that arrives after i fires should be integrated to yield a 
positive potential (relative to Ureset) afterward. Thus, if cell j fires first and 
at time t, and that event evokes a firing of neuron i, then, after both action 
potentials have been generated, the two membrane potentials should be 

(1.18) 

and 
(1.19) 

The first equation represents the fact that j fired first when Uj = 1 was 
reset to 0, and when neuron i subsequently generated its action potential, 
this changed the potential of j to Jji. The second equation represents the 
fact that i fired second, reduced its potential by 1 when it did so, but 
received the synaptic current Jij when neuron j fired. 

The updating rule can be generalized to a large network of neurons by the 
following algorithm. As the potentials all increase with time, a first neuron j 
reaches Uj = 1. Reset that potential to 0. Then change the potential of each 
neuron i by Jij . If, following this procedure, some of the potentials become 
greater than 1, pick the neuron with the largest potential, say, neuron k, 
and decrease its potential by 1.11 Then change the potential of each neuron 

lllf several neurons exhibit the same maximum potential, one may use some 
fixed, random, or selective update order to pick one of them. 
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1 by Jlk. Continue the procedure until no membrane potential is greater 
than 1. Then "resume the flow of time," and again let each potential Ui 
increase according to Eq. (1.17). 

This deterministic algorithm preserves the essence of the idea that firing 
an action potential carries a neuron from Uthresh to Ureset, and effectively 
apportions the synaptic current into a part that is necessary to reach thresh­
old and a part that raises the potential again afterward. Because the firing 
of one neuron can set off the instantaneous firing of others, this model can 
generate events in which many neurons are active simultaneously. 

When synaptic (and dendritic) time constants are shorter than the dura­
tion of an action potential, all contributions from the synaptic current that 
arrive during spike generation are lost, and Eq. (1.19) should be replaced by 
Ui(t+) = O. Generalizing from these two extreme cases, Eq. (1.19) becomes 

Ui(t+) = 'Y[Ui(t-) + Jij - 1] (1.20) 

with 0 ~ l' ~ 1. 
For models with l' = 1, the order in which the neurons are updated in 

an event in which several neurons fire at once does not matter as long as 
Jij ~ O. For these cases, any procedure for choosing the updating sequence 
of the neurons at or above threshold will yield the same result because 
the reset is by a fixed negative amount (here: -1) regardless of whether 
immediately prior to reset Ui = 1 or Ui > 1. 

If, in addition to choosing l' = 1, the limit R -+ 00 is considered, one 
is dealing with perfectly integrating cells. For a network of such neurons, 
the cumulative effects of action potentials and slow membrane dynamics 
commute if Jij ~ O. This makes the model formally equivalent to a class of 
Abelian avalanche models [34, 35]. Closely related earthquake models and 
(discrete-time) "sandpile models" relax to a critical state with fluctuations 
on all length scales, a phenomenon known as self-organized criticality [36]. 

The similarity between the microscopic dynamics of such model systems 
and networks of integrate-and-fire neurons has led to speculations about a 
possible biological role of the stationary self-organized critical state [37, 38, 
39]. However, whereas for earthquakes, avalanches, and sandpiles the main 
interest is in the properties of the stationary state, for neural computation 
it is the convergence process itself which does the computation and is thus 
of particular interest. Furthermore, computational decisions must be taken 
rapidly, and in any event the assumption of constant input from other 
cortical areas implicit in all models breaks down at longer times [40, 41]. 

1.2.4 HEBBIAN LEARNING 

The previous sections focused on the dynamics of neural activity. Synaptic 
efficacies were treated as time-independent parameters. Real synapses, how­
ever, are often modifiable. As was postulated by Hebb [42], their strengths 
may change in response to correlated pre- and postsynaptic activity: "When 
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an axon of cell A is near enough to excite cell B and repeatedly or persis­
tently takes part in firing it, some growth process or metabolic change takes 
place in one or both cells such that A's efficiency, as one of the cells firing 
B, is increased." 

Hebbian plasticity has long been recognized as a key element for asso­
ciative learning [43].12 How should it be implemented in a formal neural 
network that might include transmission delays? 

Hebbian learning is local in both space and time: Changes in synaptic 
efficacies depend only on the activity of the presynaptic neuron and the 
evoked postsynaptic response. Within the present framework, presynaptic 
activity is described by the axonal output Vj or Sj. Which neural variable 
should be chosen to model the postsynaptic response? 

Neurophysiological experiments demonstrate that postsynaptic spiking is 
not required to induce long-term potentiation (LTP) of synaptic efficacies 
- "a critical amount of postsynaptic depolarization is normally required to 
induce LTP in active synapses, but sodium spikes do not play an essential 
role in the LTP mechanism" [45]. This result implies that the postsynaptic 
response is best described by the local field hi - it represents the dendritic 
potential and is not influenced by the detailed dynamics of the cell body 
(Ui) or the spike-generating mechanism (Vi or Si)' 

Let us now study a discrete-time system where delays arise due to the 
finite propagation speed of axonal signals, and focus on a connection with 
delay r between neurons j and i. Originally, Hebb's postulate was formu­
lated for excitatory synapses only, but, for simplicity, it will be applied to 
all synapses of the model network. 

A presynaptic action potential that arrives at the synapse time t was 
generated at time t - r. Following the above reasoning, Jij (r) therefore 
should be altered by an amount that depends on Vj(t - r) and hi(t), most 
simply, their product 

(1.21) 

The bilinear expression (1.21) does not cover saturation effects. They could 
be modeled by an additional decay term - aJij(r)6.t on the right-hand 
side of Eq. (1.21). 

The combined equations (1.3)-(1.5) and (1.21) describe a "double dy­
namics," where both neurons and synapses change in time. In general, 
such a system of coupled nonlinear evolution equations cannot be analyzed 
using Lyapunov's direct method, although there are some interesting coun­
terexamples [46]. To simplify the analysis, one usually splits the network 
operation into two phases - learning and retrieval. For the learning phase, 
one frequently considers a clamped scheme, where neurons evolve according 

12Various hypotheses about the microscopic mechanisms of synaptic plasticity 
are the subject of an ongoing discussion [44J. 
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to external inputs only, hi(t) = Ifxt(t). Once the learning sessions are over, 
the Jij ( r) are kept fixed. 

In the following, we focus on deterministic discrete-time McCulloch-Pitts 
neurons in a clamped scheme with Ifxt(t) = ±1. This simplification implies 
that Sj(t+1) = I;xt(t). Starting with a tabula rasa, Jij(r) = 0, one obtains 
after P learning sessions, labeled by J." and each of duration Du , 

P D,. 

Jij(r) = e(r)N-1 L L I;Xt(tJL)I;xt(tJL - 1- r) == e(r)Jij(r). (1.22) 
JL=l t,.=l 

The parameters e( r) model morphological characteristics of the axonal de­
lay lines, and N-1 is a scaling factor useful for the theoretical analysis. 
Note that an input sequence should be offered rmax time steps before the 
learning session starts so that all variables in Eq. (1.22) are well defined. 
According to Eq. (1.22), synapses act as microscopic feature detectors dur­
ing the learning sessions: They measure and store correlations of the taught 
sequences in both space (i,j) and time (r). This leads to a resonance phe­
nomenon where connections with delays that approximately match the time 
course of the external input receive maximum strength. Note that these 
connections are also the ones that would support a stable sequence of the 
same duration. Thus, due to a subtle interplay between external stimu­
lus and internal architecture (distribution of r's), the Hebb rule (1.22), 
which prima facie appears to be instructive in character, exhibits in fact 
pronounced selective characteristics [47]. 

An external stimulus encoded in a network with a broad distribution of 
transmission delays enjoys a rather multifaceted representation. Synaptic 
couplings with delays that are short compared to the typical time scale 
of single patterns within the taught sequence are almost symmetric in the 
sense that Jij(r) ~ Jij(r). These synapses encode the individual patterns 
of the sequence as unrelated static objects. On the other hand, synapses 
with transmission delays of the order of the duration of single patterns of 
the sequence are able to detect the transitions between patterns. The corre­
sponding synaptic efficacies are asymmetric and establish various temporal 
relations between the patterns, thereby representing the complete sequence 
as one dynamic object. 

Note that the interplay between neural and synaptic dynamics, and in 
particular the role of transmission delays, has been a subject of intensive 
research [32, 42, 48, 49]. The full consequences for the learning and retrieval 
of temporal associations have, however, been explored only recently. 

As a special case of Eq. (1.22), consider the Hebbian learning of static 
patterns, Irt (tJL) = ~r, offered during learning sessions of equal duration 
DJL = D to a network with a uniform delay distribution. For mathematical 
convenience, the distribution is taken to be e(r) = D-1. In this case, Eq. 
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(1.22) yields synaptic strengths that are independent of the delay T, 

P 

Jij(T) = Jij = N-1 I:~r~f, (1.23) 
J.!=l 

and symmetric, 
(1.24) 

The synaptic symmetry (1.24) plays a key role in the construction of Lya­
punov functions, as will be shown in the following sections. 

Another kind of symmetry arises if all input sequences Iixt(tJ.!) are cyclic 
with equal periods DJ.! = D. If one defines patterns ~fa by ~fa = Iixt(tJ.! = a) 
for 0 :s: a < D, one obtains from Eq. (1.22) 

P D-l 

iij(T) = N-1 I: I: era~f.a-l-T· (1.25) 
J.!=l a=O 

Note that the synaptic strengths are now in general asymmetric. They do, 
however, obey the symmetry iij(T) = iij(D - (2 + T)). For all networks 
whose a priori weights £(T) satisfy C:(T) = c:(D - (2 + T)), this leads to an 
extended synaptic symmetry [50, 51]' 

(1.26) 

extending the previous symmetry (1.24) in a natural way to the tempo­
ral domain. This type of synaptic symmetry allows the construction of a 
Lyapunov function for time-delay networks, as will be explained in Sec. 
1.4.1. 

1.3 Fixed Points 

This section focuses on the storage of static patterns in networks with 
instantaneous interactions. It will be shown that, under certain conditions 
for the model parameters, various network dynamics exhibit the same long­
time behavior: They relax to fixed points only. 

Feedback networks with fixed-point attractors can be made potentially 
useful devices for associative computation as soon as one knows how to 
embed desired activity patterns as attractors of the dynamics. In such cir­
cumstances, an initial state or "stimulus" lying in the basin of attraction of 
a stored "memory" will spontaneously evolve toward this attractor. Within 
a biological context, the arrival at the fixed point may be interpreted as a 
cognitive event, namely, the "recognition of the stimulus." 

The hypothesis that the brain utilizes fixed-point attractors to perform 
associative information processing has led to quantitative predictions [52] 
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that are in good agreement with neurophysiological measurements [53]. 
However, even if the hypothesis was refuted in its literal sense, it would 
nevertheless continue to provide an important conceptual tool to think 
about neural information processing. 

1.3.1 SEQUENTIAL DYNAMICS: HOPFIELD MODEL 

Hopfield's original approach [4] is based on McCulloch-Pitts neurons with 
discrete-time dynamics, instantaneous interactions, and constant external 
stimuli. Neurons are updated one at a time, either according to a determin­
istic threshold operation (1.7) or probabilistic Glauber dynamics (1.12). In 
the original model neurons are chosen in a random sequential manner, but 
in simulations the update order is often fixed in advance, corresponding 
to a quenched random selection. Within the classification scheme of Sec. 
1.2.2, the Hopfield model is thus characterized by rules la, 3c, and 5a. 

If the single-neuron dynamics are deterministic, the time evolution of the 
network is a special realization of Eqs. (1.7) and (1.8) and may be written 
as 

Sk{t + 1) = sgn[hk{t)], 

where k is the index of the neuron updated at time t and 

hk(t) = L Jkj 8j (t) + I~xt. 
j 

All other neurons remain unchanged, Sj{t + 1) = Sj(t) for j '" k. 

(1.27) 

(1.28) 

What can be said about the global dynamics generated by Eqs. (1.27) 
and (1.28)? Consider the quantity 

N N 
LSD = -! " .kS·S· - " If!xtS· 2 ~ '3 '3 ~, ,. 

i"j=l i=l 

(1.29) 

The change of LSD in a single time step, ALSD(t) == LSD(t + 1) - LSD{t), 
is 

1 N 
ALsD{t) = - 2 L Jij[Si{t + I)Sj{t + 1) - Si {t)Sj (t)] 

i"j=l 
N 

- L Ifxt[Si{t + 1) - Si{t)]. (1.30) 
i=l 

Assume again that neuron k is updated at time t. The difference ASj{t) == 
8j (t + 1) - 8j (t) equals 0 or ±2 if j = k and vanishes otherwise. For the 
special case where the synaptic efficacies satisfy the symmetry condition 
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(1.24), one obtains 

<1LSD(t) = <1S.(t)J"S.(t) - <1S.(t) [t. J.;S;(t) + If'l 
= -~Jkk[LlSk(t)]2 - LlSk(t)hk(t). (1.31) 

According to Eq. (1.27) and the remark following Eq. (1.8), neuron k does 
not change its state if hk(t)Sk(t) ~ O. If this condition is not fulfilled, the 
neuron flips and LlSk(t) = 2Sk(t + 1). The change of LSD then may be 
written as 

LlLsD(t) = -2[Jkk + Sk(t + l)hk(t)] 
= -2[Jkk + Ihk(t)I]. (1.32) 

The last line follows from the evolution equation (1.27) and the identity 
lal = a sgn(a). Equation (1.32) proves that LSD is nonincreasing along 
every solution if the self couplings Jii are nonnegative.13 As a finite sum 
of finite terms, LSD is bounded. If Jii ~ 0 for all neurons, LSD(t) has to 
approach a limit as t --+ 00. Furthermore, LlLso(t) vanishes only if the 
neuron updated at time t does not change its state.14 This proves that the 
Hopfield network relaxes to fixed-point solutions only. According to Eqs. 
(1.27) and (1.28), these equilibria satisfy 

S, =.gn [~J';S, + if" 1 for all i. (1.33) 

The results obtained may be summarized as follows: 
If the synaptic efficacies Jij satisfy the symmetry condition {1.24}, and if 

the self- interactions Jii are nonnegative, then the dynamics of the Hopfield 
model [Eqs. {1.27} and {1.28}] admit the Lyapunov function {1.29} and 
converge to fixed points {1.99} only. 

Let me clarify a potentially confusing point. For neural networks with 
McCulloch-Pitts neurons, the state space consists of the corners of an N­
dimensional hypercube {-I, +1}N, also known as Hamming space. In this 
discrete space, the smallest state change possible is a single-spin flip, Si --+ 

-Si. As a consequence, the system may converge to fixed points that are not 
stable with respect to activity changes of single neurons, in the sense that 

13This condition is satisfied in Hopfield's original model, where all self-couplings 
are set to O. 

14For zero self-coupling Jlclc, and in the exceptional case hlc(t) = 0, ~LSD(t) 
vanishes for any update rule, even if one chooses SIc(t+ 1) = -SIc(t) if hlc(t) = O. 
However, if one sets SIc(t + 1) = SIc(t) as mentioned in Sec. 1.2.1, ~LSD(t) = 0 
implies ~SIc(t) = 0, as desired. 
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a single-spin flip made to a fixed-point solution could actually lower L. For 
instance, consider a network where, for some neuron i, the self-interaction 
Jii dominates possible contributions from other neurons, Jii < ~#i \Jij\' 
In such a case, the initial value of Si will never be changed, independent 
of its sign. The earlier results about network convergence continue to hold; 
that is, the system evolves towards fixed-point solutions only, but those are 
not necessarily local minima of L in the discrete-space sense. 

1.3.2 PARALLEL DYNAMICS: LITTLE MODEL 

The Little model [5] uses the most simple discrete-time dynamics conceiv­
able: It is a network of McCulloch-Pitts neurons, updated in parallel using 
instantaneous interactions only (rules la, 3a, 4a, and 5a). Within a deter­
ministic description of single neurons (rule 2a), the time evolution of the 
network is given by 

for all i, (1.34) 

where 
(1.35) 

j 

Except for the update order, Eqs. (1.34) and (1.35) are identical to Eqs. 
(1.27) and (1.28). Accordingly, the fixed-point solutions of the Little model 
are the same as those of the Hopfield model, given by Eq. (1.33). Are there 
additional time-dependent attractors? 

For simplicity, only the case Iixt = 0 will be analyzed in this section. 
Nonzero inputs will be treated in Secs. 1.3.4 and 1.3.5. As in Sec. 1.3.1, we 
focus on networks with symmetric couplings and study the time evolution 
of a suitable auxiliary function: 

N N 
Lpo = - L Ihil = - L hi sgn(hi). (1.36) 

i=l i=l 

If one evaluates this expression along a solution generated by the network 
dynamics (1.34) and (1.35), one obtains 

N 

Lpo(t) = - L hi (t)Si(t + 1) 
i=l 

N 

= - L JijSj {t)Si (t + 1). (1.37) 
i ,j=l 

Using the synaptic symmetry in Eq. (1.24), the last line also may be written 
as 

N 

Lpo(t) = - L Sj (t)hj (t + 1). (1.38) 
j=l 
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The difference .6.LPD (t) == LpD(t + 1) - LpD(t) is then 

N N 
.6.LpD(t) = - L Ihi(t + 1)1 + L Si(t)hi(t + 1) 

i=l i=l 
N 

= - L[Si(t + 2) - Si(t)]hi(t + 1), (1.39) 
i=l 

where Eq. (1.34) has been used to obtain the last equation. 
Like LSD, the function L pD is bounded. Evaluated along any solution of 

Eqs. (1.34) and (1.35), L pD is nonincreasing because the right-hand side 
of Eq. (1.39) is nonpositive; the product Si(t)hi(t + 1) is ±hi(t + 1) and 
thus smaller or at most equal to Ihi(t + 1)1. Consequently, .6.LpD(t) has 
to approach 0 as t -+ 00 . .6.LpD (t) vanishes only if the system settles into 
a state with Si(t + 2) = Si(t) for all i, that is, a fixed-point solution [Eq. 
(1.33)J or a limit cycle of period two. In the latter case, some neurons switch 
between firing and quiescence at every time step while all other neurons 
remain in one activity state: 

Assume that the synaptic couplings Jij satisfy the symmetry condition 
(1.24). Then the dynamics of the Little model [Eqs. (1.94) and (1.95)J 
admit the Lyapunov function (1.96) and converge to fixed points (1.99) or 
period-two oscillations. 

As will be shown in Sec. 1.3.5, the oscillating solutions can be excluded 
under additional assumptions for the synaptic couplings. 

1.3.3 CONTINUOUS TIME: GRADED-RESPONSE NEURONS 

This section deals with the continuous-time dynamics of neural networks 
composed of analog neurons without signal delays. The network dynamics 
in Eq. (1.14) reduce to a set of coupled ordinary differential equations, 

N 

Cdd Ui = -R-1Ui + LJijVj + Irt , 
t . 1 J= 

(1.40) 

where 
(1.41) 

Since the dynamical variables Ui and Vi in Eq. (1.40) are taken at equal 
times, all temporal arguments have been omitted. 

The input-output relation gi will be called sigmoid if it is increasing, 
differentiable, and grows in magnitude more slowly than linearly for large 
positive or negative arguments. The maximum slope of gi will be referred to 
as the gain 'Yi of neuron i. The nonlinearity is often modeled by a hyperbolic 
tangent, gi(Ui) = ~[1 + tanh(-Yiui)J. In the high-gain limit 'Yi -+ 00, one 
obtains a 0/1 representation of neural activity. It can be mapped onto 
Ising spins [14J through the identification Si = 2Vi - 1. 
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Cohen and Grossberg [6] and Hopfield [7] studied the global behavior of 
networks with graded- response neurons, sigmoid response functions, and 
symmetric synapses. They used Lyapunov functions of the form 

N N N 

LGR = -~ L Jij ViVj - L IixtVi + L R-1Gi(Vi), 
i,j=l i=l i=l 

(1.42) 

where the functions Gi(Vi) are given by 

(1.43) 

The last expression is well defined because sigmoid nonlinearities are 
strictly monotone by definition. Since sigmoid functions grow less than 
linearly for large absolute arguments, the functions Gi(Vi) increase faster 
than Vi2 as Vi -+ ±oo. The function LGR is therefore bounded below. 

Let us compute the time derivative of LGR along a solution of the network 
dynamics. Using the synaptic symmetry in Eq. (1.24), one obtains 

= - ~ [~ J. y. + Jf:xt - R-1U'] dVi 
L.J L.J '3 3' 'dt 
i=l j=l 
N 

= _ L c-1 dUi dVi 
i=l dt dt 

= _ t C-1 (dU i )2 dgi $ O. 
. dt dUi 
&=1 

(1.44) 

The formula proves that the function LGR is nonincreasing along every 
trajectory. The time derivative vanishes only at equilibria, which are given 
by 

V; = 9' [R Y J,; V; + RIt"'] , (1.45) 

or at network states, where dgi/dui = 0 for all i. If, however, the latter 
states do not satisfy Eq. (1.45), the system will continue to evolve according 
to Eqs. (1.40) and (1.41). The final result may be stated as follows: 

Suppose that the synaptic efficacies in a network oj graded-response neu­
rons [Eqs. {1.40} and (1.41)] respect the symmetry condition (1.24) and 
that the input-output relations are sigmoid. Then the network dynamics ad­
mit the Lyapunov function {1.42} and relax to fixed-point solutions (1.45) 
only. 

A comparison of the Lyapunov function LGR with the Lyapunov function 
LSD provides some hints about how to construct Lyapunov functions for 
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systems with sigmoid input-output characteristics: The additional term 
Ei R-IGi(Vi) dominates the quadratic term -~ Ei,j Jij ViVj for large Vi 
if the 9i are sigmoid. Consequently, the function LGR is bounded below even 
if the 'Vi are not.15 Furthermore, the term Ei R-1Gi (Vi) is constructed in 
such a way that its partial derivative with respect to Vi supplies the term 
R-1ui, which makes it possible to insert the evolution equation (1.40) into 
Eq. (1.44). Similar ideas will be applied in Secs. 1.3.4 and 1.3.5 to analyze 
discrete-time networks with sigmoid nonlinearities. 

1.3.4 ITERATED-MAP NETWORKS 

Feedback networks with deterministic analog elements and synchronous 
discrete-time updating have been studied for a long time [32, 48, 49]. For 
vanishing signal delays and fixed inputs, the network dynamics, Eqs. (1.9) 
and (1.10), become 

'Vi(t + 1) = 9i[hi(t)] for all i, (1.46) 

where 
N 

hi(t) = LJijVj(t) +I;xt. (1.47) 
j=1 

Systems described by Eqs. (1.46) and (1.47) have been called iterated-map 
networks [8]. Their fixed points coincide with those of graded-response net­
works [Eq. (1.45)] once one sets R = 1. 

lfthe input-output functions 9i are threshold functions, 9i(Ui) = sgn(ui), 
one recovers the Little model, Eqs. (1.34) and (1.35). This connection indi­
cates that one may find a Lyapunov function for iterated-map networks by 
combining appropriate parts of the Lyapunov function for the Little model 
with that for networks of graded-response neurons. 

Let us follow the approach of Marcus and Westervelt [8] and study the 
time evolution of the function 

N N 
LIM(t) = - L Jij Vi(t)V;(t - 1) - L I;xt[Vi(t) + Vi(t -1)] 

i,j=1 i=1 

N 

+ L[Gi ('Vi (t» + Gi(Vi(t - 1»], (1.48) 
i=1 

where Gi('Vi) is defined as in Eq. (1.43). 
Apart from a global time shift, the first term in Eq. (1.48) corresponds 

to LpD, as can be seen from Eq. (1.37); the other terms should be com-

1I1lt should be noted that, if a Lyapunov function is not globally bounded below, 
it still might be used for a local analysis. 
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pared with the second and third terms in Eq. (1.42). Notice that, un­
like LpD in Eq. (1.36), the function LIM is written as an explicitly time­
dependent function with temporal arguments t and t - 1. In principle, one 
could use the evolution equations (1.46) and (1.47) and replace Vi(t) by 

gi [I:f=l Jij Vj (t - 1) + Iixt] to obtain a description that involves a single 
time argument only. However, since we mainly are interested in the evalu­
ation of LIM along trajectories, the shorter definition in Eq. (1.48) suffices. 

Under the assumption of synaptic symmetry in Eq. (1.24), the temporal 
difference ~LIM(t) == LIM(t + 1) - LIM(t) is 

~LIM(t) = - L hi(t)~2 Vi(t) + L[Gi(Vi(t + 1)) - Gi (Vi (t - 1))], (1.49) 
i i 

where 
~2 Vi(t) == Vi(t + 1) - Vi(t - 1) (1.50) 

is the change of Vi over two time steps. 
The right-hand side of Eq. (1.49) is 0 if ~2 Vi(t) = 0 for all i. Let us 

analyze the case where ~2 Vi(t) =f:. 0 for at least some i. For sigmoid gi, gil is 
single-valued and increasing. Consequently, Gi is strictly convex. Through 
a Taylor expansion of Gi(Vi(t - 1)) around Vi(t + 1), one obtains 

For an illustration of the ineqUality, see the left part of Fig. 1.2. 
Inserting the identity 

(1.52) 

and Eq. (1.51) into Eq. (1.49), one arrives at the expression 

(1.53) 

where the strict inequality holds if ~2 Vi(t) =f:. 0 for at least one neuron. 
As was demonstrated in the last section, the functions Gi(Vi) increase 

faster than Vi2 for large IViI. This result implies that LIM is bounded below. 
As is shown by Eq. (1.53), the function LIM strictly decreases along any 
solution of Eqs. (1.46) and (1.47) unless ~2Vi(t) = 0 for all neurons. The 
derivation may be summarized in the following way: 

Assume that the synaptic efficacies in an iterated-map network {Eqs. 
(1..46) and {1.47)j are symmetric {Eq. (1.24}J and that the nonlineari­
ties are sigmoid. Then the network dynamics admit the Lyapunov function 
{1.48} and relax to fixed-point solutions {1.45} or period-two oscillations. 

In closing this section, let us briefly discuss antisymmetric synaptic cou­
plings, 

(1.54) 
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g. 
I 

Fig. 1.2. Illustration of the inequalities (1.51) and (1.58) for a sigmoid input­
output function 9i(Vi). The convex function Gi(Vi) is defined in Eq. (1.43). The 
straight line on the left-hand side and the parabola on the right-hand side are tan­
gent to Gi(Vi). The inequality (1.51) is the statement A < B, and the inequality 
(1.58) is the statement C < D. 

The derivation of Sec. 1.3.2 for the Little model (with no external input) 
shows that, if Eq. (1.54) holds, one obtains 

N 

~LpD{t) = - L:[Si{t + 2) + Si{t)]hi{t + 1). (1.55) 
i=l 

In this case, the network approaches solutions that satisfy Si{t + 2) = 
-Si{t), that is, special limit cycles with period four [54]. 

It is left as an exercise to verify the same result for iterated maps without 
external input. Here, an additional condition is required, namely, that the 
input-output characteristics have to be odd functions, 9i ('Vi) = - 9i ( - Vi). 
The interested reader may also try to construct Lyapunov functions for 
more general systems. In particular, he or she could look at two problems: 
(I) What kind of time-varying external stimuli can be incorporated into 
the Lyapunov function of the Little model if one focuses on antisymmet­
ric couplings? (2) Are there Lyapunov functions for neural networks with 
McCulloch-Pitts neurons, antisymmetric couplings, and sequential dynam­
ics with fixed update order? 

1.3.5 DISTRIBUTED DYNAMICS 

In this section discrete-time updating schemes are considered that gener­
alize beyond the Hopfield and Little models on both the single-neuron and 
network levels. Neurons are described by continuous variables with deter-
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ministic single-cell dynamics, that is, they fall into classes 1 band 2a in 
the scheme of Sec. 1.2.2. McCulloch-Pitts neurons with stochastic Glauber 
dynamics are discussed in Sec. 1.3.6. For the network dynamics, all choices 
of rules 3 and 4 are allowed that are fair sampling and do not lead to over­
lapping delays (rule 5a). The network dynamics are thus defined by a set 
of coupled nonlinear discrete-time equations: 

if i is in U(t), 
otherwise. 

(1.56) 

Here, U(t) denotes the group of neurons updated at time t. The distributed 
dynamics, Eq. (1.56), reduce to block-sequential algorithms studied by 
Goles-Chacc et al. [9] if one considers McCulloch-Pitts neurons and fixed 
update groups Uk, k = 0,1, ... , K -1 with U(t) = Ut(modulo K). 

There are a number of reasons to study partially parallel network dynam­
ics such as Eq. (1.56). First, one may achieve a better understanding of the 
essential ingredients needed to construct feedback networks that possess 
fixed-point attractors only. Second, distributed dynamics map naturally on 
the architecture of parallel computers or computer networks. Third, the 
evolution equations (1.56) extend iterative methods that have been devel­
oped within the computer science community to solve nonlinear systems 
of equations [55, 56, 57, 58] to systems with noncontracting functions and 
multiple solutions. 

What can be said about the long-time behavior of neural networks with 
distributed dynamics? As in Sees. 1.3.1 - 1.3.4, let us assume that the 
synaptic couplings are symmetric [Eq. (1.24)] and that the input-output 
characteristics are sigmoid. Consider again the Lyapunov function of net­
works with graded-response neurons in Eq. (1.42). The function now will be 
called LDD to distinguish its discrete-time evolution from the continuous­
time evolution of Sec. 1.3.3. 

The only neurons that may change their state at time t belong to the 
update group U(t). Accordingly, ~Vi(t) == Vi(t + 1) - Vi(t) vanishes for 
all other neurons. Using the symmetry [see Eq. (1.24)] of the synaptic 
couplings, the change ~LDD(t) = LDD(t + 1) - LDD(t) is given by 

1 N 
~LDD(t) = -"2 L L Jij~Vi(t)~V;(t) - L L JijV;(t)~Vi(t) 

iEU(t) jEU(t) j=1 iEU(t) 

- L Iixt~Vi(t) + L [Gi(Vi(t + 1)) - Gi(Vi(t)). (1.57) 
iEU(t) iEU(t) 

Since the functions gi(Vi) are assumed to be sigmoid, the auxiliary func­
tions Gi(Vi) are again strictly convex. Expanding Gi(Vi(t)) to second order 
around Vi(t + 1) and replacing the coefficient of the quadratic term with 
the smallest possible value, that is, 7;1, the following upper bound can be 
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established (see also the right part of Fig. 1.2): 

Gi{Vi{t + 1» - Gi{Vi{t)) ::; LlVi{t)G~{Vi{t + 1)) - ~[LlVi{t)]2'Yil. (1.58) 

Equality holds if and only if Vi{t + 1) = Vi (t). Inserting Eqs. (1.52) and 
(1.58) into Eq. (1.57) gives 

LlLoo{t) ::; -~ L L (Jij + Oij'Yi-1)LlVi{t)LlV;{t). (1.59) 
iEU(t) jEU(t) 

To facilitate further discussion, let us define W(t) as the number of 
neurons in the group U(t) and symmetric matrices U(t) of dimension 
W (t) x W (t) as submatrices of the connection matrix J, which are given by 
the synaptic strengths of those neurons that are updated at time t. For the 
Hopfield model, Eqs. (1.27) and (1.28), where updating is one-at-a-time, 
W(t) = 1 for all t, and U{t) reduces to the self-interaction term Jii , where 
i denotes the neuron being updated at time t. For the Little model, Eqs. 
(1.34) and (1.35), or iterated-map analog networks, Eqs. (1.46) and (1.47), 
the matrix is identical to J itself. As is obvious from these limiting cases, 
the structure of the set of matrices U(t) encodes the global dynamics. 

The maximum neuron gain in the update group U(t) will be denoted by 
'Y(t) and the minimum eigenvalue of the matrix U(t) by Amin[U(t)]. Since, 
for arbitrary symmetric matrices A and B, Amin[A + B] ~ Amin[A] + 
Amin[B], a sufficient condition for LlL(t) ::; 0 is given by 

(1.60) 

If the above condition holds for all t, Loo(t) is strictly decreasing as long 
as Vi{t + 1) =I- Vi{t) for at least some i in the update group U{t). As before, 
the function Loo is bounded below. The network therefore relaxes asymp­
totically to a state where L does not vary in time if all directions in the 
space spanned by the neural activities are explored, that is, if the updating 
scheme is fair sampling. Since equality in Eqs. (1.58) and (1.59) holds only 
if Vi{t + 1) = Vi(t), all solutions of Eq. (1.56) with time-independent Loo 
are fixed-point solutions [10]. The result may be stated as follows: 

Suppose the following three conditions hold: 1) the updating rule is fair 
sampling, 2) the neuron transfer functions are sigmoid, and 9) the symmet­
ric connection matrix satisfies Eq. (1.60) for all times. Then the distributed 
dynamics (1.56) admit the Lyapunov function (1.42) and converge to fixed 
points only. 

For iterated-map networks, U{t) is constant in time and equals the set of 
all neurons. The criterion Amin[J] ~ -'Y{t)-l provides a sufficient condition 
to exclude two cycles that exist in the general case as shown in Sec. 1.3.4: 
Lowering the neuron gain eliminates spurious oscillatory modes. 

Neural networks with discrete elements correspond to the limit 'Yi - 00, 

where Eq. (1.60) reduces to Amin[U(t)] ~ O. This implies in particular that 
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there are no two cycles possible in the Little model if the whole connection 
matrix is nonnegative definite. The general remark from Sec. 1.3.1 about 
the convergence to solutions that are not minima of LDD still holds in 
the discrete-neuron limit. This atypical behavior is, however, only possible 
because the 9i are piecewise constant functions in models with discrete 
neurons. For the generic case of continuous input-output characteristics, 
the network will always settle in a minimum as long as the initial conditions 
do not coincide with an unstable fixed-point of Eq. (1.56). 

The convergence criterion in Eq. (1.60) is less restrictive for smaller up­
date groups than for larger ones because 

Amin[U1] ~ Amin[U2] if Ul c U2. (1.61) 

Note that Eq. (1.61) implies that the stability criterion for a fully parallel 
network, where Amin[J] ~ -7-1, is a sufficient condition for Eq. (1.60) and 
thus is sufficient to assure that the system (1.56) will converge to a fixed 
point for any fair sampling updating scheme. 

Formula (1.61) has direct consequences for possible applications. Con­
sider a high-dimensional optimization task such as the traveling salesman 
problem. It may be mapped onto a neural network architecture which then 
defines a fixed connection matrix J [59]. The computational time needed 
to find a good solution can be reduced easily on a parallel computer by 
increasing the size of the update groups. However, the bounds given by 
Eq. (1.60) have to be met in order to assure convergence to fixed points, 
and will limit the maximal size of the update groups. The goal of large 
updating groups will be achieved in an optimal way if one can form up­
date groups of weakly or noninteracting neurons. All submatrices U(t) will 
have small off-diagonal elements in that case, and their eigenvalues will 
be close or identical to the diagonal elements, that is, the bounds in Eq. 
(1.60) are largely independent of the size of the update groups. In princi­
ple, the search for optimal partitions of the above kind is itself a difficult 
optimization problem, but many applications exhibit an intrinsic structure 
(for example, predominantly short-range interactions) that naturally leads 
to good choices for the updating groups. 

1.3.6 NETWORK PERFORMANCE 

The results obtained thus far demonstrate that the long-time behavior of 
neural networks with symmetric synaptic couplings is surprisingly robust 
with respect to alterations of model details at both the level of single neu­
rons and the level of the overall network dynamics. All systems studied 
relax to fixed-point solutions under appropriate additional conditions on 
the synaptic efficacies and the input-output characteristics. 

Various prescriptions for the storage of static patterns as fixed-point 
attractors have been discussed in the literature [22, 60, 61]. In what fol­
lows, we concentrate on the Hebbian learning rule [Eq. (1.23)]. A statisti-
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cal mechanical analysis of performance measures, such as storage capacity 
and retrieval quality, can be carried out most readily for networks with 
McCulloch-Pitts neurons and block-sequential dynamics. It also will be as­
sumed that the network can be partitioned into n fixed update blocks of 
equal size W such that there are no interactions within a group [lOJ. As was 
emphasized before, such a situation can be arranged for many applications 
that map onto diluted or geometrically structured networks. In the limiting 
case W = 1, one recovers the Hopfield model. 

To simplify the analysis, neurons are labeled by a double index Sia' The 
first index, 1 ~ i ~ W, refers to the position within an update group, while 
the second 1 ~ a ~ n labels the update group. The same notation applies 
to stored patterns era, where the additional index J1., 1 ~ J1. ~ p, labels the 
patterns. With these conventions, the Hebb rule in Eq. (1.23) becomes 

if a =1= b, 
if a = b. 

(1.62) 

The normalization factor N-l in Eq. (1.23) has been changed to [W(n-
1)t1 to guarantee the correct scaling behavior of LDD in the thermody­
namic limit N -+ 00. 

Statistical mechanics may be used to analyze the emergent properties of 
feedback neural networks once it has been shown that, under a stochastic 
update rule, the network relaxes to a Gibbsian equilibrium distribution 
generated by the Lyapunov function of the deterministic dynamics [22, 60, 
62]. For Glauber dynamics [Eq. (1.12)] and a one-at-a-time or a parallel 
updating scheme, such a relation exists as can be shown using the principle 
of detailed balance [28]. 

Although LDD is identical to LSD for two-state neurons, a block-sequen­
tial realization of Glauber dynamics need not approach a Gibbsian equi­
librium distribution. However, in the special case of vanishing connection 
strength within all update groups [Eq. (1.62)], neurons "do not know" 
about the state of other neurons in the same group. Thus there is no for­
mal difference between the block-sequential rule considered here and serial 
updating, where neurons change their state in consecutive order: Every set 
of W successive updates of the latter dynamics is identical to one time step 
in the former case. 

In what follows, we focus on the retrieval of unbiased random patterns 
where efa = ±1 with equal probability and study networks at a finite 
storage level a == piN. The case of large cluster size, W -+ 00, with the 
number n of update groups kept finite will be analyzed; n has to be at 
least equal to 2 because, according to Eq. (1.62), all neurons would be 
disconnected otherwise. Following the replica-symmetric theory of Amit, 
Gutfreund, and Sompolinsky [63], a fixed number s of patterns is singled 
out, and it is assumed that the network is in a state highly correlated 
with these "condensed" memories. The remaining patterns are described 
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collectively by a noise term. Notice that, for coupling matrices of the form 
in Eq. (1.62), both the overlaps m and spin-glass parameters q have to be 
defined as order parameters on the level of the update groups. For retrieval 
solutions, this requirements leads to the Ansatz 

w 
m~a == W- l L efaSfa = mD,""l (1.63) 

i=l 

and 
w 

q~~ == W- l L SfaSib = Dab[Opu(1- q) + qj (1.64) 
i=l 

for a k-fold replicated network, 1 $ p, (J' $ k. The resulting fixed-point 
equations are 

m = ((tanh[T-l{m + VOrz}])} (1.65) 

and 
(1.66) 

where 
_ q q(n -1) 

r - - -:----~'='"~'----:-:'"'" 
- [1 - T-l{l - q)j2 [n - 1 + T-l(l - q)j2. (1.67) 

Double angular brackets represent an average with respect to both the 
condensed patterns and the normalized Gaussian random variable z [10]. 

Equations (1.65)-(1.67) closely resemble their counterparts for the Hop­
field model [63] and become identical to them in the limit of large n. On a 
formal level, the same holds for n = 1, but, as was explained before, this 
case does not correspond to a physical situation. For a general number of 
update groups there exists a first-order phase transition at T = 0 between 
the retrieval state and a spin-glass phase as et is varied. The critical storage 
level is denoted by etc and the corresponding overlap by mc. 

The relative information content IR, measured per synapse and relative 
to that of the Hopfield model, 

IR n == In (block-sequential) = n· etc{n) , 
() I{random-sequential) (n - 1) . etc{Hopfield) 

(1.68) 

is a third performance measure. A comparison between various network 
architectures in terms of all three measures is given in Table 1.1. 

The performance of block-sequential updating schemes is quantitatively 
similar to that of the Hopfield model where etc = 0.138 and mc = 0.97 [63]: 
The capability to retrieve stored random patterns is slightly lower when 
measured in terms of patterns per neuron, as is indicated in the second 
column of Table 1.1, and slightly higher when measured in terms of patterns 
per synapse, as is shown in the last column. Notice, in particular, that the 
information content increases with decreasing network connectivity, that 
is, for small n. 
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Table 1.1. Numerical solution of the saddle-point equations at T = 0, Displayed 
are the storage capacity C¥e, the retrieval overlap me, and the relative information 
content IR as functions of the number n of update groups. 

n eke me IR 

2 0.100 0.93 1.45 
3 0.110 0.95 1.20 (1.69) 

4 0.116 0.96 1.12 
5 0.120 0.96 1.09 

The results demonstrate that feedback networks can be used to store 
large amounts of information: The number of patterns (each of size N) 
that can be memorized grows linearly with N, so that the information 
stored per synapse remains at a constant value of roughly 0.1 bits per 
synapse. l6 Stored patterns can be retrieved from noisy or incomplete data 
as long as the storage level remains below the critical level eke. Compared to 
sequential or fully synchronous update schemes, partially parallel schemes 
offer a potentially large advantage in terms of computational costs when 
implemented on a parallel computer allowing for a speedup that may be as 
large as the number of processors without sacrificing network stability. 

1.3.7 INTERMEZZO: DELAYED GRADED-RESPONSE 
NEURONS 

The dynamical description of Sec. 1.3.3 neglects any time lags due to finite 
propagation velocities of neural signals. As a first step toward the general 
formulation (1.14), one may study models where the communication time 
between neurons is modeled by one fixed delay 7', 

N 

Cdd Ui(t) = -R-1Ui(t) + L: Ji;V;(t -7') + I;xt(t) 
t ;=1 

(1.70) 

with 
(1.71) 

A mathematical analysis of this model is quite complicated. Because of the 
discrete delay, the initial condition for each neuron has to be specified as 
a function over a time interval of length 7'. Consequently, Eqs. (1.70) and 
(1.71) describe an infinite-dimensional dynamical system even in the scalar 
case (N = 1), which will be discussed in detail in Sec. 1.4.2. 

Obviously, fixed-point solutions of Eqs. (1.70) and (1.71) do not depend 
on the time lag and are thus identical with those of the original model 

16This number is increased significantly by more elaborate learning rules [64]. 
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without delays, described by Eqs. (1.40) and (1.41). However, equilibria 
that are stable without delays may become unstable for large enough time 
lag, as can be verified through a local stability analysis [65]. 

Global results about Eqs. (1.70) and (1.71) have been obtained under 
conditions that exclude nontrivial fixed-point solutions. A proof based on a 
Lyapunov functional shows that in this case there are no limit cycles either 
[66]. 

The lack of stronger global analytical results illustrates the limits of Lya­
punov's direct method. It is often very hard or impossible to find a Lya­
punov function for a given dynamical system under conditions that admit 
interesting applications - multiple fixed points in the present example. On 
the other hand, there are many cases where one can find Lyapunov func­
tions as soon as one enlarges the class of systems studied. In the present 
case, one could replace the single discrete lag in Eq. (1.70) by a distributed 
delay such as the one used in Eq. (1.14). At a first glance, this seems to 
complicate the analysis even further. However, there exist nontrivial delay 
distributions for which the dynamics generated by Eq. (1.14) admit global 
Lyapunov functionals [67]. 

The remark applies also to systems with synaptic couplings Jij (T) that 
are of the form Jijc(T) , where c(T) satisfies a linear ordinary differen­
tial equation in T. For instance, if Tmax = 00 and c(T) = exp(-T), one 
may rewrite the dynamical equations as a set of 2N ordinary differential 
equations. The example demonstrates that, unlike networks with discrete 
time lags, networks with distributed delays need not represent infinite­
dimensional dynamical systems. Models with delay distributions that are 
"reducible" in this sense have been studied extensively in the applied math­
ematics literature [68]. For a neurobiologically motivated system of two 
limit-cycle oscillators with reducible signal delay, a Lyapunov function is 
given in reference [69). 

1.4 Periodic Limit Cycles and Beyond 

Natural stimuli provide information in both space and time. Recurrent neu­
ral networks with delayed feedback can be programmed to recognize and 
generate such pattern sequences or "temporal associations" [70, 71, 72, 
73, 74, 75, 76],17 Recurrent networks with a broad distribution of signal 
delays and a Hebbian learning rule such as Eq. (1.22) are well suited to 
learn pattern sequences as well [47, 77, 78, 79, 80, 81]. These systems are 
characterized by a high degree of compatibility between the network archi­
tecture, the task of learning spatio-temporal associations, and the learning 
algorithm. As in networks with fixed-point attractors, an initial state or 

17 A detailed discussion can be found in reference [33]. 
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"stimulus" lying in the basin of attraction of a stored "memory" will spon­
taneously evolve toward this attractor. In the present context, however, 
memories are spatia-temporal patterns of neural activity. 

This section demonstrates that one can understand the computation of 
certain networks with signal delays as a downhill march on an abstract 
spatia-temporal energy landscape. The result allows the application of tech­
niques developed in the last sections. 

1.4.1 DISCRETE-TIME DYNAMICS 

Let us focus on a synchronous discrete-time dynamics with deterministic 
McCulloch-Pitts neurons. For vanishing external inputs, the network dy­
namics in Eqs. (1.7) and (1.8) become 

for all i (1.72) 

with 
N 'Tmax 

hi(t) = L L Jij(r)Sj(t - r). (1. 73) 
j=l T=O 

In the following, it is assumed that the synaptic couplings Jij (r) satisfy the 
extended symmetry Jij(r) = Jij(D - (2 + r)). As was shown in Sec. 1.2.4, 
this symmetry arises if the network is taught cyclic pattern sequences of 
equal duration D. 

The construction of a Lyapunov function for the retrieval dynamics in 
Eqs. (1.72) and (1.73) is facilitated by the following consideration: If the 
network has learned cyclic associations with common length D, every cor­
rect retrieval solution corresponds to a D-periodic limit cycle. D-periodic 
oscillatory solutions of a discrete-time network, however, can always be 
interpreted as static states in a fictitious system of size D x N [50, 51]. 

Let us consider such a "D-plicated" network with D columns and N 
rows. The neural activities are denoted by Sia, where 1 ~ i ~ Nand 
o ~ a ~ D. To reproduce the synchronous dynamics of the original system, 
neurons Sia with a = t (modulo D) are updated at time t. 

The time evolution of the new network is block-sequential: synchronous 
within single columns and sequential with respect to these columns. In 
terms of the original variables Si, the new activities Sia are therefore given 
by Sia(t) == SiCa + nt) for a ~ t (modulo D) and Sia(t) == SiCa + nt - D) 
for a > t (modulo D), where nt is defined through t == nt + t (modulo D). 
The update rule reads 

Sia(t + 1) = { sgn [I:f=l I:~=~l JijbSjb(t)] 
Sia(t) 

The synaptic couplings Jf/ are defined as 

if a = t(modulo D), 
otherwise. 

(1.74) 

Jijb = Jij «b - a - 1) (modulo D)). (1.75) 
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Notice that the time evolution [Eq. (1.74)] of the equivalent fictitious 
system is the same as a block-sequential updating of a network with D x N 
McCulloch-Pitts neurons and block size N, as is illustrated in Fig. 1.3. Sec­
tion 1.3.5 shows how to guarantee that such a system relaxes to fixed points 
only: through synaptic symmetry together with the condition Amin[U(t)] ~ 
O. 

Synaptic symmetry in the fictitious system, Jf/ = Jjf, is equivalent to 
the extended symmetry ofEq. (1.26) for the original couplings Jij(T). The 
second condition, Amin[U(t)] ~ 0, is equivalent to Amin[J(D -1)] ~ O. This 
condition can be satisfied by setting Tmax = D - 2. 

It is left as an exercise for the interested reader to show that the Lya­
punov function LDD, formulated for the equivalent fictitious system, may 
be rewritten in terms of the original time-delay network as 

N D-l 

LTD(t) = -~ L L Jij(T)Si(t - a)Sj (t - (a + T + l)(modulo D)). 
2 .. 1 0 1,3= 4,'T= 

(1.76) 
One may once again calculate the difference LlLTD (t) == LTD (t+ 1) - LTD (t) 
and arrive, as expected, at 

N 

LlLTD(t) = - L [Si(t + 1) - Si(t + 1 - D)] hi(t) ~ O. (1.77) 
i=l 

The derivation may be summarized as follows: 
Suppose that the synaptic efficacies of the time-delay network [Eqs. {1.72} 

and {1.73}] satisfy the extended symmetry condition {1.26}. Then the re­
trieval dynamics are governed by the Lyapunov junction {1.76}. The net­
work relaxes to a/ixed-point solution or a limit cycle with Si(t) = Si(t-D), 
that is, an oscillatory solution with the same period as that of the taught 
cycles or a period that is equal to an integer fraction of D. 

Due to the equivalence of Eqs. (1.72) and (1.73) with a block-sequential 
update rule for the fictitious system, one may apply the quantitative anal­
ysis of Sec. 1.3.6 to time-delay networks that store temporal associations. 
There is, however, a slight technical difficulty that has to be handled prop­
erly. Storing one D-periodic pattern sequence in the original model corre­
sponds to memorizing D static patterns of size D x N in the equivalent 
system, each shifted by one column (modulo D) with respect to the next 
pattern. This complication arises because every sequence may be occurring 
with its first pattern recalled at some time t, or at time t+l, or at time t+2, 
and so on. In the equivalent D-plicated system, each of these time-shifted 
cyclic temporal associations corresponds to a new pattern. 

For generic temporal associations, the analysis becomes rather compli­
cated due to nontrivial correlations between shifted copies of the same 
pattern. If, however, each pattern of a sequence lasts for one time step 
only, all relevant correlations are the same as if one had stored D unrelated 
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Fig. 1.3. Schematic drawing of the dynamics of a time-delay network (c and d) 
and its equivalent fictitious system with block-sequential time evolution (a and 
b). Horizontal axes represent time, vertical axes in (b) and (c) denote the index 
of neurons. (a) The pattern "Z" is retrieved in the fictitious network with five 
update groups that are represented in (b) by five neurons. (c) Time evolution 
of one neuron in a network with signal delays and discrete-time dynamics. The 
system recalls the cyclic pattern sequence "BAACH" as shown in (d). 
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Table 1.2. Influence of the weight distribution on the collective network proper­
ties. The storage capacity Qe, the critical overlap me, and the relative information 
content IR are displayed for some choices of e(T) for D = 4. 

= 0 

c(T) = 1/3 
c(T) = 1/2 
c(T) = 0 

1 2 3 

1/3 1/3 0 
o 1/2 0 
1 0 0 

0.116 0.96 1.12 
0.100 0.93 1.45 
0.050 0.93 1.45 

(1.78) 

patterns. This implies that the results of Sec. 1.3.6 also cover the storage 
of pattern sequences where each pattern lasts for one unit of time. 

As an example, take D = 2. With the maximal delay Tmax set to D - 2, 
Tmax is 0, and one has recovered the Little model. According to Table 1.1, 
0.100N two-cycles of the form 1/Jt ;::::!: 1/J~ may be recalled as compared to 
0.138N static patterns [82]: a 1.45-fold increase of the information content 
per synapse. At the same time, the retrieval overlap drops slightly from 
0.97 to 0.93. 

The performance of networks with distributed delays and D = 4 is dis­
played in Table 1.2. 

As is shown in Table 1.2, the uniform distribution leads to the largest 
O:c but the smallest IR. The other two networks have the same value of 
IR as the (unique) D = 2 system due to the particular structure of their 
eigenvalue spectrum. Furthermore, one obtains IR = 1.45 independently 
of D for all networks with a minimal connectivity where only one synapse 
links two neurons. IS Simulation data show slightly higher values of O:c, 

possibly indicating effects of replica symmetry breaking as in the Hopfield 
model [63]. 

In passing, note that each cycle consists of D patterns so that the storage 
capacity for single patterns is ac = Do:c• During the recognition process, 
however, each pattern will trigger the cycle it belongs to and cannot be 
retrieved as a static memory. 

If static patterns instead of temporal associations are learned, the synap­
tic strengths do not depend on the delay; see also Eq. (1.23). The synaptic 
couplings still satisfy the extended symmetry, and, with T max = D - 2, one 
recovers the Lyapunov function for networks with McCulloch-Pitts neurons 
and "multiple-time-step parallel dynamics" [83], 

1 N D-2 D-2 

LMTS(t) = -2 L Jij L Si(t - a) L Sj(t - b). 
i ,j=1 a=O b=O 

(1.79) 

The evolution equations (1.72) and (1.73) may be generalized to analog 

18This case is possible if D is an even number. 
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systems with periodic external inputs. Using the "cooking recipes" of Secs. 
1.3.1-1.3.4, it is possible to construct a Lyapunov function for that case as 
well [84]. 

The learning rule in Eq. (1.26) also may be utilized to store cycles of 
correlated real-valued pattern sequences. Numerical studies have been per­
formed for low-dimensional trajectories (small N) with high numbers of 
data points (large D). For many examples, good retrieval could be obtained 
without any need for highly time-consuming supervised learning schemes. 
However, algorithms of the latter kind facilitate the learning of more so­
phisticated real-world tasks. Here, Lyapunov functions are of great help 
since they permit the application of mean-field techniques [85] to a wide 
class of supervised learning strategies such as spatio-temporal extensions 
of the "Boltzmann Machine" concept [86] and contrastive-learning schemes 
[87]. 

In closing this section, let me mention that an analysis of the storage 
capacity along Gardner's approach [88] has been given in reference [89]. 
Analytical results on highly diluted systems with time lags have also been 
obtained [90]. 

1.4.2 CONTINUous-TIME DYNAMICS 

The global dynamics of certain networks with graded-response neurons and 
delayed interactions may be studied in a manner similar to that of Sec. 1.4.1 
[67]. In the following, we focus on the simplest case, a single neuron (or a 
homogeneous assembly of neurons) coupled to itself through one inhibitory 
feedback loop with delay T. Equation (1.14) reduces to 

d _ 
C dt u(t) = -R lu(t) - g[u(t - T)], (1.80) 

where 9 satisfies the condition 

ug(u) > 0 for u =F 0 and g(O) = O. (1.81) 

Solutions of this seemingly simple scalar equation include a fixed point 
u(t) = 0 and, depending on the graph of g, periodic limit cycles and chaotic 
trajectories [91]. Such a diversity of temporal phenomena is possible since, 
due to the discrete delay, Eq. (1.80) describes an infinite-dimensional dy­
namical system as was already mentioned in Sec. 1.3.7. 

Various aspects of the scalar delay differential equation (1.80) have been 
discussed in the mathematics literature. Most articles have concentrated 
on periodic solutions, in particular on those that are "slowly oscillating," 
that is, periodic solutions with zeros spaced at distances larger than the 
time lag T. Results about their existence, uniqueness, and local stability 
have been obtained by Kaplan and Yorke [92], Nussbaum [93], and Chow 
and Walther [94], respectively. 
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The global analysis of Eq. (1.80) is simplified significantly if one neglects 
the transmembrane current R-1u(t) and if 9 is an odd sigmoid function. 
Without loss of generality, one may set C = r = 1 and study the evolution 
equation 

d 
dt u(t) = -g[u(t - 1)]. 

Consider the auxiliary function LDDE(t), 

LDDE(t) = -! r1 t+l u(s)u(s - r)ds dr 
2 io it+r-l 

1121t+l +-2 U(S)U(8 - r)ds dr 
1 t+r-l It+l 1 

+ t-l G(u(s))ds+'4[u(t+l)+u(t-l)]2, 

(1.82) 

(1.83) 

where G(x) is defined as in Eq. (1.43).19 For bounded nonlinearities g, 
all solutions of Eq. (1.82) are bounded. They are differentiable for t > 1. 
Consequently, LDDE(t) is bounded below for t > 2. It follows that, for 
t > 1, the time derivative of LDDE{t) along a solution of Eq. (1.82) is well 
defined and given by 

d 
dt LDDE(t) = [u(t + 1) + u(t - l)][u(t) - !u(t + 1) - !u(t - 1)] 

+G(u(t + 1)) - G(u(t - 1)) 
+![u(t + 1) + u(t - l)][u(t + 1) + u(t - 1)] 

= u(t)[u(t+l) + u(t-l)] + G(u(t+l))-G(u(t-l)). (1.84) 

Because the input-output characteristic is assumed to be an odd sig­
moid function, g-1 is odd, single-valued, and monotone increasing. Con­
sequently, the function G is even and strictly convex. In particular, the 
equality G(u(t - 1)) = G( -u(t - 1)) holds. Performing a Taylor expansion 
as in Eq. (1.51), one therefore obtains 

G(u(t + 1)) - G(u(t - 1)) :5 [u(t + 1) + u(t - 1)]g-I(U(t + 1)) 

:5 -[u(t + 1) + u(t - 1)]u(t). (1.85) 

Equality in Eq. (1.85) holds if and only if u{t + 1) = -u{t - 1). Taking 
the evolution equation (1.82) and the strict monotonicity of 9 into account, 
the last equation also may be written u{t) = -u(t - 2). 

19 LODE has been introduced as an explicitly time-dependent function for sim­
plicity and has been written in terms of both '1£ and 'Ii. for the same reason. 
However, the initial function may not be differentiable. This (purely technical) 
difficulty can be avoided if 'Ii.(s) is replaced by -g(U(8 - 1)). LODE then may be 
properly defined as a functional in the space of continuous functions from the 
interval [-2,0] to the real numbers [95]. 
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Fig. 1.4. Time evolution of a single neuron with delayed feedback according 
to the evolution equation {1.82}. The input-output characteristic is g{u} = 
tanh{5u}. The state variable u is plotted as a solid line, its derivative u as a dashed 
line, and the Lyapunov function LOOE as a dotted line. Notice that LOOE{t} ap­
proaches a constant value as required for a Lyapunov function, whereas u relaxes 
toward a periodic oscillatory solution with period four. 

Inserting Eq. (1.85) into Eq. (1.84), one finally arrives at 

for t ~ 2, (1.86) 

where equality holds if and only if u(t) = -u(t - 2).20 An illustration is 
given in Fig. 1.4. According to Eq. (1.86), LDDE(t) is nonincreasing along 
every solution for t > 2. The overall result may be summarized in the 
following way: 

Suppose that the function g is odd, bounded, and sigmoid. Then the evo­
lution equation (1.82) admits the Lyapunov function (1.83). Solutions of 
Eq. (1.82) converge either to the trivial fixed point u = 0 or to a periodic 
limit cycle that satisfies 

u(t) = -u(t - 2). (1.87) 

Notice that the period P of the limit cycles does not depend on the graph 

20The curious reader is invited to compare this result and its derivation with 
that for the Little model with antisymmetric couplings in Eq. {1.54}. 
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of g; according to Eq. (1.87), it is always given by P = 4/(4k + 1), where k 
is a nonnegative integer.21 On the other hand, it is well known that, for the 
general equation (1.80), the period of a periodic solution is influenced by 
the ratio of RC to r and the shape of 9 [96J. This fact implies that the above 
methods probably cannot be extended to study delay differential equations 
of the type in Eq. (1.80). There is, however, another way to analyze this 
equation [97J. To facilitate the discussion, let ti, i E N with ti < ti+1 denote 
the times of consecutive zero crossings u(t) = 0 of a solution of Eq. (1.80). 
One may then prove the following proposition: 

Assume that the function 9 is bounded and satisfies the condition in Eq. 
{1.81}. For every solution u(t) of Eq. {1.80}, the numbern(i) of zero cross­
ings in the interval [ti - r, ti) is a nonincreasing function of i. 

This result means that a solution of Eq. (1.80) oscillates more and more 
slowly around 0 as time proceeds. For long times it approaches a solution 
with constant n = n(i); possibly n = O. In particular, if the system is 
initialized with a solution that has n zero crossings in the interval [-r, 0), 
it can never reach an oscillation with more than n zero crossings in anyone 
of the intervals [ti - r, ti). 

Let me briefly sketch the proof. The reader is also referred to Fig. 1.5. If 
9 is bounded and satisfies the condition (1.81), solutions of Eq. (1.80) exist 
for all positive t and are continuous [98J. Assume without loss of generality 
that, at time tj, (d/dt) u(tj) > O. According to Eqs. (1.80) and (1.81), 
this means that u(tj - r) < 0 because u(tj) = 0 by definition. The same 
argument may be used at time tj+1' where it implies that U(tj+l - r) > 0 
because U(tj+l) = 0 and (d/dt) U(tj+l) < O. Together with the continuity 
of u(t), this implies that there is an odd number k(j) ~ 1 of zero crossings 
in the interval [tj - r, tj+1 - r). 

Denote the number ofzero crossings in the interval [tj+1-r, tj) by l(j).22 
It follows that n(j) = l + k(j) and n(j + 1) = l(j) + 1. Since k(j) ~ 1, both 
relations may be combined to the statement n(j) ~ n(j + 1), which proves 
the proposition. 

The number of zero crossings in any interval is nonnegative - the func­
tion n(i) is bounded below. Since it is nonincreasing along every solution 
of Eq. (1.80), it is an integer-valued Lyapunov function. Accordingly, solu­
tions of Eq. (1.80) relax to solutions with constant n(i). Notice that those 
solutions may be periodic but could - at least in principle - also be ape-

21Further results derived with the help of LODE can be found in reference [95]. 
One proof is well suited to highlight the potential of Lyapunov functions - once 
they are found: It can be shown that, for large enough g'(O), the global minimum 
of LODE is always achieved on a slowly oscillating solution [otherwise on the 
trivial fixed point u(t) = 0]. This immediately implies that those solutions have 
to be asymptotically stable (except for global phase shifts), a conclusion that 
previously required elaborate analytical techniques. 

22It is understood that l(j) = 0 if tj+1 - T ~ tj. 
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Fig. 1.5. Time evolution of a single graded-response neuron with delayed self­
inhibition modeled by the delay differential equation (1.80). There are zero cross­
ings of the solution u(t) at time tj, tHl, and at various earlier (and later) times. 
In the interval [tj -7', tj+l - 7'), two possible solutions are drawn. They have one 
and three zero crossings, respectively. 

riodic. This is a surprising result; it highlights the generality of Lyapunov's 
second method in a rather illuminating way. 

1.5 Synchronization of Action Potentials 

While it frequently may be the case that mean-firing rates are an adequate 
description of neural information, there are many instances where the de­
tailed timing and organization of action potentials matter. An important 
example is given by the stimulus-dependent synchronization of action po­
tentials [15, 16, 17]. 

Due to the inherent limitations of descriptions based on discrete-time 
dynamics or mean-firing rates, realistic synchronization processes are not 
captured by the networks discussed in Secs. 1.3 and 1.4. Synchronization 
processes may, however, be studied using networks with integrate-and-fire 
neurons, whose time evolution was introduced in Sec. 1.2.3. 

Networks of that type often show globally synchronized neurons when 
all-to-all couplings are used.23 Note that, throughout this section, terms 

23Doubts about the structural stability of simple integrate-and-fire models have 
been raised because some model variants do not exhibit systemwide synchroniza­
tion with all-to-all couplings [99, 100, 101J. 
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such as "synchronized neurons" always refer to the time of spike gener­
ation. According to this definition, a periodic network state (also called 
a phase-locked solution) mayor may not be "globally synchronized." A 
global analysis for networks described by Eqs. (1.13), (1.20), and the "ab­
sorbtion rule" Uj(t+) = 0 [instead of Eq. (1.18)] has been given in reference 
[102]. With excitatory all-to-all couplings of equal strength, nonzero leakage 
currents, uniform external inputs, and a reset to 0 after spike generation 
(; = 0), the size of the largest synchronized cluster is a nondecreasing 
function of time - a (discrete-valued) Lyapunov function! The proof then 
shows that such systems approach a globally synchronized solution where 
all neurons fire in unison. 

Networks with more general nonuniform interaction admit richer dynami­
cal behavior [25, 103, 104]. Equipped with excitatory finite-range couplings, 
one class of networks relaxes to phase-locked clusters of (locally) synchro­
nized neurons [105, 106]. The shapes and relative phases of the clusters 
encode information about the initial stimulus. this result is in accordance 
with the hypothesis that synchronized cortical neurons are used to bind 
stimulus features together [107J. 

1.5.1 PHASE LOCKING 

Global results for locally coupled networks with integrate-and-fire neurons 
have been obtained in the limiting case R -+ 00 of perfectly integrating 
cells and uniform positive input currents 1:xt = 1 > O. In this situation, 
external information is encoded in the initial conditions Ui(t = 0), not in 
the input currents. This choice is reminiscent of the experimental paradigm 
of stimulus-induced oscillations [15]. Due to the constant positive input 
current 1, each model cell fires regularly if there is no further synaptic 
input from other cells. Thus, 1-1 represents the spontaneous firing rate 
of an isolated neuron. By rescaling time, the capacitance C and input 1 
in Eq. (1.13) can be taken as unity. The overall dynamics then may be 
summarized by the following update rules: 

(i) Initialize the Ui(t = 0) in [0, 1] according to the external stimulus. 

(ii) If Ui ~ 1, and if neuron i is next in the update scheme, then 

and 
Uj -+ uj = Uj + Jji. 

(iii) Repeat step ii until Ui < 1 for all i. 

(iv) If the condition of step ii does not apply, then 

d 
-u· =1 dt ' for all i. 

(1.88) 

(1.89) 

(1.90) 
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Under the condition that all neurons have the same total incoming synap­
tic strength, 

LJij =A, 
j 

and the same total outgoing synaptic synaptic strength, 

none may prove that the simple function LIAF, 

LIAF = - LUi, 

(1.91) 

(1.92) 

(1.93) 

that is, the total (negative) membrane potential, plays the role of a Lya­
punov function for the system defined by steps i-iv, as is shown in reference 
[106]: 

Assume that "Y = 1 and that the synapses satisfy Jij ~ 0 and the con­
straints in Eqs. (1.91) and (1.92) with A < 1. Then the dynamics generated 
by Eqs. {1.88}-(1.90} admit the Lyapunov function (1.99) and converge to 
cyclic solutions with period PrAF = 1 - A. On periodic solutions, each neu­
ron fires exactly once in a period. 

Notice that synaptic symmetry has not been required! This distinguishes 
the present model from the networks discussed in the previous sections. 

Depending on the initial conditions, the periodic solutions can contain 
events in which one neuron fires alone, and others in which many neurons 
fire in synchrony. In networks with excitatory short-range connections only, 
regions with small variability of the initial conditions are smoothed out 
and represented by locally synchronized clusters of neurons whose firing 
times encode the stimulus quality. Regions with high variability, on the 
other hand, give rise to spatially uncorrelated firing patterns. Through an 
appropriate choice of coupling strengths, more complex computations can 
be performed as demonstrated by numerical simulations [106]. 

In order to prove the proposition, let us first show that no neuron fires 
more than once in any interval of length PrAF. 

Lemma: Let ni(t, t') denote the number of times neuron i fires in [t, t'). 
If the conditions of the proposition hold, then ni(t, t + PrAF) ~ 1. 

Starting at time t, if some neuron fires twice before t + PrAF, then some 
neuron k must first fire twice, and at time t' < t+PrAF. For that to happen, 
the total change in Uk from t to t' due to the synaptic currents and the 
external input must be greater than 1. Thus one requires that, for neuron 
k, 

, (1 - A) "'" ') (t - t) Pr + L..J Jkjnj(t, t > 1. 
AF j 

(1.94) 

However, by hypothesis (t' - t) < PrAF, and, since k is the first neuron to 
fire twice, the number nj(t, t') of firings of each of the other neurons up to 
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t' is less than or equal to 1. For Jij nonnegative, the left-hand side of Eq. 
(1.94) is less than (1- A) + A = 1. The contradiction shows that k cannot 
have fired twice. 

Returning to the proof of the proposition, let us consider the change of 
LIAF in a time interval oflength PrAF, ~LIAF(t) == LIAF(t+PrAF )-LIAF(t). 
It is 

~LIAF(t) = -(I-A)N - L Jijnj(t, t+PrAF)+ L ni(t, t+PrAF)' (1.95) 
i,j i 

The first term comes from the constant input current, the second term from 
the effect of the firing of other neurons, and the third term comes from i 
itself firing. Using the condition (1.91), one finds 

aLIAF(t) = -(I-A) [N - ~n;(t.t+lllF)l. (1.96) 

Due to the lemma, ni(t, t + PrAF) $ 1 for all t. The change of LIAF 
in each time interval PrAF is thus nonpositive. Since LIAF is bounded, the 
system performs a downhill march on the energy landscape generated by the 
Lyapunov function LIAF - if the function is measured after time steps of 
length PrAF. The difference ~LIAF (t) vanishes if and only if ni (t, t+ PrAF) = 
1 for all i, that is, on periodic solutions where every neuron fires exactly 
once in a time interval of length PrAF [106].24 

To avoid the unfamiliar evaluation of the Lyapunov function LIAF at the 
discrete times t + kPIAF, kEN, one may alternatively use the functional 

LIAF = 1° LIAF(S)ds. (1.97) 
-PtAF 

Along solutions, LIAF is differentiable with (d/dt)L1AF(t) = ~LIAF(t­
PrAF) for all t ~ PrAF, so that the previous conclusions are reached again. 
For an illustration, see Fig. 1.6. 

1.5.2 RAPID CONVERGENCE 

The results of the previous section prove that specific networks of integrate­
and-fire neurons approach phase-locked solutions. Numerical simulations of 
these and more general networks [102,106,108,109,110,111] indicate that 
the convergence process takes place in a very short time - see also Fig. 
1.6.25 This observation can be substantiated under certain conditions [105, 
106]: 

24 A related proof has been given in reference [35]. Notice also that a continuous 
set of stable (but not asymptotically stable) periodic solutions is reached. 

251n general, clusters of locally synchronized neurons will slowly reorganize 
after the initial rapid convergence. The models analyzed in this chapter are an 
exception in that they do not show such slow relaxation phenomena. 
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Fig. 1.6. Rapid local synchronization of action potentials. Shown are results 
from numerical simulations of a planar network with 40 x 40 integrate-and-fire 
neurons (R-1 = 0, 'Y = 1), periodic boundary conditions, and nearest-neighbor 
interactions of strength Jnn = 0.24. Each dot in the upper trace represents the 
number of simultaneous action potentials as a function of time. The lower trace 
depicts the time evolution of the Lyapunov function LIAF (solid line) and the 
Lyapunov functional LIAF (dashed line). The inset verifies that, as predicted, the 
latter approaches a constant value. 
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Assume that the synapses satisfy Jij 2: 0 and the condition {1.91} with 
A < 1. Then all solutions of Eqs. {1.88}-{1.90} converge to cyclic solutions 
with period PIAF = 1 - A. The attractor is reached as soon as every neuron 
has fired once. On the periodic solution, each neuron fires exactly once in 
a period. 

Notice that, although the conditions on 'Y and on the sum of outgoing 
synaptic strengths have been dropped, the conclusions are now stronger 
than in the previous proposition. However, the proof given is not based 
on a Lyapunov function, so the concept of a downhill march on an energy 
landscape generated by the Lyapunov function no longer is available. The 
lack of a Lyapunov function might also be a drawback when stochastic 
extensions are considered in the future. 26 

Let tmax denote the first time every neuron has fired at least once. Some 
cells may have fired repeatedly before tmax, depending on the parameter 
values and initial conditions. Let ti denote the last time neuron i fires before 
tmax, tmin the minimum of all these times t i , and k a cell that fires at tmin 
for the last time without being triggered by other cells. 

By definition, every cell discharges at least once in the interval [tmin, 
tmax1. This implies in particular that every neuron j from which cell k 
receives synaptic input emits one or more action potentials in that interval. 
Each spike adds Jkj to Uk. The total change of Uk in [tmin' tmax1 is thus 
equal to or greater than A + tmax - tmin. This number has to be smaller 
than 1 because, otherwise, neuron k would fire a second time in the interval 
[tmin' tmax1 in contradiction to the assumption. It follows that tmax -tmin < 
HAF. 

Going back to Sec. 1.5.1, one notices that the condition on the sum of 
outgoing synaptic strengths [Eq. (1.92)1, although essential for the proof 
of the main proposition, is not required for the proof of the lemma: The 
lemma is also valid under the weaker conditions of the present section. 
Evaluated at time t = tmax - PIAF and combined with the previous results, 
the lemma implies that every cell fires exactly once in [tmin, tmax1 and no 
cell fires in (tmax - HAF, tmin). Since tmax ~ 1, the last result proves that, 
in finite time tmax - PIAF, a limit cycle is approached in the sense that 
Ui (t) = Ui (t + HAF) for t 2: tmax - AAF. The argument also shows that the 
attractor is reached as soon as every neuron has fired once. 

The proof does not depend on the details of the reset mechanism. This 
means that it covers not only the present model with arbitrary 0 ~ 'Y ~ 1, 

26The sentence reflects the author's hope that it might be possible to construct 
simple stochastic dynamics of integrate-and-fire neurons such that the Lyapunov 
function of the noiseless dynamics determines a Gibbs distribution for the stochas­
tic extension. Equilibrium statistical mechanics then could be applied to analyze 
the collective phenomena in networks of integrate-and-fire neurons in the same 
spirit as has been done for the neural network models discussed in Secs. 1.3 and 
1.4. Regrettably, such evolution equations have not been found yet. 
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but also all schemes where a neuron i firing at time t is relaxed to some 
value between 0 and Ui(t-) -1. Perhaps surprisingly, this allows atochastic 
updatings during the transient phase. 

In all model variants except from the limiting case 'Y = 1, cyclic solutions 
with period PrAF and one spike per cycle cannot occur if a neuron is driven 
above threshold. In events with multiple neurons firing "at the same time," 
the potentials have to be fine-tuned such that, if neuron i is triggered by 
neuron j, Ui(t-) = 1- Jij. This implies that, although every firing sequence 
of the model with 'Y = 1 can be realized in these models, the volume of all 
attractors is greatly reduced when measured in the space of the dynamical 
variables Ui. 

1.6 Conclusions 

The examples presented in this chapter demonstrate that Lyapunov's direct 
method has widespread applications within the theory of recurrent neural 
networks. With respect to the list of levels of analysis sketched in the 
Introduction, it has been shown that Lyapunov's method is most helpful 
on the second level, which deals with questions about the type of attractors 
possible in a neural network. 

Combined with powerful techniques from statistical mechanics, Lyapun­
ov's approach allows not only for a qualitative understanding of the global 
dynamics, but also for quantitative results about the collective network 
behavior. As was shown in Sees. 1.3, 1.4, and 1.5, Lyapunov's method 
applies to the retrieval of static patterns in networks with instantaneous 
interactions, to the recall of spatia-temporal associations in networks with 
signal delays, and to synchronization processes in networks of integrate­
and-fire neurons. 

There remain numerous interesting questions about the global dynam­
ics of feedback neural networks. These include questions concerning the 
convergence of network models with discrete-time dynamics, symmetric 
couplings, and overlapping delays [see Fig. 1.1(d)]. Numerical simulations 
suggest that such systems relax to fixed-point solutions [112], but the ana­
lytic results from the computer science literature [55, 56, 57, 58] only cover 
the case where a single pattern is stored in the network. 

With regard to networks with transmission delays, it would be interesting 
to know more about the global dynamics generated by Eqs. (1.70) and 
(1.71) under conditions that admit multiple fixed-point attractors. With a 
similar interest in mind, one could try to perform a statistical mechanical 
analysis of the system (1.72), (1.73) with delay-independent symmetric 
couplings [Eq. (1.23)] to study the influence of signal delays on the collective 
properties of networks that store static patterns. 

In the proofs concerning integrate-and-fire neurons, synaptic strengths 
were assumed to be excitatory. There is, however, strong numerical evidence 
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that inhibition does not change the overall results [106J. If the synaptic 
couplings continue to satisfy the condition (1.91) with A < 1, and if the 
network parameters are chosen such that there are no runaway solutions 
and no solutions with neurons that are permanently below threshold, then 
all simulations of the dynamics generated by Eqs. (1.88)-(1.90) approach 
periodic solutions of period P1AF = 1 - A. For leaky integrate-and-fire 
models (finite R), the same is true, but the period is given by the period 
FtIAF of the globally synchronized solution in such a system: 

PLIAF = RC[ln(RI - A) -In(RI - 1)J. (1.98) 

This observation gives hope that further understanding of integrate-and­
fire models is possible, although the mathematical situation is more com­
plicated than in the cases discussed in Sec. 1.5. A convergence proof based 
on Lyapunov functions such as Eq. (1.93) is possible because every peri­
odic solution of the model has the same period. This is not the case for 
models for finite R, as is shown by the following counterexample. Consider 
a spatia-temporal "checkerboard" pattern, where the "black" sites fire at 
even multiples of 1l/2 and the "white" sites at odd multiples of 1l/2. A 
self-consistent calculation of the firing pattern leads to an implicit equation 
for Il: 

(1.99) 

Excepting from the limiting case R -+ 00, Il differs from the period of the 
globally synchronized solution. A stability analysis verifies that the checker­
board pattern is unstable, but its mere existence indicates that it will be 
difficult to find Lyapunov functions for leaky integrate-and-fire models. 

More generally, one may ask which conditions in the proofs of Secs. 1.3, 
1.4, and 1.5 can be violated without changing the desired emergent net­
work behavior. These questions deal with the structural stability of neural 
networks, the fifth level of analysis, and have to be answered if one wants to 
evaluate the biological relevance of specific networks. In order to keep the 
chapter within reasonable bounds, this topic has not been discussed here. A 
particularly important issue, the convergence of "conventional" recurrent 
neural networks (of the type studied in Sec. 1.3) without synaptic symme­
try, has been studied extensively in the literature [113, 114]. In passing, 
let me note that one may always generate specific asymmetric networks 
through appropriate transformations of both the coupling matrix and dy­
namical variables of systems with symmetric interactions. 

There are a number of other topics related to the main theme of this 
chapter that could not be included. Let me briefly mention two of these 
issues. 

First, one may design dynamical systems such that they perform a down­
hill march on an energy landscape that encodes some optimization task [59]. 
Various biologically motivated examples can be found in the computer vi­
sion literature [115, 116J. 
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Second, one may construct feedback networks that possess desired at­
tractors but no spurious stable states [117, 118]. The construction of such 
artificial associative memories is greatly facilitated if one deliberately lifts 
modeling restrictions that otherwise would be naturally imposed by bio­
logical constraints. 

Let me close with a general comment: "Associative computation" means 
that many different inputs are mapped onto few output states. The time 
evolution of a dynamical system that performs such a computation is char­
acterized by a contraction in its state space, that is, it is dissipative.27 This 
observation suggests that many dynamical systems that have been used 
as models for associative computation may admit Lyapunov functions. As 
was emphasized in Sec. 1.3.7, minor modifications of the models may be 
needed to satisfy technical requirements. 

In view of the many Lyapunov functions already found, I would like to 
conclude with a remark from the monograph of Rouche, Habets, and Laloy 
[3]: "Lyapunov's second method has the undeserved reputation of being 
mainly of theoretical interest, because auxiliary functions are so difficult to 
construct. We feel this is the opinion of those people who have not really 
tried ... " 
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Receptive Fields and Maps in 
the Visual Cortex: Models of 
Ocular Dominance and 
Orientation Columns* 
Kenneth D. Miller! 

with 4 figures 

Synopsis. The formation of ocular dominance and orientation columns in 
the mammalian visual cortex is briefly reviewed. Correlation-based models 
for their development are then discussed, beginning with the models of Von 
der Malsburg. For the case of semilinear models, model behavior is well un­
derstood: correlations determine receptive field structure, intracortical in­
teractions determine projective field structure, and the "knitting together" 
of the two determines the cortical map. This provides a basis for simple but 
powerful models of ocular dominance and orientation column formation: 
ocular dominance columns form through a correlation-based competition 
between left-eye and right-eye inputs, while orientation columns can form 
through a competition between ON-center and OFF-center inputs. These 
models account well for receptive field structure but are not completely 
adequate to account for the details of cortical map structure. Alternative 
approaches to map structure, including the self-organizing feature map of 
Kohonen, are discussed. Finally, theories of the computational function of 
correlation-based and self-organizing rules are discussed. 

2.1 Introduction 

The brain is a learning machine. An animal's experience shapes the neu­
ral activity of its brain; this activity in turn modifies the brain, so that 

* An earlier and briefer version of this chapter appeared in The Handbook 
of Neural Networks (M.A. Arbib, Ed.), The MIT Press, 1995, under the title 
"Models of Ocular Dominance and Orientation Columns." Reused by permission. 

lDepartments of Physiology and Otolaryngology, W.M. Keck Center for Inte­
grative Neuroscience, and Sloan Center for Theoretical Neurobiology, University 
of California, San Francisco, CA 94143-0444, USA. 
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Right eye Visual Cortex 

Left eye 

Fig. 2.1. Schematic of the mature visual system. Retinal ganglion cells from 
the two eyes project to separate layers of the lateral geniculate nucleus (LGN). 
Neurons from these two layers project to separate patches or stripes within layer 
4 of the visual cortex (VI). Binocular regions (receiving input from both eyes) are 
depicted at the borders between the eye-specific patches. The cortex is depicted in 
cross-section, so that layers 1-3 are above and layers 5-6 below the LGN-recipient 
layer 4. Reprinted by permission from [42]. © 1989 by the AAAS. 

the animal learns from its experience. This self-organization, the brain's 
reshaping of itself through its own activity (reviewed in [7, 14,39, 51]), has 
long fascinated neuroscientists and modelers. 

The classic example of activity-dependent neural development is the for­
mation of ocular dominance columns in the cat or monkey primary visual 
cortex (reviewed in [44]). The cerebral cortex is the uniquely mammalian 
part of the brain. It is thought to form the complex, associative represen­
tations that characterize mammalian and human intelligence. The primary 
visual cortex (VI) is the first cortical area to receive visual information. It 
receives signals from the lateral geniculate nucleus of the thalamus (LGN), 
which in turn receives input from the retinas of the two eyes (Fig. 2.1). 

To describe ocular dominance columns, several terms must be defined. 
First, the receptive field of a cortical cell refers to the area on the retinas in 
which appropriate light stimulation evokes a response in the cell, and also 
to the pattern of light stimulation that evokes such a response. Second, 
a column is defined as follows. VI extends many millimeters in each of 
two, "horizontal" dimensions. Receptive field positions vary continuously 
along these dimensions, forming a retinotopic map, a continuous map of the 
visual world. In the third, "vertical" dimension, the cortex is about 2 mm in 
depth and consists of six layers. Receptive field positions do not significantly 
vary through this depth. Such organization, in which cortical properties are 
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1 mm 

Fig. 2.2. Ocular dominance columns from cat VI. A horizontal cut through the 
layer 4 of VI is shown. Terminals serving a single eye are labeled white. Dark 
regions at the edges are out of the plane containing LGN terminals. Region shown 
is 5.3 x 7.9 mm. Photograph generously supplied by Dr. Y. Rata. 

invariant through the vertical depth of cortex but vary horizontally, is called 
columnar organization and is a basic feature of the cerebral cortex. 

Third, ocular dominance must be defined. Cells in the LGN are monoc­
ular, responding exclusively to stimulation of a single eye (Fig. 2.1) . LGN 
cells project to layer 4 of VI, where they terminate in alternating stripes 
or patches of terminals representing a single eye (Figs. 2.1 and 2.2). Most 
or, in some species, alllayer-4 VI cells are monocular. Cells in other layers 
of VI respond best to the eye that dominates layer-4 responses at that 
horizontal location. Thus, VI cells can be characterized by their ocular 
dominance, or eye preference. The stripes or patches of cortex that are 
dominated throughout the cortical depth by a single eye are known as 
ocular dominance columns. 

The segregated pattern of termination of the LGN inputs to VI arises 
early in development. Initially, LGN inputs project to layer 4 of VI in an 
overlapping manner, without apparent distinction by eye represented. The 
terminal arbors of individual LGN inputs extend horizontally in layer 4 
for distances as large as 2 mm (for comparison, a typical spacing between 
cortical cells is perhaps 20 JLm). Subsequently, beginning either prenatally 
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or shortly after birth, depending on the species, the inputs representing 
each eye become horizontally confined to the alternating, approximately 
I/2-mm wide ocular dominance patches. 

This segregation results from an activity-dependent competition between 
the geniculate terminals serving the two eyes (see discussion in [44]). The 
signal indicating that different terminals represent the same eye appears to 
be the correlations in their neural activities [54]. These correlations exist 
due both to spontaneous activity, which is locally correlated within each 
retina [36, 37, 38, 64], and to visually-induced activity, which correlates 
the activities of retinotopically nearby neurons within each eye and, to a 
lesser extent, between the eyes [26]. The segregation process is competitive. 
If one eye is caused to have less activity than the other during a critical 
period in which the columns are forming, the more active eye takes over 
most of the cortical territory [25, 52, 60]; but the eye with reduced activity 
suffers no loss of projection strength in retinotopic regions in which it lacks 
competition from the other eye [15, 16]. In summary, ocular dominance 
column formation is a simple system in which correlated patterns of neural 
activity sculpt the patterns of neural connectivity. 

Orientation columns are another striking feature of visual cortical orga­
nization. Most VI cells are orientation-selective, responding selectively to 
light/dark edges over a narrow range of orientations. The preferred orienta­
tion of cortical cells varies regularly and periodically across the horizontal 
dimension of the cortex and i3 invariant in the vertical dimension. The 
maturation of orientation selectivity is activity-dependent (e.g., [6, 11]). 
However, it has not yet been possible to test whether the initial develop­
ment of orientation selectivity is activity-dependent. This is because some 
orientation selectivity already exists at the earliest developmental times at 
which visual cortical responses can be recorded [1,4,6,20, 61], and it has 
not been possible to block visual system activity immediately before this 
time. Nonetheless, it has long been a popular notion that the initial devel­
opment of orientation selectivity, like that of ocular dominance, may occur 
through a process of activity-dependent synaptic competition. 

The inputs from LGN to VI serving each eye are of two types: ON-center 
and OFF-center. Both kinds of cells have circularly symmetric, orientation­
insensitive receptive fields and respond to contrast rather than uniform 
luminance. ON-center cells respond to light against a dark background, or 
to light onset; OFF-center cells respond to dark against a light background, 
or to light offset. In the cat, the orientation-selective VI cells in layer 4 are 
simple cells: cells with receptive fields consisting of alternating oriented 
subregions that receive exclusively ON-center or exclusively OFF-center 
input (Fig. 2.3). As shall be discussed, one theory for the development of 
orientation selectivity is that, like ocular dominance, it develops through 
a competition between two input populations: in this case, a competition 
between the ON-center and the OFF-center inputs [41]. 



Kenneth D. Miller 59 

Fig. 2.3. Two examples of simple cell receptive fields (RFs). Regions of the 
visual field from which a simple cell receives ON-center (white) or OFF-center 
(dark) input are shown. Note: Ocular dominance columns (Fig. 2.2) represent an 
alternation, across the cortex, in the type of input (left- or right-eye) received by 
different cortical cells; while a simple-cell RF (this figure) represents an alterna­
tion across visual space in the type of input (ON- or OFF-center) received by a 
single cortical cell. 

2.2 Correlation-Based Models 

To understand ocular dominance and orientation column formation, two 
processes must be understood: (1) the development of receptive field struc­
ture: under what conditions do receptive fields become monocular (driv­
able only by a single eye) or orientation-selective? (2) the development of 
periodic cortical maps of receptive field properties: what leads ocular dom­
inance or preferred orientation to vary periodically across the horizontal 
dimensions of the cortex, and what determines the periodic length scales of 
these maps? Typically, the problem is simplified by consideration of a two­
dimensional model cortex, ignoring the third dimension in which properties 
such as ocular dominance and orientation are invariant. 

One approach to addressing these problems is to begin with a hypothe­
sized mechanism of synaptic plasticity, and to study the outcome of cortical 
development under such a mechanism. Most commonly, theorists have con­
sidered a Hebbian synapse: a synapse whose strength is increased when pre­
and postsynaptic firings are correlated, and possibly decreased when they 
are anticorrelated. Other mechanisms, such as activity-dependent release 
and uptake of a diffusible modification factor, can lead to similar dynamics 
[42], in which synaptic plasticity depends on the correlations among the 
activities of the competing inputs. Models based on such mechanisms are 
referred to as correlation-based models [39]. 
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2.2.1 THE VON DER MALSBURG MODEL OF VI 

DEVELOPMENT 

Von der Malsburg [57, 59J first formulated a correlation-based model for the 
development of visual cortical receptive fields and maps. His model had two 
basic elements. First, synapses of LGN inputs onto cortical neurons were 
modified by a Hebbian rule that is competitive, so that some synapses were 
strengthened only at the expense of others. He enforced the competition 
by holding constant the total strength of the synapses converging on each 
cortical cell (conservation rule). Second, the cortical cells tended to be 
activated in clusters, due to intrinsic cortical connectivity, e.g., short-range 
horizontal excitatory connections and longer range horizontal inhibitory 
connections. 

The conservation rule leads to competition among the inputs to a single 
target cell. Inputs that tend to be coactivated - that is, that have cor­
related activities - are mutually reinforcing, working together to activate 
the postsynaptic cells and thus to strengthen their own synapses. Differ­
ent patterns that are mutually un- or anticorrelated compete, since the 
strengthening of some synapses means the weakening of others. Cortical 
cells eventually develop receptive fields that are responsive to a correlated 
pattern of inputs. 

The clustered cortical activity patterns lead to competition between the 
different groups of cortical cells. Each input pattern comes to be associated 
with a cortical cluster of activity. Overlapping cortical clusters contain 
many coactivated cortical cells, and thus become responsive to overlap­
ping, correlated input patterns. Adjacent, nonoverlapping clusters contain 
many anticorrelated cortical cells, and thus become responsive to un- or 
anticorrelated input patterns. Thus, over distances on the scale of an ac­
tivity cluster, cortical cells will have similar response properties; while, on 
the scale of the distance between nonoverlapping clusters, cortical cells will 
prefer un- or anticorrelated input patterns. This combination of local con­
tinuity and larger scale heterogeneity leads to continuous, periodic cortical 
maps of receptive field properties. 

In computer simulations, this model was applied to the development of 
orientation columns [57J and ocular dominance columns [59J. For orien­
tation columns, inputs were activated in oriented patterns of all possible 
orientations. Individual cortical cells then developed selective responses, 
preferring one such oriented pattern, with nearby cortical cells preferring 
nearby orientations. For ocular dominance columns, inputs were activated 
in monocular patterns consisting of a localized set of inputs from a single 
eye. Individual cortical cells came to be driven exclusively by a single eye, 
and clusters of cortical cells came to be driven by the same eye. The final 
cortical pattern consisted of alternating stripes of cortical cells preferring 
a single eye, with the width of a stripe approximately set by the diameter 
of an intrinsic cluster of cortical activity. 
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In summary, a competitive Hebbian rule leads individual receptive fields 
to become selective for a correlated pattern of inputs. Combined with the 
idea that the cortex is activated in intrinsic clusters, this suggests an origin 
for cortical maps: coactivated cells in a cortical cluster tend to become 
selective for similar, coactivated patterns of inputs. These basic ideas are 
used in most subsequent models. 

2.2.2 MATHEMATICAL FORMULATION 

A typical correlation-based model is mathematically formulated as follows 
[57, 27, 40, 42]. Let x, y, . .. represent retinotopic positions in VI, and let 
0:, {3, ... represent retinotopic positions in the LGN. Let SI-'(x,o:) be the 
synaptic strength of the connection from 0: to x of the LGN projection 
of type j1., where j1. may signify left-eye, right-eye, ON-center, OFF-center, 
etc. Let B(x, y) represent the synaptic strength and sign of connection 
from the cortical cell at y to that at x. For simplicity, B(x, y) is assumed 
to take different signs for a fixed y as x varies, but, alternatively, sepa­
rate excitatory-projecting and inhibitory-projecting cortical neurons may 
be used. Let a(x) and al-'(o:) represent the activity of a cortical or LGN 
cell, respectively. 

The activity a(x) of a cortical neuron is assumed to depend on a linear 
combination of its inputs: 

a(x) = II (L SP-(x, o:)al-' (0:) + L B(x, y)a(y)) . (2.1) 
P-,Q y 

Here, II is some monotonic function such as a sigmoid or linear threshold. 
A Hebbian rule for the change in feedforward synapses can be expressed 

as 
ASP-(x,o:) = AP-(x, o:)h [a(x)] fa [al-'(o:)]. (2.2) 

Here, A(x, 0:) is an arbor function that expresses the number of synapses of 
each type from 0: to Xj a minimal form is A(x, 0:) = 1 if there is a connection 
from 0: to x, and A(x, 0:) =0 otherwise. A typical form for the functions h 
and fa is f(a) = (a - (a)), where (a) indicates an average of a over input 
patterns. This yields a covariance rule: synaptic change depends on the 
covariance of postsynaptic and presynaptic activity. 

Next, the Hebbian rule must be made competitive. This can be accom­
plished by conserving the total synaptic strength over the postsynaptic cell 
[57], which in turn may be done either subtractively or multiplicatively 
[43]. The corresponding equations are 

ftSP-(x,o:) = ASI-'(x, 0:) - f(x)A(x, 0:) 

ftSP-(x,o:) = ASP-(x, 0:) -1'(x)SI-'(x, 0:) 

(Subtractive) 

(Multiplicative) , 

(2.3) 

(2.4) 
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where 

I:" a fl.S"(x, a) 
and 'Y(x)= I:' S"( ). ".a X, a 

Either form of constraint ensures that I: .a(djdt)SI-'(x, a) =0. Alternative 
methods have been developed to force Hebbian rules to be competitive [43]. 

Finally, synaptic weights may be limited to a finite range, sminA(x, a) ~ 
SI-'(x,a) ~ smaxA(x, a). Typically, Smin = 0 and Smax is some positive 
constant. 

2.2.3 SEMILINEAR MODELS 

In semilinear models, the 1's in Eqs. (2.1) and (2.2) are chosen to be linear. 
Then, after substituting for a(x) from Eq. (2.1) and averaging over input 
patterns (assuming that all inputs have identical mean activity, and that 
changes in synaptic weights are negligibly small over the averaging time), 
Eq. (2.2) becomes 

fl.SI-'(x, a) = AA(x, a) [L I(x - y) [CI-'''(a - (3) - k2] S"(y, (3) + kll. 
fI.P." 

(2.5) 
Here, l(x - y) is an element of the intracortical interaction matrix 

1== (1 - B)-l = 1 + B + B2 +"', 

where the matrix B is defined in Eq. (2.1). This summarizes intracorti­
cal synaptic influences including contributions via 0, 1, 2, ... synapses. The 
covariance matrix 

CI-'''(a - (3) = (al-'(a) - a) (a"({3) - a» 

expresses the covariation of input activities. The factors A, kl' and k2 are 
constants. Translation invariance has been assumed in both cortex and 
LGN. 

When there are two competing input populations, Eq. (2.5) can be simpli­
fied further by transforming to sum and difference variables: S8 == SI + S2 , 
SD == Sl - S2. Assuming equivalence of the two populations (so that 
C11 = C22, C12 = C21), Eq. (2.5) becomes 

fl.Ss(x, a) = AA(x, a) {L1(X - y) [Cs(a - (3) - 2k2] SS(y,{3) + 2kl} 
fI,P 

(2.6) 
fl.SD(x, a) = AA(x, a) L1(x - y)CD(a - (3)SD(y,(3). (2.7) 

fI.P 
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Here, eS == ell + e12 , eD == ell - e12 . Subtractive renormalization 
[Eq. (2.3)] alters only Eq. (2.6) for SS, by subtraction of 2€(x)A(x - 0:), 
while leaving Eq. (2.7) for SD unaltered. Multiplicative renormalization 
[Eq. (2.4)] alters both Eqs. (2.6) and (2.7), by subtraction of ')'{x)SS(x,o:) 
and ')'(X)SD{X, 0:), respectively. 

2.2.4 How SEMILINEAR MODELS BEHAVE 

Linear equations like (2.6) and (2.7) can be understood by finding the 
eigenvectors or "modes" of the operators on the right side of the equations. 
The eigenvectors are the synaptic weight patterns that grow independently 
and exponentially, each at its own rate. The fastest growing eigenvectors 
typically dominate development and determine basic features of the final 
pattern, although the final pattern ultimately is stabilized by nonlinearities 
such as the limits on the range of synaptic weights or the nonlinearity 
involved in multiplicative renormalization [Eq. (2.4)]. 

We will focus on the behavior of Eq. (2.7) for SD (for analysis of Eq. 
(2.6), see [34, 35]). SD describes the difference in the strength of two com­
peting input populations. Thus, it is the key variable describing the de­
velopment of ocular dominance segregation, or development under an ON­
center/OFF-center competition. In many circumstances, Eq. (2.7) can be 
derived directly from Eqs. (2.1) and (2.2) by linearization about SD == 0 
[40] without need to assume a semilinear model. The condition SD ~ 0 cor­
responds to an initial condition in which the projections of the two input 
types are approximately equal. Thus, study of Eq. (2.7) can lend insight 
into early pattern formation in more general, nonlinear correlation-based 
models. 

Equation (2.7) can be solved simply in the case of full connectivity from 
the LGN to the cortex, when A(x,o:) == 1 for all x and 0:. Then modes 
of SD(x,o:) of the form eikxeila grow exponentially and independently, 
with rates proportional to i(k)CD{l), where i and CD denote the Fourier 
transforms of I and eD, respectively (for a description of the modes as real 
rather than complex functions, see [44]). The wavenumber k determines 
the wavelength 211" /Ikl of an oscillation of SD across cortical cells, while 
the wavenumber 1 determines the wavelength 211"/111 of an oscillation of SD 
across geniculate cells. The fastest growing modes, which will dominate 
early development, are determined by the k and 1 that maximize i(k) and 
CD{l), respectively. The peak of a function's Fourier transform corresponds 
to the cosine wave that best matches the function, and thus represents the 
"principal oscillation" in the function. 

To understand these modes (Fig. 2.4), consider first the set of inputs 
received by a single cortical cell, that is, the shape of the mode for a fixed 
cortical position x. This can be regarded as the receptive field of the corti­
cal cell. Each receptive field oscillates with wavenumber l. This oscillation 
of SD == SI - S2 is an oscillation between receptive field subregions domi-
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nated by 8 1 inputs and subregions dominated by 8 2 inputs. Thus, in ocular 
dominance competition, monocular cells (cells whose entire receptive fields 
are dominated by a single eye) are formed only by modes with 1 = 0 (no 
oscillation). Monocular cells thus dominate development if the peak of the 
Fourier transform of the CD governing left/right competition is at 1 = o. 
Now, instead, consider an ON/OFF competition: 8 1 and 8 2 represent ON­
and OFF-center inputs from a single eye. Then the receptive fields of modes 
with nonzero 1 resemble simple cells: they receive predominantly ON-center 
and predominantly OFF-center inputs from successive, alternating subre­
gions of the visual world. Thus, simple cells can form if the CD governing 
ON/OFF competition has its peak at a nonzero l. 

Now consider the arborizations or projective fields projecting from a sin­
gle geniculate point, that is, the shape of the mode for a fixed geniculate 
position a. These oscillate with wavenumber k. In ocular dominance compe­
tition, this means that left- and right-eye cells from a project to alternating 
patches of the cortex. When monocular cells form (l = 0), these alternat­
ing patches of the cortex are the ocular dominance columns: alternating 
patches of the cortex receiving exclusively left-eye or exclusively right-eye 
input, respectively. Thus, the width of ocular dominance columns - the 
wavelength of alternation between right-eye- and left-eye-dominated cor­
tical cells - is determined by the peak of the Fourier transform of the 
intracortical interaction function I. In ON/OFF competition, with 1 :f 0, 
the identity of the cortical cells receiving the ON-center or OFF-center part 
of the projection varies as a varies, so individual cortical cells receive both 
ON- and OFF-center inputs, but from distinct subregions of the receptive 
field. 

In summary, there is an oscillation within receptive fields, with wavenum­
ber 1 determined by the peak of CD; and an oscillation within arbors, with 
wavenumber k determined by the peak of j (Fig. 2.4). These two oscil­
lations are "knit together" to determine the overall pattern of synaptic 
connectivity. The receptive field oscillation, which matches the receptive 
field to the correlations, quantitatively describes von der Malsburg's find­
ing that individual receptive fields become selective for a correlated pattern 
of inputs. Similarly, the arbor oscillation matches projective fields to the 
intracortical interactions, and thus to the patterns of cortical activity clus­
ters. This quantitatively describes the relationship between activity clusters 
and maps. Note that the factor eikx can be regarded as inducing a phase 
shift, for varying x, in the structure of receptive fields. Thus, cortical cells 
that are nearby on the scale of the arbor oscillation have similar receptive 
fields, while cells 1/2 wavelength apart have opposite receptive fields. 

An alternative viewpoint on the same pattern is obtained by rewriting 
the modes as ei(k+l)xe-il(x-a:). The argument l(x - a) represents the os­
cillation with wavenumber 1 within the receptive field, now expressed in 
coordinates relative to the center of the receptive field rather than in an 
absolute position across the geniculate. The argument (k + l)x represents 
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Fig. 2.4. Schematic of the outcome of semiJinear correlation-based development. 
Top: The correlation function (CD) determines the structure of receptive fields 
(RFs). White RF subregions indicate positive values of SD; dark subregions, 
negative values. When CD does not oscillate, individual cortical cells receive only 
a single type of input, as in ocular dominance segregation. If CD oscillates, there is 
a corresponding oscillation in the type of input received by the individual cortical 
cells, as in simple-cell RFs. Alternative RF structures could form, as in the center­
surround structure shown; but oriented simple-cell-like outcomes predominate 
for reasonable parameters [41]. Simple cells then develop with various numbers 
of subregions and various spatial phases; only a single example, of a cell with two 
subregions and odd spatial symmetry, is pictured. Bottom: The intracortical 
interactions (1) similarly determine the structure of projective fields. Here, solid 
lines indicate positive values of SD, while dotted lines indicate negative values. 
Adapted from [43]. 
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a shift, for varying x, in the phase of the receptive field relative to the 
receptive field center. For the case of ocular dominance, with 1 = 0, this is 
just the shift, with wavenumber k, between left-eye dominance and right­
eye dominance of the cortical cells. For ON/OFF competition with 1 :/: 0, 
this represents a periodic shifting, with movement across the cortex, as to 
which subregions of the receptive field are dominated by ON-center inputs 
and which subregions are dominated by OFF-center inputs. Thus, we can 
view the results as an oscillation within receptive fields, with wavenumber 
1, combined with a shift with cortical position in the spatial phase of recep­
tive fields, this shift occurring with wavenumber k + 1, the vector sum of 
the projective field or arbor oscillation and the receptive field oscillation. 

The competitive, renormalizing terms [Eqs. (2.3) and (2.4)] do not sub­
stantially alter these pictures, except that multiplicative renormalization 
can suppress ocular dominance development in some circumstances [43].2 

These results hold also for localized connectivity (finite arbors), and thus 
generally characterize the behavior of semilinear models [39, 44]. The major 
difference in the case of localized connectivity is that, if k or 1 corresponds 
to a wavelength larger than the diameter of connectivity from or to a single 
cell, then it is equivalent to k = 0 or 1 = 0, respectively. A good approxi­
mation to the leading eigenvectors in the case of finite connectivity is given 
simply by A(x - o:)eikxeila, where k and 1 are determined as above by the 
peaks of l(k) and GD(l) (unpublished results). 

2.2.5 UNDERSTANDING OCULAR DOMINANCE AND 
ORIENTATION COLUMNS WITH SEMILINEAR 

MODELS 

This understanding of semilinear models leads to simple models for the de­
velopment of both ocular dominance columns [42] and orientation columns 
[41] as follows (Fig. 2.4). 

Monocular cells develop through a competition of left- and right-eye 
inputs in a regime in which GD(l) is peaked at 1 = O. The wavelength of 
ocular dominance column alternation then is determined by the peak of 
l(k). 

2Subtractive renormalization [Eq. (2.3)] has no effect on the development of 
SD. Multiplicative renormalization [Eq. (2.4)] lowers the growth rates of all modes 
of both SD and SS by the factor ,),(x), which depends only on SS. The result is 
that, in order for SD to grow at all, its modes must have larger unconstrained 
growth rates than those of SS; that is, the peak of the Fourier transform of CD 
must be larger than that of CS • In practice, this condition is met only if there are 
anticorrelations between S1 and S2, that is, if C12 is significantly negative. When 
this condition is met, then the modes that dominate SD are just as described 
above; they are not altered by the constraint term in Eq. (2.4). These and other 
effects of renormalizing terms are discussed in detail in [43]. 
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Orientation-selective simple cells develop through a competition of ON­
center and OFF-center inputs in a regime in which 6D (l) is peaked at 
1 ¥= O. The mean wavelength of alternation of ON-center and OFF-center 
subregions in the simple cells' receptive fields is determined by the peak of 
6 D (1). This wavelength corresponds to a cell's preferred spatial frequency 
under stimulation by sinusoidal luminance gratings. In individual modes, 
all cortical cells have the same preferred orientation, but their spatial phase 
varies periodically with cortical position. The mixing of such modes of all 
orientations leads to a periodic variation of preferred orientation across 
cortex. The period with which preferred orientations change across cortex 
is more complex to determine [41]. 

This model of ocular dominance column formation is similar to that of 
von der Malsburg [59]. The latter model assumed anticorrelation between 
the two eyes; this was required due to the use of mUltiplicative renormaliza­
tion [Eq. (2.4)]. With subtractive renormalization [Eq. (2.4)], ocular domi­
nance column formation can occur even with partial correlation of the two 
eyes [43]. The model can be compared to experiment, particularly through 
the prediction of the relation between intracortical connectivity and ocular 
dominance column width. 

The model of orientation-selective cell development is quite different 
from that of von der Malsburg [57]. Von der Malsburg postulated that 
oriented input patterns lead to the development of orientation-selective 
cells. The ON/OFF model instead postulates that ON/OFF competition 
results in oriented receptive fields in the absence of oriented input patterns; 
the circular symmetry of the input patterns is spontaneously broken. This 
symmetry-breaking potential of Hebbian development was first discovered 
by Linsker [28]. In all of these models, the continuity and periodic alter­
nation of preferred orientation is due to the intracortical connectivity. The 
ON/OFF model can be compared to experiment most simply by the mea­
surement of CD, to determine whether it has the predicted oscillation. 

2.2.6 RELATED SEMILINEAR MODELS 

Linsker [27, 28, 29] proposed a model that was highly influential in two 
respects. First, he pointed out the potential of Hebbian rules to sponta­
neously break symmetry, yielding orientation-selective cells given approxi­
mately circularly symmetric input patterns. Second, he demonstrated that 
Hebbian rules could lead to segregation within receptive fields, so that a cell 
came to receive purely excitatory or purely inhibitory input in alternating 
subregions of the receptive field. This model was thoroughly analyzed in 
[34,35]. 

Linsker used a semilinear model with a single input type that could 
have positive or negative synaptic strengths (Smin = -smax). He largely 
restricted study to the case of a single postsynaptic cell. Because the equa­
tion for a single input type and a single postsynaptic cell [Eq. (2.5), with 
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I(x - y) = 8(x - y)J is circularly symmetric,3 its eigenfunctions also are 
eigenfunctions of the rotation operator. Thus, the eigenfunctions can be 
written in polar coordinates (r, 0) as cos(nO)fnj(r) and sin(nO)fnj(r), where 
fnj(r) is a radial function and nand j are integers indexing the eigenfunc­
tions. In quantum mechanics, atomic orbitals are named Nx, where N is 
a number representing one plus the total number of angular and radial 
nodes, and x is a letter denoting the number of angular nodes (s,p,d,f,g, ... 
corresponding to n=0,1,2,3,4, ... angular nodes). Thus, Is is a function with 
zero ·nodes, 2s has one node that is radial, 2p has one node that is angu­
lar, 3p has two nodes (one radial, one angular), etc. This naming scheme 
can be applied to any rotationally symmetric system, and in particular can 
be applied to the eigenfunctions of Linsker's system [34, 35], a fact which 
physicists have found amusing. The nature of these eigenfunctions, their 
dependence on parameters, and their role in determining the outcomes 
Linsker observed in simulations are described in [34, 35]. 

For our present purposes, the essential results of this analysis are as 
follows. Two factors underlay Linsker's results. One factor was that oscil­
lations in a correlation function can induce oscillations in a receptive field, 
as was described above. The other factor was a constraint in the model 
fixing the percentage of positive or negative synapses received by a cell; 
this forced an alternation of positive and negative subregions even when 
the correlation function did not oscillate. These two causes were not disen­
tangled in Linsker's simulations, but only the first appears likely to be of 
biological relevance. 

Tanaka [45, 56J has independently formulated models of ocular domi­
nance and orientation columns that are similar to those described in Sec. 
2.2.5. The major difference is that he works in a regime in which each cor­
tical cell comes to receive only a single LGN input. Tanaka defines cortical 
receptive fields as the convolution of the input arrangement with the in­
tracortical interaction function. This means that a cortical cell's receptive 
field is due to its single input from the LGN plus its input from all other 
cortical cells within reach of the intracortical interaction function. Thus, 
orientation selectivity in this model arises from the breaking of circular 
symmetry in the pattern of inputs to different cortical cells, rather than to 
individual cortical cells. 

2.3 The Problem of Map Structure 

The above models account well for the basic features of the primary visual 
cortex. However, many details of real cortical maps are not replicated by 

3The assumption is made that the arbor and correlation functions depend 
only on distance. 
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these models [9, 12, 63]. One reason may be the simplicity of the model 
of the cortex: the real cortex is three-dimensional rather than two; it has 
cell-specific connectivity rather than connectivity that depends only on dis­
tance; and it has plastic rather than fixed intracortical connections. Another 
reason is that the details of the map structure inherently involve nonlinear­
ities, by which the fastest growing modes interact and compete; whereas 
the semilinear framework only focuses on early pattern formation, in which 
the fastest growing modes emerge and mix randomly without interacting. 

Some simple models that focus on map development rather than re­
ceptive field development strikingly match the map structures observed 
in monkeys [9]. One such model [46] uses the self-organizing feature map 
(SOFM) of Kohonen [24, 48], in which only a single cluster of cortical cells 
is activated in response to a given input pattern. This is an abstraction of 
the idea that the cortex responds in localized activity clusters. The single 
activated cluster is centered on the cell whose weight vector best matches 
the direction of the input activation vector. Hebbian learning then takes 
place on the activated cells, bringing their weight vector closer to the input 
activation vector. The size of an activity cluster is gradually decreased as 
the mapping develops; this is akin to annealing, helping to ensure a final 
mapping that is optimal on both coarse and fine scales. 

Except for the restriction to a single activity cluster and the gradual 
decrease in cluster size, the SOFM is much like the correlation-based mod­
els. However, an abstract representation of the input is generally used. In 
correlation-based models, the input space may have thousands of dimen­
sions, one for each input cell. In the SOFM model of the visual cortex, 
the input space instead has five dimensions: two represent retinotopic posi­
tion, and one represents each of ocular dominance, orientation selectivity, 
and preferred orientation. Each cortical cell receives five "synapses," cor­
responding to these five "inputs." Assumptions are made 88 to the relative 
"size" of, or variance of the input ensemble along, each dimension. There 
is no obvious biological interpretation for this comparison between dimen­
sions. Under the assumptions that the ocular dominance and orientation 
dimensions are "short" compared to the retinotopic dimensions, and that 
only one input point is activated at a time, Hebbian learning can lead to 
maps of orientation and ocular dominance that are, in detail, remarkably 
like those seen in macaque monkeys [9, 46]. 

The SOFM, and other models based on the "elastic net" algorithm [8,13], 
lead to locally continuous mappings in which a constant distance across the 
cortex corresponds to a roughly constant distance in the reduced "input 
space." This means that, when one input feature is changing rapidly across 
the cortex, the others are changing slowly. Thus, the models predict that 
orientation changes rapidly where ocular dominance changes slowly, and 
vice versa. It may be this feature that is key to replicating the details 
of macaque orientation and ocular dominance maps. A model that forces 
such a relationship to develop between ocular dominance and orientation, 
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while assuring periodic representations of each, also gives a good match to 
primate visual maps [55J. 

The SOFM also replicates aspects of the retinotopic maps seen in higher 
areas of the cat visual cortex [62J. For these studies, the input and output 
spaces are each taken to be two-dimensional, representing retinotopic posi­
tions. The input space is taken to be a half-circle, representing a hemiretina, 
and the shape of the output space is varied. When this shape is long and 
narrow, as in cat cortical areas 18 and 19, the retinotopic map developed by 
the SOFM has a characteristic pattern of discontinuities closely resembling 
those observed experimentally in those areas [62]. The SOFM achieves maps 
in which nearby points in the output space correspond to nearby points in 
the input space, while each area of the input space receives approximately 
equal representation provided each is equally activated ([48]; see further 
discussion of the SOFM below). The success of the SOFM models ofretino­
topic maps suggests that these are constraints that should be satisfied by 
any model of cortical maps. One would like to determine more precisely 
the constraints on a retinotopic mapping, embodied by the SOFM, that 
are sufficient to replicate these results. 

It recently has been reported that input correlations can alter the spacing 
of ocular dominance columns in the cat visual cortex by perhaps 20-30% 
[32]. A smaller ocular dominance column spacing develops when the activi­
ties of the two eyes are correlated by normal vision than when the two eyes' 
activities are decorrelated (decorrelation is achieved by inducing divergent 
strabismus, which causes the two eyes to see different parts of the visual 
world). This effect was anticipated theoretically by Goodhill [12], who ar­
gued essentially that correlation of the activities of the two eyes brings 
them "closer together," and so the two eyes should be brought closer to­
gether in their cortical representation by a reduction of the column size. 
This effect also could have been anticipated by the SOFM models of oc­
ular dominance, because decorrelation corresponds to an increase in the 
variance of ocular dominance and thus an increase in the "size" of the oc­
ular dominance dimension, which results in increased column size [48J. In 
semiIinear models, in contrast, the column width does not appear to be 
significantly affected by between-eye correlations. Rather, as the degree of 
between-eye correlation is increased, more binocular cells form at the col­
umn borders, until at some critical level of correlation ocular dominance 
segregation no longer occurs (unpublished results). That is, the two eyes are 
brought "closer together" through alteration of the receptive fields rather 
than through alteration of the map. One can anticipate several biological 
mechanisms that might be added to instead yield a reduction in the column 
size, such as nonlinearities that discourage formation of binocular cells, or 
nonlinearities in cortical activation that cause the size of activity clusters 
to depend on the correlations of the inputs. 

Finally, it recently has been noted that cat orientation maps are signifi­
cantly smoother than could be achieved by simple linear considerations [63]. 
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The analysis in [63] suggests that these maps could result, mathematically, 
from a local "diffusion" of preferred orientations. It will be interesting to 
develop a biologically interpretable model of such a process. 

2.4 The Computational Significance of 
Correlation-Based Rules 

2.4.1 EFFICIENT REPRESENTATION OF INFORMATION 

A simple correlation-based rule for a single postsynaptic cell can, if prop­
erly designed, lead to the development of a receptive field that corresponds 
to the principal component of the input data (that is, to the principal 
eigenvector of the covariance matrix of the inputs to the cell) [30, 43, 47]. 
This receptive field in turn maximizes the variance of the postsynaptic 
cell's activity, given the ensemble of input patterns. It has been argued 
that correlation-based rules thus maximize the information carried in the 
postsynaptic cell's activity about the input patterns [30]. Intuitively, by 
varying as much as possible in its response to different inputs, the post­
synaptic cell draws the greatest possible distinction between the different 
input patterns. 

More generally, a number of closely related (and in many circumstances 
identical) computational functions have been proposed for brain areas near 
the sensory periphery. These include maximization of information about 
the inputs [30], minimization of redundancy or correlation in the activities 
of output cells [3], statistical independence of the output activities [3], or 
encoding of the input information as compactly as possible (for example, 
requiring as little dynamic range as possible per neuron) [2]. These func­
tions all involve representing the input information in an efficient way, in 
the sense of information theory. These measures of efficiency take into ac­
count the statistics of the input ensemble but disregard the "semantics," 
the meaning or survival value to the animal, of the inputs. 

The interpretation that the function of a correlation-based rule is to 
yield such an efficient representation is inviting, but it carries two ma­
jor problems. First, the principal component representation achieved by 
correlation-based rules is optimally efficient only for a Gaussian distribu­
tion of input patterns, or, in other words, it reflects only the second-order 
or two-point statistics (the covariance) of the input data. It is possible 
that a great deal of information may reside in higher order statistics, but 
a correlation-based rule as conceived above will ignore this information. 
Intrator has suggested that a variant of standard Hebbian rules can in­
stead maximize a third-order statistic of the output activity, and argues 
that this may be a better statistic for distinguishing among the elements 
of real-world ensembles [22, 23]. While one statistic or the other may be 
best for characterizing a given set of data, both approaches can suffer from 
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the limitation that they are maximizing one particular statistic rather than 
maximizing some measure of efficiency. 

Second, this interpretation applies only to a single, isolated postsynaptic 
cell. Multiple cells viewing the same input ensemble will extract the same 
information from it under a given correlation-based rule. This does not 
add new information about the input, but only redundantly repeats the 
same information. Thus, although a single cell may have a receptive field 
that maximizes the information it could carry about the input ensemble, 
a group of such cells generally will not improve much on the performance 
of a single cell and will not carry the maximal possible information about 
the input ensemble.4 

One way out of this dilemma is to introduce couplings between the post­
synaptic cells that force them to learn independent parts of the input 
ensemble. Unfortunately, excitatory couplings tend to produce correlated 
cells, while inhibitory couplings produce anticorrelated cells. The ostensi­
ble goal, however, is to produce uncorrelated cells, cells whose activities 
carry independent information about the input ensemble. Thus, biological 
couplings will not work. A theoretical way out involves using connections 
between the postsynaptic cells that are modified by anti-Hebbian rules: If 
two cells have correlated activities, the connection between them becomes 
more negative; if two cells have anticorrelated activity, the connection be­
tween them becomes more positive. The result is that the cells become 
uncorrelated. Many authors have independently proposed rules that in­
volve such anti-Hebbian learning on lateral connections (e.g., [10, 31, 49]) 
or related ideas [50]. However, no biological sign of anti-Hebbian synaptic 
modification thus far has been observed. 

An alternative way out of this dilemna stems from the observation that 
biological receptive fields are localized. Thus, nearby cells see overlapping 
but not identical sets of inputs. Consider two extreme cases. First, when 
each input cell is connected to a single output cell, receptive fields are com­
pletely localized. In the limit of low noise, the output layer replicates the 
activity of the input layer, so all information is preserved. However, when 
noise is significant, some information is lost by this identity mapping, and 
alternative connectivity schemes may yield greater information about the 
inputs. Second, when there is global connectivity, so that all input cells are 
connected to all output cells, receptive fields are completely delocalized. 
Under a correlation-based rule, each output cell learns the same recep­
tive field. Then, in the low-noise limit, most information is being thrown 

4For simplicity, in this discussion we will ignore noise. Depending on the 
signal-to-noise ratio, one will wish to strike a particular balance between variety 
(carrying more independent components of the input ensemble) and redundancy 
(e.g., see [2, 30)). However, except in the extreme case of high noise, where com­
plete redundancy is called for, multiple components always will be needed to 
maximize the information, given multiple output cells. 
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away - only one dimension of the input pattern is being distinguished. 
However, suppose that this dimension is the most informative dimension 
about the input ensemble. Then, in the high-noise limit, this redundant 
representation of the most information-rich dimension will maximize the 
information carried about the input ensemble. 

Thus, given a correlation-based learning rule, a completely localized rep­
resentation can maximize information in the low-noise limit, while a com­
pletely delocalized representation can maximize information in the high­
noise limit. Intermediate levels of localization should be appropriate for 
intermediate signal-to-noise ratios (this has recently been demonstrated 
quantitatively [21]). It seems likely that biology, rather than designing an 
anti-Hebbian learning rule, has used its own correlation-based rules and 
has made use of its natural tendency to form partially localized receptive 
fields in order to ensure efficiency of representation. 

2.4.2 SELF-ORGANIZING MAPS AND 

ASSOCIATIVE MEMORIES 

The above ideas about efficiency consider only the summed information 
in the responses of the postsynaptic cells, without regard for location 
or connectivity. Alternative ideas about the computational significance of 
correlation-based rules focus on the spatial arrangement of postsynaptic 
response features and the connectivity between the postsynaptic cells. 

One such set of ideas stem from the study of the self-organizing feature 
map (SOFM) of Kohonen [24, 48] and of related dimension-reducing map­
pings [8]. As was previously described, the SOFM corresponds to a Hebbian 
rule with a nonlinear lateral intracortical interaction, such that each input 
pattern leads to a single, localized cluster of cortical activity. The SOFM 
and related algorithms lead to a mapping that matches the topology and 
geometry of the output space to that of the input space, despite a possible 
dimensional and/or shape mismatch between the two [8, 24, 48]. That is, 
nearby points in the output space correspond via the mapping to nearby 
points in the input space, and input patterns that occur more often develop 
a larger representation than those that occur less often. 

A number of possible functions have been assigned to, such mappings. 
One is the minimization of wiring length, assuming that cortical points 
representing "nearby" input patterns need to be connected to one another 
[8]. Another is to represent the input data in a compressed form while 
minimizing reconstruction error [33, 48]. A specific form of the latter idea 
is as follows. Suppose that there is noise in the output layer that is distance­
dependent, so that the probability of a response being centered at a given 
output point falls off with its distance from the point that is "correct" for 
that input. Suppose also that there is a metric on the input space, and 
that the error in mistaking one input pattern for another is assigned as the 
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distance between the two patterns. Then the SOFM can be interpreted, 
approximately, as achieving the input-output mapping that minimizes the 
average error in reconstructing the input pattern from the output responses 
[33]. 

The major problem in applying these ideas to biology is the difficulty 
in assigning biological meaning to the topology and geometry of the non­
retinotopic dimensions of the input space. Given an ensemble of visual 
input patterns on the retina, for example, how large is the corresponding 
ocular dominance or orientation dimension relative to the retinotopic di­
mensions? Without a clear prescription for answering this question, it is 
difficult to make biological predictions from these ideas. Nonetheless, the 
computational functions of self-organizing maps, their close connection to 
correlation-based models, and their ability to replicate many features of 
cortical maps are intriguing. 

Another well-known set of ideas concerns the role of correlation-based 
rules in establishing an associative memory. Suppose one wishes to learn a 
set of N input-output pairs, (uG, vG), where uG and vG are the ath input 
and output vectors, respectively. Let vG = MuG for some synaptic matrix 
M. If the input patterns are orthonormal, uG . u b = 8Gb, then the input­
output association is achieved by setting M = EG VG(UG)T (e.g., [24]). This 
relation will be learned by a Hebbian rule, (d/dt)Mij = -Mij/N + ViUj, 

provided there is a "teacher" to clamp the output to vG whenever uG is 
presented. A fully connected network with activity states v similarly will 
develop the activity states, or "memories," vG, as stable attracting states 
if the connection matrix between the cells is determined by the Hebbian 
prescription M = EG vG(vG)T (e.g., [18, 19]). Again, to learn a specific 
set of memories, a "teacher" is required to clamp the network into the 
appropriate activity states during learning. Given simple nonlinearities in 
neuronal activation, the stored memories need not be orthogonal to one 
another, provided the memories are randomly chosen (uncorrelated) and 
their number is sufficiently small relative to the number of cells (e.g., [17]). 
It is of biological interest to explore how associative properties can develop 
through correlation-based rules in the absence of a teacher as well as in the 
presence of correlated input patterns (for which, see [17]). 

2.5 Open Questions 

This brief review can only point to a small sample of the rich literature on 
this topic. Among the many open questions in the field are: How can bio­
logically interpretable models replicate the details of cortical maps? Might 
orientation selectivity arise from early oriented wave patterns of retinal ac­
tivity [38, 64] or other mechanisms, rather than through ON/OFF competi­
tion? Might the initial development of orientation selectivity occur through 
the patterning of intracortical connections, rather than through the pat-
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terning of LGN connections to the cortex?5 How might intracortical plas­
ticity affect receptive field and map development [53]? How might input 
correlations affect column size [12]? How will development be altered by 
the incorporation of more realistic cortical connectivity, and more realistic, 
nonlinear learning rules? For example, might input correlations help de­
termine the self-organization of plastic intracortical connections or the size 
of nonlinearly determined cortical activity clusters, each of which in turn 
would shape the pattern of input synapses including column size? How can 
we characterize the computational function of the correlation-based rules 
used biologically? These and other questions are likely to be answered in 
the coming years. 
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Associative Data Storage and 
Retrieval in Neural Networks 
Gunther PalmI and Friedrich T. Sommer2 

with 9 figures 

Synopsis. Associative storage and retrieval of binary random patterns in 
various neural net models with one-step threshold-detection retrieval and 
local learning rules are the subject of this chapter. For different heteroas­
sociation and autoassociation memory tasks specified by the properties of 
the pattern sets to be stored and upper bounds on the retrieval errors, we 
compare the performance of various models of finite as well as asymptoti­
cally infinite sizes. In infinite models, we consider the case of asymptotically 
sparse patterns, where the mean activity in a pattern vanishes, and study 
two asymptotic fidelity requirements: constant error probabilities and van­
ishing error probabilities. A signal-to-noise ratio analysis is carried out for 
one retrieval step where the calculations are comparatively straightforward 
and easy. As performance measures we propose and evaluate information 
capacities in bits/synapse which also take into account the important prop­
erty of fault tolerance. For autoassociation we compare one-step and fixed­
point retrieval that is analyzed in the literature by methods of statistical 
mechanics. 

3.1 Introduction and Overview 

With growing experimental insight into the anatomy of the nervous sys­
tem as well as the first electrophysiological recordings of nerve cells in the 
first half of this century, a new theoretical field was opened, namely, the 
modeling of the experimental findings at one or a few nerve cells, leading 
to very detailed models of biological neurons [1]. But, different from most 
biological phenomena, where the macroscopic function can be understood 
by revealing the cellular mechanism, the function of the nervous system as 
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Oberer Eselsberg, D-89081 Ulm, Germany. 
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a whole turned out to be constituted by the collective behavior of a very 
large number of nerve cells, and the activity of a large fraction of cells, a 
whole activity pattern, had to be considered instead. 

The modeling had to drop the biological faithfulness at two points: on 
the cellular level, the models had to be simplified such that a large number 
of nerve cells could be described; and on the macroscopic level, the function 
had to be reduced to simple activity pattern processing like pattern com­
pletion, pattern recognition, or pattern classification, allowing a theoretical 
description and quantification. 

McCulloch and Pitts [2] argued that, due to the all-or-none character 
of nervous activity, the neurophysiological findings can be reproduced in 
models with simple two-state neurons, in particular, in associative memory 
models which exhibit binary activity patterns. 

In the 1950s and 1960s small feedforward neural nets were suggested 
for simple control tasks, among them the associative memory [3], [4] and 
the simple perceptron [5]. All of these models employ one-step retrieval, 
which means that in one parallel update step the initial or input pattern is 
transformed to the output pattern. Such models which contain no feedback 
loops will be the main subject of this chapter. 

Little, who introduced the Ising-spin analogy of the neural states3 [6], 
opened the door to analyzing the feedback retrieval process in neural nets 
with methods of statistical mechanics. The analysis that was developed 
during the 1970s [7] for lattices of coupled spins with randomly distributed 
interactions to describe spin glasses could be applied successfully to fixed­
point retrieval in an associative memory [8].4 In fixed-point retrieval, the 
retrieval process is iterated until a stable state is reached. This method has 
been described in several recent books, e.g., van Hemmen and Kiihn [9], 
Amit [10], and Hertz, Krogh, and Palmer [11]. 

This chapter takes as its starting point a larger class of simple processing 
tasks: the association between members of binary pattern sets. Depending 
on the properties of the randomly generated pattern sets, we will charac­
terize different memory tasks (Sec. 3.1) and concentrate on the question of 
how a neural model has to be designed to yield optimal performance. 

We consider feedforward neural associative memory models with one-step 
retrieval (Sec. 3.2). To keep our model as variable as possible, Ising-spin 
symmetry of the neural states is not assumed, and arbitrary local learning 

3The two states of a binary neuron are identified with up and down states 
of a spin particle in the Ising model; the synaptic couplings correspond to the 
spin-spin interactions. 

4Pattern completion with fixed-point retrieval in a neural net can be treated 
like relaxation in a solid, once the storage process has determined the dynamics. 
The macroscopic observables of the system (corresponding to specific heat, con­
ductivity, or magnetization in solids) are then the overlaps to stored patterns or, 
equivalently, the recall errors. 
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rules are admitted to form the synaptic connections. One-step retrieval can 
be analyzed by elementary probability theory, and it is compatible with a 
larger class of memory tasks, not only pattern completion. On the other 
hand, as we will discuss, in cases of pattern completion, a feedback re­
trieval model is preferable. Section 3.3 contains the detailed signal-to-noise 
ratio analysis, where we have included most of the calculations because the 
intention of this work is to provide not only results, but also the methods. 

Another important question concerns the judgement of the perfor­
mance of different memory models. Unfortunately, in the literature, many 
different measures are used. Instead of staying with the mean retriev­
al errors obtained from the analysis, we apply elementary information 
theory to the memory process, leading us to the definition of information 
capacities, which allow us to compare models with different memory tasks 
(Sec. 3.4). 

In Sec. 3.5 we evaluate these performance measures for the various mod­
els. The last section resumes the previous sections and points out the re­
lations to the literature. It compares one-step and fixed-point retrieval, 
taking advantage of the works based on methods of statistical mechanics. 
The results of the different approaches, which seem to be quite incoherent 
at first sight, turn out to be not only comparable but also consistent. 

3.1.1 MEMORY AND REPRESENTATION 

A memory process often can be considered as a mapping from one set of 
events into another set of events; as a trivial example, one may think of the 
problem as how to establish a phone line to a friend. To solve the problem, 
one has to map the friend's name to his phone number. For the construction 
of a memory device like a phonebook, which helps you with this problem, 
one first has to map or to code the events ''the friend's name" and "his 
phone number" into symbols, in this case strings of letters and numbers, 
which can be written and read by a user. This mapping will be called the 
representation of the events. The memory device has to store these pairs 
of strings in some way. It can solve the problem if the representation maps 
the events into unique data strings. Thus, a given set of patterns specifies 
the memory task that a memory device has to solve. 

Without loss of generality, we focus on binary patterns as data strings. 
A binary pattern is a string containing only two types of elements, for 
instance, "B" and "W" (for black and white pixels). We restrict ourselves 
to such pattern sets where every member has approximately the same ratio 
p between the number of "B" and "W" digits. We call a pattern distributed 
if both fractions of pixels have more than one member. Throughout this 
chapter we distinguish between three different patterns types: 

1. A singular pattern with m digits has only a single "B" digit and m - 1 
"W" digits. A singular pattern is, by definition, not distributed. 
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2. A sparse pattern is distributed, but the ratio p between the number of 
"B" and "w" digits satisfies p «: 0.5. In the infinite model m -t 00, 

we will consider the sparse limit p -t 0 with mp -t 00, which leads 
to nontrivial distributed patterns. 

3. In a nonsparse pattern, the fraction p between the number of "B" and 
"w" digits has to be away from O. In the infinite model, p = const 
as m -t 00. 

3.1.2 RETRIEVAL FROM THE MEMORY 

The memory device has to store a set of patterns in such a way that a 
desired pattern can be selectively recalled at the output port. In memory 
retrieval a desired output pattern is selected by applying a pattern at the 
input port of the device. We denote the set of output patterns as the 
content patterns SC. An input pattern that selects a content pattern is 
called its address pattern, or simply its address. The set of address patterns 
is denoted by SA. Thus, in the retrieval, the memory device has to map 
from an address pattern to its corresponding content pattern. This map is 
defined by the set of pairs consisting .of address and content patterns: 

{( 1 1) (M M). k sA k SC} x,y, ... ,x,y .xE ,yE . 

3.1.3 FAULT TOLERANCE IN ADDRESSING 

Between two patterns x and X, the number of different bits h(x, x) de­
fines a natural distance relation called the Hamming distance. Via this dis­
tance a whole set of input patterns may specify one desired content pattern 
uniquely: all patterns x with the property h(x,x) < h(x,xk) for all xk:f x 
and x, xk E SA. We call a memory retrieval fault-tolerant if it allows input 
noise in the sense that many input patterns which have a unique closest 
address are mapped on the content pattern belonging to this address. 

For a set of singular address patterns, normally no x ft SA has a unique 
closest address and, therefore, fault tolerant retrieval is impossible. Thus, 
fault-tolerant retrieval can only be expected if the address patterns are 
distributed. 

3.1.4 VARIOUS MEMORY TASKS 

We call heteroassociation the general memory task where the set of address 
patterns SA and the set of content patterns SC can be chosen arbitrarily. 

The following special cases of heteroassociation will be considered: 

• If the address patterns are singular patterns, the memory task is 
called the look-up-table task. Then the singular pixel of an address 
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pattern points into a table of content patterns like the usual access 
in a look-up table. 

• For singular content patterns, we identify each bit of the content pat­
tern with a class in the set of address patterns. This memory task 
can be interpreted as pattern classification, which separates the set 
of address patterns in disjunct classes. This task (with one-bit con­
tent patterns) has been executed by the classical simple perceptron 
models; see [5]. 

• A utoassociation is the case of heteroassociation where the address 
and content patterns are identical; therefore, it also may be denoted 
as content addressability. Only for fault-tolerant retrieval does the 
autoassociation task make sense; then, the memory performs pattern 
completion from a distorted version xk as an input pattern to the 
error-free content pattern xk; see also Forrest and Wallace in [9]. 

3.1.5 RETRIEVAL ERRORS 

A memory that allows errors in the addressing perhaps also will recall 
erroneously the wrong content pattern or put at least some errors in the 
output. 

In the retrieval of binary patterns there may occur two types of flip errors 
in a digit of the output pattern il: a "W" of the content pattern yk may be 
turned into a "B" , and a "B" in the content pattern yk may be turned into 
a "W". Of course, with increasing addressing noise these errors also will 
increase. But again via the distance relation it is possible that a memory 
output containing errors in some digits still will specify the event coded 
by the original content pattern. A given memory task together with the 
sets SA and SC will fix the maximal mean errors that can be tolerated in 
the retrieval. These upper bounds, which have to be satisfied by the error 
probabilities, will be called the fidelity requirement. 

3.2 Neural Associative Memory Models 

The typical ingredients of an artificial neural network model are a large 
number of similar processor units called neurons, which obtain signals 
through adjustable connections from a large number of input fibers and/or 
other neurons. In this model the adjustable connections, the synapses, con­
nect an input port to each neuron (see Fig. 3.1). 

The two different types of calculations in the model, the processing of 
the neural input signal in the retrieval, on the one hand, and the synaptic 
adjustment according to the data in the storage phase, on the other, are 
separated in time in this model; we distinguish the storage process and the 
retrieval process. 
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Fig. 3.1. Schematic view of a neural associative memory: i-retrieval input 
fibers, 0 - retrieval output fibers (axons), ID - modifiable synaptic connection 
between neuron and input fiber. The horizontal lines are wires that propagate 
the input signals to the synapses. Each column represents one neuron. The larger 
upper section where the synaptic connections access corresponds to the dendritic 
tree, and the lower section the cell body. The arrow pointing below from the cell 
body corresponds to the axon. 

To perform the calculations the pixel types "B" and "w" in the input 
patterns have to be translated into signals that can propagate through 
the network. Two different values, 1 and a E [-1,0], will be assigned to 
the pixel types "B" and "W", respectively. Each pattern is identified with 
an n-vector x E {a, l}n, and we will use synonymously the expressions 
pattern and {a, 1}-vector. Of course, we are free to exchange "w" and "Bn 
in the assignment; the flip transformation F applied to all components in 
the data will not change the memory problem. Here, F(Xi = W) := B 
and F(Xi = B) := W. Therefore, we can always assign the value 1 to the 
smaller pixel fraction so that 

p = #{i: Xi = 1}/(n - #{i: Xi = I}) ~ 0.5. 

Such models already have been proposed and analyzed many years ago, 
e.g., Uttley [12J, Steinbuch [3], Rosenblatt [5], Longuett-Higgins et al. [13J, 
Amari [14J, Gardner-Medwin [15], and Kohonen [16J. 

3.2.1 RETRIEVAL PROCESS 

In the retrieval phase an address pattern is applied to the input port of 
the memory. The input signals are propagated via a synaptic connection 
strength matrix Mij to all neurons. In one-step retrieval every neuron j 
actualizes its state, the axonal activity ih, according to this input, and the 
vector fj is the retrieval output pattern. 

Each neuron has to form the dendritic potential dj , the sum over all its 
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incoming activities, 
(3.1) 

and then to determine the new activity value in the neural update equation 

Yj = f(dj - 9). (3.2) 

The output signal of a biological neuron is a train of short electric pulses, 
the neural spikes. It is the spike rate and not the amplitude or the duration 
of a spike that grows with increasing dendritic potential. These properties 
have been modeled in the so-called spike coding models; cf [17, 18, 19, 20]. 
Here we focus on rate coding models, where the neural transfer function 
f(x) describes only the spike rate. In almost all of these models, f(x) is a 
monotonously increasing function and 9 is the threshold value, which can 
be adjusted globally for all neurons in each retrieval step. 

Models with linear transfer functions, as, for instance, those proposed 
in Kohonen [16] or Anderson [21, 22], lead for large networks to quasi­
continuous-valued output patterns. 

Binary output patterns are obtained if the neural transfer function is 
a two-valued stepfunction: f(x) = 1 for x ~ 0, f(x) = a otherwise. The 
neural state Yj = 1 is called firing or active, Yj = 0 silent or passive. The 
retrieval error probabilities for on errors and off errors, respectively, are 
expressed by the conditioned probabilities 

el := Prob [yj = alyj = 1] , ea := Prob [yj = 11yj = a] . (3.3) 

Such models have been treated in Willshaw et al. [4], Palm [23], and Nadal 
and Toulouse [24]. In one-step retrieval the output pattern is evaluated 
from the input pattern after one synchronious parallel calculation of all 
neurons. 

Step-shaped neural transfer functions also have been used in the spin­
glass literature on autoassociation, e.g., in [25, 8, 26, 27]. These works con­
sider an iterative retrieval procedure where, via a feedback loop, the signal 
flow through the system is iterated until a stationary state, a fixed point, 
is reached. Such fixed-point retrieval has been considered for two different 
ways of performing the iteration. In models with parallel update, the com­
plete one-step retrieval process is iterated in the manner that the output 
is fed back as new input; see, for instance, [6, 15,28,29,30,31]. In models 
with sequential random update, only one neuron, randomly selected, is up­
dated [Eq. (3.2)] in one iteration step, leading to the new input, which only 
deviates in one component from the preceding one; see again [25, 8, 26, 27]. 
The improvement due to iterated retrieval for the pattern completion task 
obtained in simulations can be observed in Fig. 3.9. 
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3.2.2 STORAGE PROCESS 

In this process, which is also called the learning process, the synaptic ma­
trix, or the storage medium, is formed from the set of patterns to be stored. 

During the storage process, each pair (Xl, yl) of patterns to be learned is 
applied at the in- and output ports of the memory. This provides pre- and 
postsynaptic values for every synapse Mij. 

Learning Rules 

For a given pair (x, y) of pre- and postsynaptic activity values, the local 
synaptic rule R(x, y) determines explicitly the amount of synaptic connec­
tivity change. For binary patterns, there are only four different constella­
tions possible for pre- and postsynaptic activities, viz., (a, a), (1; a), (a, 1), 
and (1,1). Thus, a synaptic rule is determined by four numbers: 

(3.4) 

The following two famous local learning rules will be focused on in the 
subsequent analysis: 

• The Hebb rule, or asymmetrical coincidence rule, H := (0,0,0,1) 
increases the synaptic matrix element for coinciding pre- and post­
synaptic firings only. In his neurophysiological postulate Hebb [32J 
proposed this type of synaptic modification between pairs of firing 
nervous cells. 

• The agreement rule, or Hopfield rule or symmetrical coincidence rule, 
A := (1, -1, -1, 1) increases the synaptic matrix element for agreeing 
pre- and postsynaptic states and decreases the synaptic weight for 
disagreeing states. This rule was used in the original Hopfield model 
[25J. 

The above rules are both product rules: R(x, y) = xy. For a = ° we obtain 
the Hebb rule, and for a = -1 the agreement rule, and, sometimes, for 
instance in [33J, both are considered as Hebbian learning. We retained the 
distinction because in the original formulation of his postulate Hebb clearly 
talks of the influence of synchronously firing neurons on their interconnect­
ing synapses. The psychologist Hebb claimed this postulate to be inspired 
by physiological and psychological findings, while the symmetry between 
firing and silence in the agreement rule is biologically very implausible. 

Storage Procedures 

We consider one-step learning, which means that, after one single presen­
tation of every pair, the formation of the synaptic matrix is finished. Two 
different types of storage procedures will be examined: 
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• The incremental storing procedure, where the synaptic matrix is given 
by 

M 

M = (Mij):= LR(xf,yj). (3.5) 
k=l 

• The binary storage procedure, where the synaptic matrix ..M is ob­
tained from M by another highly nonlinear operation: 

(3.6) 

with sgn(O) := O. 

Storage procedures can be strictly local (as in most of the papers cited 
here) or nonlocal (as, for example, in Personnaz et al. [34,35]). Depending 
on the sign of the average connectivity change, they can be productive, 
destructive, or balancing for the total network connectivity (cf. [36, 37]). 
Local storage procedures can make use of two (probably the majority), 
three (supervised learning with additional teacher signal, e.g., Barto et al. 
[38]), or more terms to compute a synaptic change (compare Palm [36] 
again). In this chapter we concentrate on storage procedures employing 
strictly local two-term learning rules. 

The most common synaptic arrangement in biological neural nets as in 
the cerebral cortex (and the hippocampus) is the simple dyadic synapse. It 
connects just two neurons: the presynaptic and the postsynaptic; therefore, 
there are just two natural, locally available activity signals: the presynaptic 
and the postsynaptic. 

3.2.3 DISTRIBUTED STORAGE 

One reason for the big comeback of systems with neural architecture in 
the last decade is the fact that, in computer science, distributed process­
ing turned out more and more to be an indispensable goal. How do the 
simple memory models introduced in this section display the properties of 
distributed storage? 

For heteroassociation, local rules store second-order correlations between 
address and content pattern activities; for instance, with the Hebb rule, 
each pair of active neurons (xf, yj) affects one synapse Mij. 

The storage is called distributed if the storage of one single pattern pair 
causes nonlocal changes in the storage medium. More than one element 
of the synaptic matrix is affected if at least one pattern in the pair is 
nonsingular, that is, if either set of address or content patterns contains 
nonsingular patterns. 

Here we define distributed storage in a stricter sense: we require that 
many matrix elements carry information about more than one pattern pair. 
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In this sense distributed information storage for arbitrary local rules is pro­
vided only if both pattern sets, address and content patterns, contain non­
singular and overlapping patterns. Then, the storage of several pattern pairs 
will affect the same synapses, so that each entry in the synaptic connectiv­
ity matrix M may contain the superposition of several memory traces; i.e., 
for most index pairs (i, j) the sum L:k R(xf, yf) should have more than one 
nonzero contribution. Like in holography, an accessible content segment (a 
pattern pair) is written widely spread in the storage medium and different 
content segments will overlap. 

In the case of autoassociation, local rules store the second-order auto­
correlation of the pattern activity; with the Hebb rule, each pair of active 
neurons in a learning pattern causes a change in one synapse. Distributed 
storage requires the patterns to be nonsingular and overlapping. 

3.3 Analysis of the Retrieval Process 
The aim of the present section is the analysis of one-step retrieval in the 
associative memory after learning, i.e., after the storage process has formed 
the memory matrix for a given memory task (SA, SC). In Sec. 3.1.5 and 
by Eq. (3.3) we have introduced the quantities of interest in the analysis of 
this feedforward system, viz., the mean retrieval error probabilities in an 
output pattern for a given input pattern. 

We already mentioned in the introduction that different spatial scales 
can be distinguished in the treatment of neural nets, the microscopic scale 
of synapses and model neurons, and the macroscopic scale of the collective 
behavior of all neurons. What we presume about the model is on the mi­
croscopic scale (neuron model, learning rules, etc.); what we would like to 
know from a theory is on the macroscopic scale, the collective behavior of 
the whole set of neurons (retrieval errors). In physics it is quite usual to 
deal with separable scales, for instance, in thermodynamics the molecular 
versus the macroscopic scale. Physical mean-field theories that originally 
have been developed for spin glasses5 yield asymptotic results for the re­
trieval errors6 in the limit of infinite system size: m, n -+ 00, which often 

5Spin glasses are magnetic solids with two different competing fractions of spin 
couplings. One fraction favors parallel and the other anti parallel spin alignment, 
which causes irregular (glasslike) stable spin configurations. The mean-field the­
ory provides values for the mean magnetization as macroscopic order parameters. 

6The order parameters of a mean-field theory treating neural networks are the 
M overlaps {m/, 1 = 1, ... , M}, where each overlap m/ counts the number of com­
mon pixels between the retrieval output and the content pattern y/. If we apply 
a (distorted) address pattern !i;k as an input pattern, particularly, one overlap is 
important for the retrieval quality, namely, the overlap mk corresponding to the 
input pattern. The theory provides a mean value < mk >, averaged over a large 
number of retrieval events, which is equivalent to the retrieval error probabilities 
in Sec. 3.5. 
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is called the thermodynamic limit of fixed-point retrieval in the associative 
memory after learning. 

We will consider memory tasks with different mean ratios p between 
the elements 1 and a in the pattern sets in the finite model and in the 
thermodynamic limit, i.e., m -+ 00. Curiously, memory tasks with sparse 
patterns, as defined in Sec. 3.1.1., will turn out to yield optimal asymptotic 
performance. 

3.3.1 RANDOM PATTERN GENERATION 

To apply probability theory for the estimation of mean retrieval error prob­
abilities, we have to assume the following properties of the memory data 
and of the distortion of the input patterns. 

Content and Address Patterns 

In the memory tasks we assume the simplest model of the data to be stored, 
namely, sets of randomly generated patterns. The value of each of the n 
digits in a pattern xk E S is chosen independently with the probability 
p := Prob[xf = 1]. A set of randomly generated patterns is fixed by three 
parameters: the probability p, the dimensionality of a pattern n, and the 
number of patterns M. We will use the following notation for address and 
content patterns: SA := S(p,m,M),SO := S(q,n,M). For heteroassocia­
tion, the sets SA and SO will be generated mutually independently. 

Input Patterns 

The signal detection problem will be treated in three different cases of 
addressing: 

1. A perfect address pattern as an input pattern xk, with nl := #{ i : 
xf = I} being the number of 1 components. 

2. An ensemble of perfect input patterns, where now the number of ones 
in the input pattern nl also becomes a random variable. It is a bino­
mially distributed variable and, for large m, the fraction ndm will 
be close to its expectation value p because of the strong law of large 
numbers [39]. In the analysis, the average input activity J.t of the en­
semble will become an important quantity which, for large m, equals 

J.t:= [nl + (m - nl)aJlm = p+ (1- p)a. (3.7) 

3. An ensemble of noisy input patterns SA, which is generated by a 
second random generation process from the set of address patterns 
SA used for learning. Here we concentrate on noisy input patterns, 
where xk E SA is a "part" of an address pattern xk in the following 
sense: Prob [xf = O\xf = 0] = 1 and Prob [xf = l\xf = 1J =: p'. As 
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for the faultless ensemble, we describe the input activity for large m 
by the average input activity of the address ensemble 

Ii := pp' + (1 - pp')a. (3.8) 

In the analysis that follows we will use the prime to indicate the 
results for the noisy input ensemble. 

3.3.2 SITE AVERAGING AND THRESHOLD SETTING 

Depending on its dendritic potential [Eq. (3.1)] and the threshold value aj , 

each neuron j "decides" in the update process [Eq. (3.2)] whether it should 
be active or silent. This can be regarded as a signal detection problem on 
the random variable dj that every neuron has to solve. 

To find the probabilities for on and off errors in Eq. [3.3] we have to 
consider the neurons separated in two fractions: the on-neurons, which 
should be active in the original content pattern yk, and the off-neurons, 
which should not be active. In our model, the threshold of each neuron is set 
to the same value depending only on the total activity of the input pattern. 
Therefore, it is sufficient to analyze the averaged dendritic potentials in 
each of the fractions. We will use the notation d1 =< dj > jE{j:y~=l} and 

3 

da =< dj >jE{j:y'!:=a}' With the assumptions of the last subsection these 
3 

averaged quantities can be treated as random variables. 
Of course, the synapses - randomly generated in the storage process 

- are "quenched" in the retrieval so that dendritic potentials at different 
on-sites or off-sites will behave differently. This suggests a memory model 
where the threshold is adjusted separately for each neuron, which has been 
treated in [49] and will be discussed in Sec. 3.6.3. 

3.3.3 BINARY STORAGE PROCEDURE 

For binary storage, the dendritic potential at neuron j is dj = Ei x~ Jiit ij , 

where the values of the binary Hebb matrix Jiit are distributed on {O, I}. 
The probability that a matrix element is 0 can be easily calculated: 

Po := Prob[Mij = 0] = (1 _ pq)M. (3.9) 

We discuss the three cases of addressing in Sec. 3.3.1 separately. 

1. Given xk as an input pattern, the expectation E(d1-da) = nl(l-po) 
is independent of the value a but the variance 0'2 (dj) is minimal 
for a = O. So, optimally we choose a = O. Then we obtain for the 
dendritic potential at an on-neuron d1 = nl' Thus we maximally can 
put e = nl to obtain el = O. 
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The second error probability is determined from the dendritic po­
tential at an off neuron: 

ea = Prob[da > 8] = Prob [ IT Mij = l1Y~ = 0] ~ (l-po)n1 • 

iE{i::J:~=l} 

(3.10) 

2. If we average over an ensemble of perfect patterns, where we adjust 
the threshold individually for each input to 9 = nl, then the thresh­
old also becomes a random variable. Now consider the fixed threshold 
setting 8 = Enl for all input patterns. For this threshold choice we 
simply have to insert the expectation of nl into Eq. (3.10): 

ea ~ (1 - po)mp • (3.11) 

This fixed threshold setting leads to el(E9) > 0 because of patterns 
with nl < Enl and to ea(E8) < Eea(9) because of the concavity of 
the function ea (8). We will use Eq. (3.11) as approximation for the 
retrieval error ea with the individual threshold adjustment. 

3. Finally, for noisy addressing we obtain for the same fixed threshold 
setting 8 = p' E(nl) 

I ()pl 
eal = ea . (3.12) 

Strictly speaking, the above calculation requires independence of 
the entries Mij' Although this is not the case, it is shown Appendix 
3.1 that at least for sparse address patterns with m2/ 3p -+ 0 the 
entries Mij become asymptotically independent for large m. 

3.3.4 INCREMENTAL STORAGE PROCEDURE 

In incremental storage, the contribution of each pattern pair is simply 
summed up in the synaptic weights; and we can divide the dendritic po­
tential into two parts: the signal part 8, which is the partial sum coming 
from the storage of the pattern pair (xk,yk), and the noise part N, the 
remaining partial sum that contains no information about yj. From Eqs. 
(3.1) and (3.5) we obtain 

dj = N +8:= LxfMij = LLxfR(xLy~) 
I 

= LLxfR(xLy~) + LxfR(xf,y~). 
I 

The dendritic potential and its signal part have to be regarded separately 
at an on-neuron (yj = 1) and at an off-neuron (yj = a): 

81 := Lxf R(xf, 1), 8a := 2:xfR(xf, a). 
i i 
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We now assume that, for the noise parts, E(N1) = E(Na ) holds and that 
it is the variance of the noise u(N), which determines the mean facility 
to solve the neural detection problem. Inspired by engineering methods 
we introduce the signal-to-noise ratio as a threshold setting independent 
retrieval quality measure: 

r := E(Sl - sa)/u(N). (3.13) 

The motivation to do so is quite intuitive: the threshold detection problem 
can be solved for many neurons for the same value e if E(Sl - sa) is large 
and u(N) is low. 

The fidelity requirement that ea and e1 should be small is equivalent to 
the corresponding requirement that the signal-to-noise ratio r should be 
large. How the retrieval errors are balanced between the two possible types 
of retrieval errors is governed by the threshold setting. If both retrieval error 
probabilities have to be below 0.5, the threshold has to satisfy Eda ~ e ~ 
Ed1, Eda being the expectation of the dendritic potential at an off-site. 
Thus we put e = Eda + -ou(N)r = Ed1 - (1 - -o)u(N)r with -0 E [0.1]. 

For large m the noise term N can be considered as sum of a large number 
of independent random variables and the central limit theorem holds. Then 
we can estimate the error probabilities using a normal distribution and get 

e1 = Prob[d1 - e < 0] ~ G[-E(d1 - e)/u(N)] = G[-(l- -o)r] (3.14) 
ea = Prob[da - e > 0] ~ G[--or] (3.15) 

with the normal or Gaussian distribution G[x] := (1/$) J~oo e-z2/2dx. 
To obtain explicit values for the error probabilities we now have to ana­

lyze the signal and noise term in Eq. (3.13) for the different ensembles of 
input patterns and different learning rules (Sec. 3.2). 

For input ensembles we are interested in the mean retrieval errors where, 
for every input, the threshold has been set in the optimal way according 
to the number of active input digits n1. We insert the signal-to noise ra­
tio averaged over an input ensemble into Eq. (3.14) and consider a fixed 
threshold setting that is equal for all input patterns. For binary storage, 
we take this result as an approximation for the individual threshold adjust­
ment, which is equivalent to an exchange of the expectations of the pattern 
average and the input average in the calculation. 

Signal-to-N oise Calculation 

Again we discern the three cases of addressing described in Sec. 3.3.1. 

1. For the faultless address xk as input the signal is sharply determined 
as 

Sl - Sa = nl(r4 - ra) - (m - n1)a(r2 - r1). 

The noise decouples into a sum of (M - 1) independent contribu­
tions corresponding to the storage of the pattern pairs (xl, yl) with 
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l =/: k. For every pair the input xk generates a sum of n1 random vari­
ables R(x, y) and of (m - n1) random variables aR(x, y) at a neuron 
j. The variable R(x,y) = R(xLY~) is the four-valued discrete ran­
dom variable [Eq. (3.4)] with the distribution (1- p)(1- q),p(1- q), 
(1 - p)q,pq. 
With E(R) and (J'2(R) denoting expectation and variance of R(x, y), 
a simple [but for (J'2(N) tedious] calculation yields 

E(N) = (M - 1)[n1 + (m - n1)a]E(R) (3.16) 
(J'2(N) = (M -1){Q1(J'2{R) + Q2Cov[RiRh]}, (3.17) 

where we have used the abrevations 

Q1 := n1 + (m - n1)a2 

Q2 := n1(n1 -1) + 2an1(m - n1) + a2(m - n1)(m - n1 -1) 

COV[RiRh] = q(1 - q)[p(r4 - ra) + (1 - p)(r2 - r1)j2. 

The covariance term COV[RiRh] := Cov[R(xLyj)R(x~, y~)] measures 
the dependency between two contributions in the ith and hth places 
of the column j on the synaptic matrix. 

2. If we average over the ensemble of perfect input patterns, we can 
use again for large m the approximations ndm ~ {n1 - 1)/m ~ 
(n1 + 1)/m ~ p and (M -1)/m ~ M/m and obtain 

E(Sl - sa) = m[p(r4 - ra) - (1 - p)a(r2 - r1)] (3.18) 
E{N) = (M - l)mp.E{R) 

In Eq. (3.17) we have to insert 

Q1 = m[p + (1 - p)a2 ], (3.19) 

3. Finally, we consider the ensemble of noisy address patterns. In this 
case, 

E(s~ - s~) = m[p(p' + (1- p')a)(r4 - ra) - (1- p)a{r2 - r1)]. (3.20) 

In the description of the noise we only to replace p by pp' and p. by 
p.' in (3.18) and (3.19). 

Signal-to-Noise Ratios for Explicit Learning Rules 

Regarding Eqs. (3.17) and (3.18), we observe that the signal-to-noise ratio 
is the same for the rules R and bR + c, where c is an arbitrary number and 
b is a positive number. Two rules that differ only in this way will be called 
essentially identical. Thus we may denote any rule R as 

(3.21) 
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The following formulas are written more concisely if we introduce instead 
of r2, r3, r4 the mutually dependent parameters 

"':= r3 +,,(q. 

In this notation, the variance of the rule becomes 

(12(R): = E(R2) - (E(R»2 

= ",2p(1 - p) + 1\:2q(1 - q) + "(2p(1 - p)q(1 - q). 

In the description of the input ensemble we transform from the parameters 
p, a to the quantities p, J.L, see Eq. (3.7). 

The signal-to-noise ratio averaged over perfect address patterns (2) is 
then obtained from Eq. (3.13) as 

(3.22) 

Averaged over noisy address patterns (c) we obtain equivalently 

with the definition for J.L' taken from Eq. (3.8). 

Optimal Learning Rule 

The expression (3.22) invites optimization of the signal-to-noise ratio in 
terms of the three parameters ,,(, 1\:, and", so as to yield the optimal learning 
rule Ro. 

The parameter", appears only in (12(R) in the denominator. We first 
minimize (12(R) with", = ° and obtain 

(3.24) 

The (large) factor m in the second term of the denominator in Eq. (3.24) 
makes this term dominating unless at least one of the other factors I\: or J.L 
vanishes. 

At first sight we have two distinct cases that differ with respect to the 
average activity J.L of the input patterns: 

1. Either J.L stays away from 0, and then it is optimal to choose I\: = 0 
(case 1); 
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2. or J.L -+ 0 fast enough to make the second term negligible in the sum 
of the denominator in Eq. (3.24) (case 2). However, if we insert J.L = 0 
in Eq. (3.24), again'" = 0 turns out to be the optimal choice. 

Thus, both cases leave us with", = 0 and 'fJ = 0 and yield the covariance 
rule as general optimal rule: 

Ro = (pq, -p(1 - q), -q(1 - p), (1 - p)(1 - q)). (3.25) 

The condition J.L = 0 will occur several times in the sequel, and will 
be referred to as the condition of zero-average input activity. In partic­
ular, for p = 0.5 it implies a = -1, and for p -+ 0 this implies a -+ O. 
This condition, which is equivalent to a = -p/(I-p) or to p = -a/(I- a), 
fixes the optimal combination between input activity and the model para­
meter a. 

For arbitrary p and a in the input patterns, and for arbitrary J.L, the 
optimal signal-to noise ratio is evaluated by inserting Ro into Eq. (3.24), 

r2 - (m/M) (1 - J.L)2p (326) 
0- q(l-q)[P+(J.L-p)2/(I-p)](I-p)' . 

Transforming back from J.L to a, we obtain 

2 M p(l-p)(I-a)2 
ro = (m/ ) [P + (1 _ p)a2]q(1 _ q)' (3.27) 

Insertion of the zero-average input condition J.L = 0 into Eq. (3.26) yields 
the optimal signal-to-noise ratio, 

2 m 
ro ~ M q(1 _ q) . (3.28) 

Optimizing the signal-to-noise ratio for noisy addresses 3, Eq. (3.23) leads 
to the same optimal rule [Eq. (3.25)]. Then the signal-to-noise ratio value 
for perfect addressing is reduced from the noise in the input patterns. For 
the optimal rule Ro with J.L = 0, it is given by 

(1 _ p)pl2 
r'2 '" r2 o pi _ 2pp' + pO' (3.29) 

For learning rules with '" -::f. 0, which have a nonzero covariance term 
only, J.L = 0 can suppress the m2 term in the variance of the noise. There­
fore, '" =1= 0 and J.L -::f. 0 lead to vanishing r as m -+ 00. A little algebra 
shows that learning rules with J.L -::f. 0 and finite 'Y also yield a vanishing 
r. In conclusion, all suboptimal rules need J.L = 0 to achieve a nonvanish­
ing r. 
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Table 3.1. Squared signal-to-noise ratios r2 (m, M, p, q) for p, = O. 

Optimal Rule Ro Hebb Rule H Agreement Rule C 

r2 = m m(l- p) Bmp(l- p) 
Mq(l- q) Mq(l- pq) M(P(1 - q) + (1 - p)q] 

Hebb and Agreement Rule 

If we compare the Hebb rule and the agreement rule to the optimal learn­
ing rule Ro, we realize that, in general, both rules are suboptimal. But 
nevertheless, for p = q = 0.5 the optimal rule becomes equal to the agree­
ment rule, Ro = (0.25, -0.25, -0.25,0.25), and for p, q -+ 0 the Hebb rule 
is approximated by the optimal rule, Ro -+ H. 

By Eq. (3.22) one can compute the signal-to-noise ratio for these rules, 
the results of which for J1. = 0 may be found in Table 3.1. 

As expected, the Hebb rule becomes essentially identical to Ro for p, q -+ 

O. In the a = 0 model, where the parameter a is not adjusted to guarantee 
J1. = 0, we need a stricter sparseness in the address patterns, mp2 -+ 0, to 
provide J1. -+ 0 fast enough to preserve the essential identity between H 
and Ro. 

By comparing the r 2-values corresponding to the different rules in Table 
3.1, we will derive the performance analysis of the Hebb and agreement 
rules (see Sees. 3.5.2 and 3.5.4) from the analysis of Ro carried out in this 
section. 

Summary 

With incremental storage procedures the signal-to-noise ratio analysis of 
one-step threshold-detection retrieval led to the following results: 

• If a rule R yields the signal-to-noise ratio r, then any rule bR + c, 
with b positive, yields the same signal-to-noise ratio. We call these 
rules essentially identical. 

• For any rule R, the best combination of the parameters p and a is 
given by the zero-average input condition JI. = p + (1 - p)a = O. 

• The maximal signal-to-noise ratio ro is always achieved for the covari­
ance rule Ro [Eq. (3.25)]. For increasing JI., the value ro continuously 
decreases and reaches ro = 0 at JI. = 1. 

• Every rule essentially different from Ro has a 0 asymptotic signal-to­
noise ratio, if the condition JI. = 0 is violated. 
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• The Hebb rule becomes essentially identical to Ro for memory tasks 
with q -+ 0 and p -+ 0, i.e., for sparse address and content patterns. 

• The agreement rule is equal to Ro for p = q = 0.5. 

• Stomge of extensively many patterns, i.e., M/m > 0 as m -+ 00: In 
this case, Ro and H achieve asymptotically vanishing errors (r -+ 00) 

for memory tasks with sparse content patterns: q -+ 0 as m -+ 00. 

The agreement rule A only achieves r = const as m -+ 00. 

3.4 Information Theory of the Memory Process 

How can the performance of an associative memory model be measured? In 
our notation, a given memory task specifies the parameters p, q, M,p', ea , 

el. From the signal-to noise ratio analysis we can determine for randomly 
generated patterns the maximal number of pattern pairs M* for which 
the required error bounds ea , el are still satisfied. Then the first idea is to 
compare the M* to the number of neurons used in the memory model. This 
quotient of patterns per neuron 0: = M* In is used in many works, but this 
measure disregards the parameter q used in the random generation of the 
content patterns as well as the whole process of addressing. 

In the following we use the description of elementary information theory 
to find performance measures for the memory task and compare them with 
the size of the storage medium, viz., the number of synaptic connections 
nxm. 

3.4.1 MEAN INFORMATION CONTENT OF DATA 

Every combination of a memory problem and a coding algorithm will lead to 
a set of content patterns that exhibit in general very complicated statistical 
correlations. 

For a set of randomly generated patterns 8, which we have used to carry 
out the signal-to-noise ratio analysis, each digit was chosen independently. 
The mean information contained in one digit of a pattern is then simply 
given by the Shannon information [40] for the two alternatives with the 
probabilities p and 1 - p, 

i(p) := -plog2P - (1- p) log2(1- p), 

and the mean information content in the set of randomly generated content 
patterns 8 c is 1(8C ) = Mni(q), where q is the ratio between 1- and a­
components in each content pattern. The pattern capacity compares the 
mean information content of the content patterns with the actual size m x n 
of the storage medium and is defined as 

P(m,n):= max{I(8c )}/nm = M*i(q)/m. (3.30) 
M 
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Fig. 3.2. Output capacity: Information channel of storage and retrieval; (mem. 
= memory, ret. = retrieval). 

Here, M* equals the maximum number of stored patterns under a given 
retrieval quality criterion. The definition (3.30) is an adequate measure of 
how much information can be put in the memory, but not at all of how 
much can be extracted during the retrieval. A performance measure should 
also consider the information loss due to the retrieval errors. 

3.4.2 ASSOCIATION CAPACITY 

The memory can be regarded as a noisy information channel consisting 
of two components (see Fig. 3.2): The channel input is the set of content 
patterns So, and the channel output is the set of recalled content patterns 
SO afflicted with the retrieval errors. The two components correspond to 
the storage process, where the sets SA and SO are transformed into the 
synaptic matrix and to the retrieval process where the matrix is transformed 
into a set of memory output patterns So. The retrieval error probabilities 
specify the deviation of SO from SO and thus the channel capacity. 

The capacity of an information channel is defined as the transinformation 
that is contained in the output of the channel about the channel's input. 
The transinformation between SO and SO can be written as 

(3.31) 

where the conditional information [(SOISO) is subtracted from the infor­
mation content in So. It describes the information necessary to restore the 
set of perfect content patterns SO from the set So. For random generation 
of the data we obtain 

with the contribution of one digit 

[(yf I yf = ProbfYf = l]i(Prob[yf = 0 I yf = 1]) 

+ Prob[yf = O]i(Prob[yf = 1 I yf = 0]) 

= [q(l - ed + (1 - q)ea]i (q(l _ ~~)-+q~~a_ q)ea) 

(3.32) 
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Fig. 3.3. Completion capacity: Information balance for autoassociation. (mem. 
= memory, ret. = retrieval). 

+ [qel + (1 - q)(l - ea)Ji (qel + (1 ~e~)(l _ ea)) . (3.33) 

Now we define the association capacity as the maximal channel capacity 
per synapse: 

- M* A(m,n):= maxT(Sc,Sc)/mn = P(m,n) - -I(yf I yf). 
M m 

(3.34) 

The capacity of one component of the channel is an upper bound for the 
capacity of the whole channel: The capacity of the first box in Fig. 3.2 
will be called storage capacity (discussed in [41]). The maximal memory 
capacity that can be achieved for a fixed retrieval procedure (i.e., fixing 
only the last box in Fig. 3.2) will be called the retrieval capacity. 

3.4.3 INCLUDING THE ADDRESSING PROCESS 

The defined association capacity is a quality measure of the retrieved con­
tent patterns, but the retrieval quality depends on the properties of the 
input patterns and on the addressing process. Of course, maximal associa­
tion capacity is obtained for faultless addressing; and with growing address­
ing faults (decreasing probability pI) the association capacity A decreases 
because the number of patterns has to be reduced to satisfy the same re­
trieval error bounds. To include judgement of addressing fault tolerance for 
heteroassociation, we have to observe the dependency A(P/). 

For autoassociation where SA = SC, we will consider the information 
balance between the information already put into the memories input and 
the association capacity (see Fig. 3.3). 

This difference gives the amount of information that is really gained dur­
ing the retrieval process. We define the completion capacity for autoassocia­
tion as the maximal difference of the transinformation about SC contained 
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in the output patterns and contained in the noisy input patterns SA, 

C{n) := ~~ {T(SC I SC) - T{SC I SC)} /n2. 

From Eq. (3.31) we obtain 

C{n) = ~~ {1(SC I Sc) - 1(Sc I Sc) } In2 

= max {M*[1(yf I yf) - 1(yf I Iif)]} In. 
pi 

(3.35) 

(3.36) 

In Eq. (3.36) we have to insert again the maximum number of stored pat­
terns M* and the conditioned information to correct the retrieval errors; 
cf. Eq. (3.33). In addition, the one-digit contribution of the conditioned 
information necessary to restore the faultless address patterns SA from the 
noisy input patterns SA is required. It is given by 

(3.37) 

Note that, for randomly generated content patterns, i.e., with complete 
independence of all of the pattern components yf, one usually reaches the 
optimal transinformation rates and thus the formal capacity. 

3.4.4 ASYMPTOTIC MEMORY CAPACITIES 

In Sec. 3.3 we analyzed the model in the thermodynamic limit, the limit 
of diverging memory size. For asymptotic values of the capacities in this 
limit we not only will examine memory tasks where the fidelity require­
ment remains constant; we also will examine the following asymptotic fi­
delity requirements on the retrieval which distinguish asymptotically differ­
ent ranges of the behavior of the quantities ea and el with respect to q -+ 0 
as m,n -+ 00: 

• The high-fidelity or hi-fi requirement: el -+ 0 and ealq -+ O. Note 
that for q -+ 0 the hi-fi requirement demands for both error types 
the same behavior of the ratio between the number of erroneous and 
correct digits in the output: da :::::: d1 -+ 0 with the error ratios defined 
by da := ealq and d1 := eI/{l- q) . 

• The low-fidelity or lo-fi requirement: el and ea stay constant (but 
small) for n -+ 00. 

With one of these asymptotic retrieval quality criteria the asymptotic ca­
pacities P, A, and C are defined as the limits for n, m -+ 00 and n -+ 00, 

respectively. 
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3.5 Model Performance 

3.5.1 BINARY STORAGE 

Output Capacity 

In this memory model the probability Po = Prob(Mij = 0) is decreased if 
the number of stored patterns is increased. Since obviously no information 
can be drawn from a memory matrix with uniform matrix elements, we 
will exclude the cases Po = 1 and Po = 0 in the following. 

For faultless addressing, the maximal number M* of patterns that can 
be stored for a given limit on the error probabilities can be calculated by 
Eqs. (3.9) and (3.10): 

M* = In [Po] = In[l - (ea)l/mp] 
In[l - pq] In[l - pq] 

(3.38) 

From Eq. (3.34) we obtain for el = 0 and e := ea « q the association 
capacity 

A(m,n) ~ (M*/m){i(q) - (1- q)elog2[e(1- q)/q]). (3.39) 

In Fig. 3.4 we have plotted a) Q! = M* /m from Eq. (3.38), and b) the 
association capacity from Eq. (3.39) against p for q = p and the constant 
error ratio d = ea/p = 0.01 for three finite memory sizes. Figure 3.5 shows 
simulation results for the error ratio d with the parameters as in Fig. 3.4. 
For p-values near the information optima in Fig. 3.4b, the experimental 
value dexp is close to the value d used in Fig. 3.4a. For lower and higher p­
values, there are deviations between theory and experiment; see the caption 
for Fig. 3.5. 

Nonvanishing asymptotic association capacity requires M* /m > 0 as 
m -+ 00. In Eq. (3.38) this can be obtained either for Po -+ 0, which we 
have already excluded, or for pq -+ O. In this case, we obtain 

M* ~ In[po]. 
-pq (3.40) 

The hi-fi requirement leads with Eq. (3.11) to the following condition on p 
and q: 

ea/q = exp(mpln[l- po]-ln[q]) -+ O. (3.41) 

In the case q -+ 0, the requirement (3.41) is satisfied if we put 

p = u -In[q] (3.42) 
m 

with the positive number u > -(In[l - poD-I. Inserting Eq. (3.42) into 
(3.40), we obtain the inequality 

M* m In[po]ln[l - pol 
< -qln[q] , (3.43) 
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Fig. 3.4. Binary storage in finite memory sizes: Number of stored patterns a 
and output capacity A in bits/syn with the lo-fi requirement d = 0.01 for p = q 
and n= m. 
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Fig. 3.5. Retrieval error ratio d = ea/k of simulations along the a-p curves of Fig. 
3.4 for dtheor = 0.01. For low p-values, the experimental error is even lower than 
predicted because we used learning patterns with a nonfiuctuating activity in the 
simulations. For higher p-values, the theoretic values are too small because, in 
this range, the effects of statistical dependence between different matrix elements 
should not be neglected. 
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which can be put into Eq. (3.39), yielding, for Po = 0.5 and m -+ 00, the 
maximal association capacity A ~ 0.69 bits/syn. 

Note that for autoassociation and heteroassociation with p = q, m = n, 
Eq. (3.42) implies that 

p ex In[n]/n (3.44) 

and 

(3.45) 

The relation (3.45) already has been obtained in [42, 43] for sparse memory 
patterns with arbitrary learning rules by regarding the space of all possible 
synaptic interactions; cf. Sec. 3.6.3. 

For singular address patterns and arbitrary q = const, however, error-free 
retrieval is possible for M* :$ m, which is the combinatorial restriction for 
nonoverlapping singular patterns. In this case, with Eq. (3.39), as associa­
tion capacity of A = i(q) :$ 1 bits/synapse is obtained. For constant p, Eq. 
(3.42) demands asymptotically empty content patterns, q ex exp( -mp/u) , 
leading to vanishing association capacity. For singular content patterns, the 
combinatorial restriction M* :$ m also yields vanishing association capac­
ity. 

Fault Tolerance and Completion Capacity 

In the case of noisy input patterns [Eq. (3.12)], the hi-fi condition becomes 
ea / q = exp( mpp' In[l- po]-ln[q]) -+ O. As in the preceding subsection, we 
obtain the maximal number of patterns by M'* = p' M*, where M* is the 
value for faultless addressing [Eq. (3.43)]. Thus, for heteroassociation, the 
association capacity exhibits a linear decrease with increasing addressing 
fault, A(P') = p' A. 

For autoassociation with the hi-fi requirement, the retrieval error term in 
the completion capacity [Eq. (3.36)] can be neglected as in the association 
capacity, and we obtain for p -+ 0 

C = max {(M'*/n)(l- pp')i (P(l- PI))} 
pi 1-pp' 

= {In[Po]ln[l - Po]p'(l - p') } _ 017 b't / 
~!pC In[2] -. 1 S syn (3.46) 

for Po = 0.5 and p' = 0.5. In Fig. 3.6, the completion capacity is plotted 
against p for three finite memory sizes and for the constant error ratios a) 
d = ea/p = 0.01, and b) d = 0.05. The optimum is always obtained for 
p' = 0.5. 
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Fig. 3.6. Binary storage in finite memory sizes: Completion capacity C in 
bits/syn for two 10 fi values; the maximum has always been achieved for ad­
dressation with p' = 0.5. 

3.5.2 INCREMENTAL STORAGE 

Output Capacity 

For faultless addressing, zero-average input, and the optimal rule Ro, the 
maximal number of stored patterns for a given signal-to-noise ratio value 
r is obtained from Eq. (3.28): 

M* = m/(r2q(1 - q)). (3.47) 

If the threshold setting provides ea/q = ed(l - q) =: d, the association 
capacity can be computed for small fixed values of the error ratio d from 
Eqs. (3.34) and (3.47): 

A'" i(q) + q(l - q)d{log2[qd] + log2[(1 - q)d]} (3.48) 
- r 2q(1- q) . 

With substitution of r = G-l[qd] + G-l[(l - q)d] in Eq. (3.48) we obtain 
the association capacity for the rule Ro for a constant d error ratio, the 
10 fi requirement. (G-l[X] is the inverse Gaussian distribution.) In Fig. 
3.7 we display the association capacity values for the optimal, Hebb, and 
agreement rules, the latter two obtained by comparison of the signal-to­
noise ratios in Table 3.1. 

The hi-fi requirement only can be obtained for r -+ 00 as m -+ 00 in 
Eq. (3.47), which is possible either for M* /m -+ 0, leading to vanishing 
association capacity, or for q -+ 0, the case of sparse content patterns, 
which we focus on in the following. 

We now choose a diverging signal-to-noise ratio by 

r = J-21n[qJl'l9. (3.49) 

The threshold has to be set asymmetrically, '19 -+ 1, because for sparse 
patterns ea/el -+ ° is demanded. (This implies q = exp[-('I9r)2/2], yielding, 
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Fig. 3.7. Model with incremental storage, fulfilled condition of zero-average in­
put, and m, n -+ 00: Number of stored patterns Q (left) and asymptotic output 
capacity A in bits/synapse (right) for p = q with the lo-fi requirement d = 0.0l. 
The optimal rule Ro is approached by the agreement rule A for p = 0.5 and by 
the Hebb rule for p -+ O. For p -+ 0, the lo-fi output capacity values of the optimal 
and Hebb rules reach but do not exceed the hi-fi value of A = 0.72 bits/synapse 
(this only can be observed if the p-scale is double logarithmic; see Fig. 5 in [51]). 

with Appendix 3.2, ea/q ~ (1l"r2/2)-1/2 ..... O. If the threshold iJ approaches 
1 slowly enough that (1- iJ)r ..... 00 still holds, then e1 ..... 0 also is true and 
the hi-fi requirement is fulfilled.) 

With vanishing e/ q, Eq. (3.48) simplifies asymptotically to 

A ~ P + 2elo~2[el ~ P. 
r 

Again, the information loss due to retrieval errors can be neglected due to 
the high-fidelity requirement. 

Inserting Eq. (3.49) into (3.47) we obtain for zero-average input and the 
optimal rule Ro, 

M* = m/{-2q{1- q) In[q]) , (3.50) 

which, like our result (3.49), can be calculated alternatively with the Gard­
ner method [42, 43]; cf. Sec. 3.6.3. 

With Eqs. (3.50) and (3.30) we obtain as asymptotic association capacity 
with the hi-fi requirement, A = 0.72 bits/syn. 

In contrast to the model with binary storage - where a positive as­
sociation capacity only for sparse content and address patterns has been 
obtained - with incremental storage, an association capacity A = 0.72 
bits/syn is achieved even for memory tasks with nonsparse address pat­
terns. However, for {O,l}-neurons we again are restricted to sparse address 
patterns because, for nonsparse address patterns, the zero-average input 
condition cannot be satisfied. 

With singular address or content patterns that are not interesting cases 
for associative memory, as we will discuss in Sec. 3.6.1, incremental and 
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Fig. 3.S. Incremental storage for n -+ 00: Completion capacity in bits/syn with 
the lo-fi requirement d = 0.01 (left diagram). The optimal p' in the addressing 
has been determined numerically (right diagram). 

binary storage form the same memory matrix and achieve exactly the same 
performance; see the last part of Sec. 3.5.1. 

Fault Tolerance and Completion Capacity 

For heteroassociation with noisy addressing we obtain the association ca­
pacity for zero-average input and Ro by using Eq. (3.29) (remember that 
r2 ()( m/M): 

A(p') = (1 - p )p12 A. 
p' - 2pp' +p 

(3.51) 

For p = 0.5 this implies A(p') = pl2 A, and for p -+ 0, as in the binary 
case, A(p') = p' A. For autoassociation with the hi-fi requirement we obtain 
in a way similar to Eq. (3.46) 

C( ) = {tJ2PI (1 - p')log2[P(1 - pI)]} 
n ~~ 2In[p] 

{ tJ2p'(1 - p') } . 
:::::: ~~ 2In[2] = 0.18 blts/syn. 

Again, the maximum is reached for p' = 0.5 and tJ -+ 1. 
A similar optimization in p' can be carried out for fixed values of p and 

the lo-fi requirement; see Fig. 3.8. In this case, the optimum is reached for 
p' larger than 0.5. 
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3.6 Discussion 

3.6.1 HETEROASSOCIATION 

In applications of associative memory, the coding of address and content 
patterns plays an important role. In Sec. 3.1 we distinguished three types 
of patterns leading to the memory tasks defined in Sec. 3.4: singular pat­
terns with only a single I-component, sparse patterns with a low ratio 
between the numbers of 1- and a-components, and nonsparse patterns. To 
get a general idea, Table 3.2 shows those memory models which achieve 
association capacity values A > 0 under the hi-fi requirement. Note that 
only the Hebb and the optimal learning rules in memory tasks with sparse 
or singular patterns yield nonvanishing hi-fi association capacities. In the 
following, we consider the different types of content patterns subsequently. 

Nonsparse Content Patterns 

Only in combination with singular address patterns do nonsparse patterns 
achieve high association capacity. In this case, qualified in Sec. 3.4 as the 
look-up-table task, all rules achieve A = 1. The associative memory works 
like a RAM device, where each of the m content patterns is written into one 
row of the memory matrix M and, therefore, trivially A = i(q). However, 
this is not an interesting case for associative storage because the storage 
is not distributed, and in the recall no fault tolerance can be obtained: 
A(P') = 0 for p' < 1. 

Table 3.2. Models that yield A > 0 for the hi-fi require­
ment in different memory tasks (incr. = incremental stor­
age, bin. = binary storage, incr.Ro, H, for instance, de­
notes the incremental storage model with either optimal 
rule or Hebb rule). 

Nonsparse Sparse Singular 
Content Content Content 

Nonsparse - iner. Ro -
address 

Sparse - incr. Ro,H -
address bin. H 

Singular iner. Ro,H - -
address bin. H 
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Table 3.3. Hi-fi association capacity values of the 
different models for sparse content patterns. As a 
measure of addressing fault tolerance (cf. Sec. 3.3), 
in the second line of each cell the reduction factor 
for faulty addressing is displayed. For instance, with 
sparse address and content patterns the Hebb rule in 
the incremental storage yields A = 0.36 bits/syn if, 
in the addressing, p' = 0.5 is chosen. 

Binary Incremental 
H H Ro 

Nonsparse - - A = 0.72 
address - - p'2 

Sparse A = 0.69 A = 0.72 A = 0.72 
address p' p' p' 

Sparse Content Patterns 

Combined with sparse or nonsparse address patterns, sparse content pat­
terns represent the most important memory task for neural memory models 
with Hebb or optimal learning rules, where high capacity together with as­
sociative recall properties are obtained. For optimal association capacity, 
many patterns in the set of sparse learning patterns will overlap. Therefore, 
in the learning process, several pattern pairs affect the same synapse, and 
distributed storage takes place. In Table 3.3, the hi-fi association capacity 
values can be compared. For sparse address patterns, the Hebb and optimal 
rules achieve exactly the same performances because, with the zero-average 
input condition, both rules are essentially identical. Even the binary Hebb 
rule shows almost the same performance. At first sight it is striking that 
binary storage, using only one-bit synapses, yields almost the same per­
formance as incremental storage, which uses synapses that can take many 
discrete values. This fact becomes understandable if we consider the mean 
contributions of all of the patterns at one synapse by incremental and by 
binary storage: EM = 0.69 for incremental compared with EM = 0.5 for 
binary storage. In both cases, the sparseness requirement prevents the ma­
trix elements from extensive growth; also, in incremental storage the vast 
majority of synapses take only the values 0, 1, and 2. 

For nonsparse address patterns, only the optimal setup, namely, the rule 
Ro in the incremental storage, achieves nonvanishing association capacity. 
This case is of less importance for applications since implementation is 
much more difficult (higher computation effort for a =I- 0, and the determi­
nation of the value of a requires the parameter p of the patterns). 
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Relaxing the quality criterion does not enhance the association capacity 
value in the sparse limit. The lo-fi association capacity values plotted in 
Figs. 3.4 and 3.7 do not exceed the hi-fi values in Table 3.3. With the 
agreement rule, finite lo-fi association capacity values can be achieved (see 
Fig. 3.7), whereas the hi-fi association capacity always vanishes. 

Singular Content Patterns 

The neural pattern classifier that responds to a nonsingular input pattern 
with a single active neuron often is called the grandmother model or per­
ceptron. Here, the information contained in the content patterns is asymp­
totically vanishing compared to the size of the network: A = O. Again, no 
distributed storage takes place. 

3.6.2 AUTOASSOCIATION 

If content and address patterns are identical in order to accomplish pattern 
completion in the retrieval, we have only to regard the cases of sparse and 
nonsparse learning patterns. 

Asymptotic Results 

The amount of information that really can be extracted by pattern comple­
tion with high quality is given by the asymptotic hi-fi completion capacity. 
It always vanishes in cases of nonsparse patterns. For one-step retrieval 
with sparse patterns, we have determined C = 0.18 and C = 0.17 bits/syn 
for the Hebb rule in incremental and binary storage, respectively (Secs. 
3.5.1 and 3.5.2). 

Using a practically unrealistic fixed-point readout scheme7 and the Hebb 
rule, we have found completion capacity values of C = 0.36 bits/syn for 
incremental and C = 0.35 bits/syn for binary storage [30, 23]. Thus, one 
would expect the performance of one-step retrieval to be improved by fixed­
point retrieval, i.e., starting from a single address pattern and iterating the 
retrieval process until the fixed point is reached. Asymptotically, however, 
fixed-point retrieval does not improve the one-step capacity results [44,45, 
46]. It is a consequence of the fulfilled hi-fi condition that already after only 
the first step we get asymptotically vanishing errors for diverging system 
size. 

Finite-Size Systems 

Although Fig. 3.6 illustrates that the asymptotic capacity bounds are only 
reached for astronomic memory sizes, even for realistic memory sizes sparse 

7Fixed points are patterns that remain unchanged during a retrieval step, i.e., 
input and output patterns are identical. 
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Fig. 3.9. Completion capacity C in bits/syn for iterative retrieval for addressa­
tion with p' = 0.5 which has been achieved in simulations in binary storage with 
4096 neurons. Depending on the number of stored patterns M an improvement 
up to twenty percent (for M = 60000) can be obtained after the first step through 
iteration. 

patterns yield better performance than nonsparse patterns. Simulations 
and analysis have revealed (again cf. [44, 45]) that iterative retrieval meth­
ods with an appropriate threshold-setting scheme (indicating how the 
threshold should be aligned during the sequence of retrieval steps) yield 
superior exploitation of the autoassociation storage matrix as compared to 
one-step retrieval; see Fig. 3.9. For finite systems, fixed-point retrieval even 
improves the performance and capacity values above the asymptotic value; 
e.g., for n = 4096, about C = 0.19 bits/syn can be obtained. 

For a certain application and a given finite memory size, however, we 
cannot reduce the pattern activity ad libitum by modifying the coding 
algorithm. Thus we sometimes may be faced with p » In[nJ; cf. Eq. (3.42). 
In this case, binary Hebbian storage is ineffective - see Fig. 3.6 - and 
incremental storage does not work either. 

3.6.3 RELATIONS TO OTHER ApPROACHES 

Heteroassociation 

The zero-average input condition for memory schemes with nonoptimal 
local synaptic rules was first made explicit by Palm [47] but appeared im­
plicitly in some closely related papers. Horner [48J has used it to define the 
neural off-value a in his model, and Nadal and Tolouse [24] have exploited 
it (through their condition of "safely sparse" coding) as a justification for 
their approximations. 

The optimization of the signal-to-noise ratio r carried out by Willshaw 
and Dayan [37J and independently by Palm [47J already has been suggested 
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- though not carried out - by Hopfield [25]. Also, Amit et al. [8] have 
proposed the covariance rule Ro. 

The signal-to-noise ratio is a measure of how well threshold detection can 
be performed in principle, independent of a certain strategy of threshold 
adjustment. We have examined the model where the threshold assumes the 
same value e for all neurons during one retrieval step and optimized the 
response behavior depending on the individual input activity. So we could 
lump together the on- and off-fractions of output neurons and calculate the 
average signal-to-noise ratio. 

In a recent work, Willshaw and Dayan [49] carried out a signal-to-noise 
analysis using quite similar methods for a different model. In their model, 
the threshold setting e j was chosen individually for each neuron for the 
average total activity of input patterns. Thus, the signal-to-noise ratio at 
a single neuron was optimized for averaged input activity. Due to this 
difference, the results only agree for zero-average input activity and in the 
thermodynamic limit; for the same optimal rule, the same signal-to-noise 
ratio is obtained. In general, their model is not invariant under the addition 
of an arbitrary constant in the learning rule because, for E(R) t= 0, activity 
fluctuations in an individual input patterns are not compensated for by 
threshold control as in our model. 

Most of the results for heteroassociation discussed here can be found in 
Peretto [50], Nadal and Toulouse [24], Willshaw and Dayan [37], and Palm 
[47, 51]. Some of our results are numerically identical to those of Nadal 
and Toulouse, who employ different arguments [e.g., approximation of the 
distribution of the noise term, Eq. (3.13), by a Poisson distribution]. In our 
framework one also could define a "no fidelity requirement," namely, ea 

and el -+ 0.5, which would correspond to the "error-full regime" of Nadal 
and Toulouse. This leads to the same numerical result, A = 0.46, which, 
however, is not very interesting from an engineering point of view since it 
is worse than what can be achieved with high fidelity. The result for binary 
storage stems from Willshaw et al. [4] for the Hebb rule, and to Hopfield 
[25] for the agreement rule. A new aspect is the information-theoretical 
view on the trade-off between association capacity and fault tolerance. 

Autoassociation 

Autoassociation has been treated extensively in the literature; see, for ex­
ample, [8,25,43,26,29]. In two points, our treatment differs from most of 
the papers on autoassociation: 

• Usually, models with fixed-point retrieval (and only with incremental 
storage) have been considered. 

• As the appropriate performance measure for pattern completion, we 
evaluate and compare the completion capacity which takes into ac­
count the entire information balance during the retrieval. 
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With one exception [48, 52], other authors regard (in our terms) the pat­
tern capacity, i.e., the retrieval starts from the perfect pattern as address.s 
Hence, to compare the existing fixed-point results with our one-step re­
trieval for autoassociation, we should take the association capacity or pat­
tern capacity results calculated in Sec. 3.5.2 for heteroassociation in the 
case p = q. 

For nonsparse patterns with p = 0.5, fixed-point retrieval with the lo-fi 
requirement stays below one-step retrieval: For the same fidelity of d = 
0.002, the one-step result for the agreement rule (Fig. 3.4) is higher than 
the Hopfield bound for the fixed-point retrieval in [10, p. 296]. Here, one­
step retrieval behaves more smoothly with respect to increasing memory 
load because the finite retrieval errors after the first step are not increased 
further by iterated retrieval. If the lo-fi fidelity requirement is successively 
weakened, a smooth increase of the one-step association capacity can be 
observed, and no sharp overload breakdown of the capacity (the Hopfield 
catastrophy) takes place, as would be the case for fixed-point retrieval at 
the Hopfield bound Q c [25,8,29]. 

The pattern capacity for the binary agreement rule has been estimated 
by a comparison of the signal-to-noise ratios for binary and nonbinary ma­
trices in [25] and has been exactly determined in [26] as Ab = (2/1r)A. For 
nonsparse learning patterns, binary storage is really worse than incremental 
storage. 

Again, as for heteroassociation, only for sparse patterns can nonzero 
values for the asymptotic hi-fi capacities can be achieved. For one-step re­
trieval with a = 0, we have found a hi-fi pattern capacity of P = 0.72 
bits/syn. For fixed-point retrieval, it has been possible to apply the sta­
tistical mechanics method to sparse memory patterns; cf. for instance [53, 
27]. In [27] just the same value P = 0.72 bits/syn has been obtained. Bya 
combinatorial calculation we also have obtained this pattern capacity value 
for fixed-point retrieval [30]. One-step and fixed-point retrievals yield the 
same pattern capacities because, for sparse patterns, the hi-fi condition is 
satisfied. It guarantees that almost all learned patterns are preserved in the 
first retrieval step and hence are fixed points. 

Quite a different way to analyze the storage of sparse and nonsparse 
patterns through statistical mechanics has been developed by Gardner [42, 
43]. In the space of synaptic interactions, she has determined the subspace 
in which every memory pattern is a stable fixed point. For sparse patterns 
this method yields the same pattern capacity value. 

8To obtain the pattern capacity, it is sufficient to study the properties of the 
fixed points as a static problem. In evaluating the completion capacity, one has 
to study how the system state evolves from a noisy input pattern in order to 
determine the properties of the output pattern with a given address. This is a 
dynamic problem which is in fact very difficult. 
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3.6.4 SUMMARY 

The main concerns of this chapter can be summarized as follows: 

• The statistical analysis of a simple feedforward model with one-step 
retrieval provides the most elementary treatment of the phenomena 
of distributed memory and associative storage in neural architecture. 

• The asymptotic analytical results are consistent with the literature. 
For autoassociation, most of the cited works consider fixed-point re­
trieval, which allows us to compare one-step with fixed-point retrieval. 

• Our information-theoretic approach introduces the capacity defini­
tions as the appropriate performance measures for evaluating for 
the different memory tasks the information per synapse which can 
be stored and recalled. Note that nonvanishing capacity values im­
ply that the information content is proportional to the number of 
synapses in the model. 

• For local learning rules, sparse content patterns turn out to be the best 
possible case, cf. [54]. High-capacity values and distributed storage 
with fault-tolerant retrieval are provided by the Hebb rule and {O, I} 
neurons. Here, the number of stored patterns is much higher than the 
number of neurons constituting the network. The binary Hebb rule 
- much easier to implement - yields almost the same performance 
as the incremental Hebb rule. For autoassociation, one-step retrieval 
achieves the same asymptotic capacity values as fixed-point retrieval 
(for the finite-size model, fixed-point retrieval yields higher capacity 
values). The hi-fi condition can always be fulfilled by sparse content 
patterns and only by these. 

Acknowledgment. We are indebted to F. Schwenker for Fig. 3.9 and for 
many helpful discussions. We thank J. L. van Hemmen for a critical reading 
of the manuscript. This work was partially supported by the Bundesmin­
isterium fUr Forschung und Technologie. 

Appendix 3.1 

In this section we show, for the Hebb rule in binary storage, the independ­
ence of two different matrix elements. This is required in Sec. 3.3.2. 
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Proposition 1 For the binary storage matrix M we have, as n - 00, 

Prob[Mlj = 1 and M 2j = 1] 
-=----:-i'-:--:-=----:;-:::--:-;-:-....::..:!...--';- - 1 and 
Prob[Mlj = 1]Prob[M2j = 1J 

Prob[Mjl = 1 and M j2 = 1J 
Prob[Mjl = 1JProb[Mj2 = 1] - 1, 

provided p and q - 0 and x := Mpq stays away from 0 for n - 00. 

Proof. Prob[Mij = 1J = 1- (1 _ pq)M: 

Prob[Mlj = 1 and M 2j = 1] = Prob[(3k: x~ = x~ = 1 and yj = 1) or 

where 

(3Z . I I - 0 mOm I ,m. Xl,X2 - ,Xl = ,X2,Yj 
= 1,yj = l)J 
1 - (P(EI) + P(E2) - p(El n E2», 

EI = ['v'k: not (x~ = x~ = 1 and yj = 1) and not (x~ = 1,x~ = O,yj = 1)] 

and 

E2 = ['v'k : not (x~ = x~ = 1 and yj = 1) and not (x~ = 0, x~ = 1, yj = 1)]. 

Thus, Prob(EI) = Prob(E2) = (1- pq)M and Prob(EI n E2) = (1- q(2p­
p2»M. Therefore, we obtain 

Prob[Mlj = 1 and M2j = 1J - Prob[Mlj = 1J· Prob[M2j = 1] 

= (1 - 2qp + qp2)M - (1 - pq)2M = (1 _ 2qp + qp2)M 
-(1 - 2pq + p2q2)M 

= e-M(2pq-p2q) _ e-M(2pq_p2q2) = e-2pqM (eMp2q _ eMp2q2). 

Thus we find 

Prob[Mlj = 1 and M 2j = 1]- Prob[Mlj = 1J· Prob[M2j = 1] 
Prob[M1j = 1]· Prob[M2j = 1J 

e-2x (ePx _ eqpX ) 
= -0 (1 - e-x )2 ' 

since px - 0 and pqx - O. 
This proposition shows the asymptotic pairwise independence of the en­

tries Mij in the memory matrix M, since entries which are not in the same 
row or column of the matrix are independent anyway. 

In order to show complete independence, one would have to consider 
arbitrary sets of entries Mij' In this strict sense, the entries cannot be 
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independent asymptotically. For example, if one considers all entries in one 
column of the matrix, then Prob[Mij = 0 for all iJ = (1 - q)M ~ e-Mq , 
which is with Eq. (3.9) in general not equal to p;f = (1-pq)Mn ~ e-Mmpq . 

Thus independence can at best be shown for sets of entries of the matrix 
M up to a limited cardinality L(n). The worst case, which is also important 
for our calculations of storage capacity, is again when all entries are in 
the same column (or row) of the matrix. This case is treated in the next 
proposition, which gives only a rough estimate. 

Proposition 2 

Prob[Mij = 1 for i = 1, ... , lJ --+ 1 
Prob[Mij = IJI for n --+ 00 

as long as pl2 --+ 0 and x = Mpq stays away from 0 for n --+ 00. 

Proof. 

Prob[Mij = IJ :$ Prob[Mlj = IIMij = 1 for i = 1, ... , l- IJ 

:$ Prob[Mlj = 11 there are at least 1- 1 pairs (xk, yk) with y7 = IJ 
= 1 - (1 _ p)l-l(1 _ pq)M-I+1. 

Therefore, 

o < log P[Mij = 1 for i = 1, ... , lJ < ~ log 1 - (1 - p)i(1 - pq)M-i 
- p[Mij =IJI -~ 1-(I-pq)M 

~ 1-(l.:-:qrpo ~ 1-(I-ip)Po = L...-Iog :$ L...-Iog , 
i=O 1 - Po i=O 1 - Po 

since 

since 

( I_P)i . 
1 _ pq ~ (1 - p)' ~ 1 - ip, 

1-1 

< ~. Po 
- L...-ZP--' 

i=O I - Po 

log(l + x) :$ x, 

p. Po l2 2 < -- . - --+ 0 for p . 1 --+ 0 
-I-po 2 ' 

and if Po = (1 - pq)M ~ e-Mpq = e-Z ..... 1. For Eq. (3.10) we need 
the independency of 1 = mp matrix elements; thus, for sparse address 
patterns with m2/ 3p --+ 0, the requirement of Proposition 2 is fulfilled and 
the independence can be assumed. 
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Appendix 3.2 

The following estimation of the Gauss integral G(t) is used in Sec. 3.5.2. 

Proposition 3 

(27l't2)-1/2e-t2 /2(1_ t2) ::;; G(-t) = 1- G(t)::;; (27l't2)-1/2e-t2 /2 

Proof. Since x2 = t2 + (x - t)2 + 2t(x - t), we have 

From this and with e-z2/ 2 ::;; 1, we obtain the second inequality directly 
since 1000 e-ztdx = lit and the first one after partial integration because 
1000 xe-ztdx = lit. 
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4 

Inferences Modeled with 
Neural Networks 
H.-O. Carmesin1 

with 8 figures 

Synopsis. We study changes of synaptic couplings as a consequence of re­
ceived inputs and of an internal mechanism. We adopt three approaches. 
First, we study the relation between formal logic and networks using the 
McCulloch-Pitts mapping from formulas to networks. We observe that 
transformations of logical formulas correspond to internal changes in a net­
work, which in turn correspond to deductive inferences. In contrast, induc­
tive inferences correspond to learning in networks and to the "guessing of 
axioms." Thus, formal logic does not address learning. This deficit is re­
flected in Wittgenstein's paradox (unique learning of counting by children), 
which can be "solved in terms of networks." Second, under appropriate 
conditions, the Hebb rule causes the minimization of complexity (num­
ber of couplings) during learning, and this makes the learning of counting 
unique. The minimization also supports the view that, in psychological ex­
periments, test persons solve transitive and more complicated inferences in 
a parallel rather than a sequential fashion. Third, a mechanism for inter­
nal changes in networks is studied that achieves both proofs by complete 
induction and an axiom system for any given consistent task. 

4.1 Introduction 

You want to catch a cat. It runs into a small room. You follow, and when you 
enter the door, the cat has hidden. You know that there are only two places 
to hide: behind the chest or on the cupboard. If you approach the wrong 
place, the cat will escape through the door. You remember that the cat has 
played this game with you quite often, and it always hid behind the chest. 
So you infer that the cat is behind the chest. But before you approach the 
chest, you consider additionally: Most likely, my brother forgot his suitcase 
behind the chest. Thus, there is insufficient space left for the cat. Hence, 

lInstitut fUr Theoretische Physik, Universitat Bremen, D-28334 Bremen, 
Germany. 
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you infer that the cat is on top of the cupboard. After you have caught your 
cat, you sit in your armchair and wonder how your nervous system, which 
presumably is organized according to the Hebb rule [1 J, provided you with 
such useful inferences. Traditionally, inferences have been studied mainly 
by logicians [2-5J, computer scientists [6J, cognitive psychologists [7J, and 
philosophers [8, 9J. Here, we will model inferences with neural networks 
and work out essential relations to the traditional approaches. 

As is illustrated in the above example, the inference is caused by inputs 
that are taken at different times and in different contexts. From all of the 
inputs taken, relatively few relevant inputs are selected and coordinated 
to an appropriate inference. Accordingly, we will propose a framework in 
which a network takes inputs in a first phase, reorganizes internal states in 
a second phase, and performs an action in a third phase. 

For the sake of a clear understanding of inferences, we concentrate our 
attention on three efficient approaches, each of which is possible in the 
proposed framework. First, we use mappings [lOJ from logical formulas to 
networks. Second, we model the counting ability [8J. Although this ability 
may appear trivial, it provides the basis for most infinite procedures2 and 
allows the study of learning. Third, we establish a cognitive system that 
generates to a given task a corresponding axiom system in terms of net­
works. Thus, we model the formation of axioms from experience. Now that 
we have characterized these three approaches, we begin our investigation 
with definitions. 

4.1.1 USEFUL DEFINITIONS 

By inference we mean the combination of inputs by a neural network. In 
our example, the nervous system combines remembered and actually per­
ceived inputs. The problem with generating such combinations of inputs 
is the binding problem in its full generality, because here the combined 
inputs are taken at different times and in different contexts. What are 
these combinations or coordinations of inputs? Combinations occur dur­
ing the performance of the network. The performance includes changes 
of neural activity and of couplings. Consequently, combinations occur ei­
ther directly through neural activities, or indirectly through changes of 
(synaptic) couplings. Such changes are described by differences between 
full network state; N/ull(t), which are characterized by the couplings and 

2The counting ability is the guideline along which intuitionistic logic was built 
[11-13). To support an orientation in the literature, we note that the functions 
that exist in intuitionistic logic are all general recursive. The general recursive 
/unctions are the same [13) as those studied by Turing (computable /unctions), 
and Church (A-definable /unctions). 

3 Geometrically, the full network states are elements (of a subset) of the N + N 2_ 

space, which has as subspaces the N-space of the neuronal states and the N 2_ 

space of the synaptic states. 
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the neurons. In order to study changes of couplings, we call two network 
states N(ta) and N(tb) at times ta and tb synaptically equal if they have 
the same couplings. A network is permanently changing its network state, 
or N(t) - N(t + 1) for short. A network is in fact a sequence of network 
states, N(ti), or Ni for short. Bya master mechanism we mean any rule 
that determines the changes of couplings. For instance, the Hebb rule is a 
master mechanism. 

4.1.2 PROPOSED FRAMEWORK 

We separate the combinations of inputs into the following three phases. 

Learning: First, the network receives inputs and achieves its first network 
state, N1 . We describe this first network state in terms of synapses, basins 
of attraction, rules, etc. 

Internal change: Second, the network state Nl may be active without 
receiving inputs, whereby it changes internally to become N2. For sim­
plicity, in this second phase we allow only such changes that leave invari­
ant the output generated to a given input in the third phase, but which 
possibly will speed up (or slow down) the third phase. That is, Nl and 
N2 combine the same inputs to the same outputs. We call such internal 
changes conservative. Two network states that differ only by a conserva­
tive internal change are called cognitively equivalent. If N2 is faster than 
Nb then N2 can predict the behavior of N1• The study of non conservative 
internal changes is beyond the scope of this chapter. For instance, inter­
nal changes might have been involved in the above example of recalling 
the suitcase. 

Action: Third, the network state N2 receives other inputs and combines 
them. The retrieval of a pattern [14] can be such an action; if inputs 
during the learning phase define the couplings through the Hebb rule, 
then these training inputs are in effect combined with those inputs that 
are received during retrieval. For simplicity, we neglect the change of 
couplings in this phase. In the following, it is clear from the context which 
phase we are discussing and which network state we are considering. 

By inductive inference we denote a coordination of the first phase (learn­
ing phase), while by deductive inference we denote one of the second phase 
(internal change). The third phase (retrieval) finishes inductive and deduc­
tive inferences and leaves the full network state synaptically equal. Alto­
gether, we expect this framework to be especially appropriate for the mod­
eling of inferences, because it contains inductive inference in the first phase 
and deductive inference in the second phase. In full generality, the second 
phase of internal change includes changes of neuronic values. However, it is 
expected that the changes of couplings are more important, because there 
are far more couplings than neurons. 
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(tl f, ... , tl f) 
! T 

M{p} +- p 
! 
tlf 

(±, ... ,±) 
r ! 
---+ N {p} 

! 
± 

Fig. 4.1. Middle: A formula p is mapped via T and r. Left: A mapping M {p} 
maps ,3 tupel of tf f to one tf f. Right: A network N {p} maps a tupel of + f - to 
one +f-. 

4.1.3 How FAR CAN WE Go WITH THE 

FORMAL-LOGIC ApPROACH? 

McCulloch and Pitts [10] studied this question by an ingenously simple and 
effective mapping: 

1. The calculus of propositions [2-5] is the (ancient) starting point4 : 

2. Model: So far, the calculus contains meaningless sequences. This is 
changed by the original "interpretation" [5]: We define [10] a mapping 
T, which maps each p to its Boolean function M {p}: That is, each 
variable q takes one of the values tf f, "true" or "false." The formula 
P determines the number d of input variables q. Each M{p} maps d 
such q to one r. This "interpretation" is called a "model" (according 
to [5]), since PI == P2 if and only if M{Pl} = M{P2}, M{-,p} = t if 
and only if M{p} = f, and M{pl V P2} = t if and only if M{Pl} = t 
or M {P2} = tj see Fig. 4.1. 

3. The mapping r (McCulloch-Pitts mapping) maps each formula ponto 
a feedforward network (dynamics defined in Sec. 4.2) N{p} , which 
performs as M{p}j see Fig. 4.1, whereby a unique N{p} is achieved 
by some convention. 

4. The mapping r- maps each feedforward network N to a formula p, 
such that M{p} performs as Nj cf. Fig. 4.2. 

5. Transformation TN: To a given N we form the corresponding P via r- . 

4Primitive connections are -. (negation) and V (disjunction); they combine 
variables or formulas; the formulas are the possible combinations. Popular abbre­
viations are p -+ q for -.p V q (implication), p /\ q for -.(-.p V -.q) (conjunction), 
and p == q for (p -+ q) /\ (q -+ p) (equivalence). The axioms are (1) p V P -+ p, (2) 
P -+ pV q, (3) p V q -+ q V p, and (4) (p -+ q) -+ (r V p -+ rV q), where p, q, and r 
can be variables, or formulas. A formula r is called an immediate consequence of 
p and q if p is the formula q -+ r. The class of derivable formulas is defined to be 
the class of formulas that contains the axioms and all' immediate consequences 
of derivable formulas. 



p 
! logic 
q 

T 

T 

N 
! TN(p,q) 

N{q} 

H.-D. Carmesin 123 

Fig. 4.2. Upper part: N is mapped to p. Middle left part: p is transformed to the 
equivalent q. Lower part: q is mapped to N{q}. Middle right part: Altogether, N 
is mapped to N{q}. 

We transform p to an equivalent q through the application of axioms 
and the immediate consequence. We map q to the respective N{q} 
via T (Fig. 4.2). We observe that TN is a candidate for a conservative 
internal change. 

6. Consistency problem: If the axiom system (see footnote 3) of the 
calculus of propositions were inconsistent, then .p == p would be 
derivable. Then, the corresponding induced transformation TN would 
transform a network Nl into a network N2 that maps to the output 
+ if Nl maps to the output -. We conclude that, through T the 
consistency problem is mapped to networks (i.e., the induced trans­
formations TN are conservative if and only if the axiom system is 
consistent) . 

7. Logical operations V and.: The logical operations by which formulas 
are connected are p V q and 'Pi corresponding operations are possible 
for networks. 

8. Networks as models: To each network we define the class of equally 
deciding networks, i.e., of networks that map identically. These classes 
of networks are another model for the calculus. 

9. Discussion: The above items characterize the relation between the 
calculus of propositions and feedforward neural networks5 . In par­
ticular, the axioms of the logical calculus describe "generally valid" 
relations. Specific knowledge is expressed in additional axioms. For in­
stance, the knowledge about classical mechanics is contained in New­
ton's three axioms. However, the process of establishing the axioms 
(i.e., the above first phase of learning) is not addressed. Newton had 
to "learn" his axioms, possibly by observing the famous apple falling 

5By a feedback network we mean a network that contains at least one loop of 
couplings. Analogous items 1-8 establish a similar relation between the calculus 
of predicates with natural numbers as individuals and feedback neural networks 
[15]. 
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from the tree. The formulas provided by logic address the second 
phase of internal changes. The third phase of action is established 
through an interpretation of the formulas. Finally, with regard to an 
application of the above considerations to neural network models, 
we identify two problems that occur in the second phase of internal 
change. The first one is to make internal changes conservative, be­
cause otherwise they are not reliable, and the second is to search for 
such sequences of applications of axioms and immediate consequences 
that speed up the network. 

Facts About the Two Problems 

The calculus of propositions is consistent [2-5]; thus, we can generate con­
servative internal changes in feedforward networks through T. In neurobi­
ology, recursive networks occur as well. In order to generate conservative 
internal changes in them, we have two alternatives: Either we limit the 
allowed transformations of formulas [11-13, 16] and, as a consequence, ob­
tain conserved internal changes only, but at the same time the number of 
internal changes is limited; or we have to make a hypothesis [4] (e.g., trans­
finite induction [17]) (for a detailed analysis of such questions see [18]) from 
which we can conclude that the induced internal changes are conservative. 

For instance, two pupils, Mary and Bob, have learned how to calculate 
with variables. In the afternoon, they both derive new formulas. The next 
day they compare their results. Most of the formulas Mary derived do not 
occur in Bob's derivations, and some have been derived by Bob, too. But 
for one formula F derived by Mary, Bob derived the negation ,F. Both are 
puzzled and confirm that they made no mistakes in their derivations. Is this 
possible? (There are four possibilities: Mary and Bob made an error, only 
Bob made an error, only Mary made an error, or neither Mary nor Bob 
made an error. In the latter case, the transformations of formulas are not 
consistent.) This example also illustrates the goal of deductive inference, 
namely, to make predictions about the domain of (if the domain contains 
one element only, then a single activity is predicted) future activities of 
nervous systems, here about those of Mary and Bob. 

The history: At the beginning of the century, logicians were looking for a 
consistency proof (Hilbert's program [19]) for a system with natural num­
bers as individuals (Peano arithmetic) and a logical calculus like that ofthe 
Principia Mathematica [2]. A change was initiated by the logician Godel [4], 
who argued that within such a calculus there are propositions U that can 
neither be proven nor disproven. First, this result gave rise to consistency 
proofs which rely on additional hypotheses [17] (first of the above problems 
treated with the second of the above alternatives). Second, this result was 
used pragmatically by Turing, who proposed quite a general class of com-
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puting machines, which now are called TUring machines6 [6], and showed 
that, for a given proposition U, there is no general procedure from which 
a Thring machine could decide whether U is provable (second of the above 
problems). We address these two problems for the particular case of net­
works (Sec. 4.6): (1) How do conservative internal changes emerge in neural 
networks? (2) Which internal changes are especially effective in networks? 

Limitation of the Formal-Logic Approach 

Formal logic does not address learning, although learning precedes internal 
change. This limitation becomes especially apparent when logic generates 
statements about infinite sequences. How can finite, "mechanically gen­
erated" formulas predict anything about possibly infinite processes, like 
counting or forming sequences of primes? Consequently, it is not satisfac­
tory to neglect the study of learning or of the link between learning and 
internal change. This link was studied by intuitionistic logicians who or­
ganized consistency proofs along the idea that counting already has been 
learned [11]. Wittgenstein [8, 9, 20] went one step further toward basic 
mechanisms and asked: How can counting be learned? To solve the above 
problems, we focus our whole study on counting7 and in particular on 
Wittgenstein's question. If we explain in some terms how to count, we 
have to explain these terms through other terms, etc., and we would end 
up with an infinite regress. Accordingly, we consider pupils who learn count­
ing from examples, e.g., 1, 2, 3, ... , 121. A pupil who can count up to 121 
(i.e., who adapted this) can usually continue to 122, ... How is this possi­
ble? Wittgenstein was not able to answer this question, because the answer 
requires knowledge about the nervous system [20]. We will give an expla­
nation in terms of a self-organization process that begins with the Hebb 
rule [1]. So, the used key knowledge is the Hebb rule. 

Hebb's Rule 

Hebb's neurophysiological postulate says that a synaptic efficiency 
increases, if the pre- and postsynaptic neurons fire simultaneously, and 
that this increase is due to some metabolic process. Recently, a roughly 
similar metabolic process has been observed [21]. 

6 A Turing machine consists of a head and a tape. The head contains state­
ments that establish its performance. The tape is a linear sequence of sections, 
called fields. In each field there is a symbol out of a finite set of symbols. At each 
instant of time, the head is at a field. It reads the respective symbol and maps it 
to the pair (symbol to be written to the field, move to be performed). The move 
is either to the left, to the right, no move, or the end of processing. 

1Together with calculating, counting covers all three phases of combinations, 
is a possible basis for analysis and geometry with all transformations, and can 
be studied efficiently. 
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Synapses from Correlations 

By its nature, the Hebb rule transforms correlations among neural activ­
ities into synaptic efficiencies. This motivated Hebb to speculate that cell 
assemblies emerge as a consequence of the Hebb rule. The Hopfield rule 
is highly related to the Hebb rule [14] and transforms (input) patterns 
into synaptic efficiencies. Legendy [22] explained observed correlations in 
spike patterns by "unspecified synapse forming mechanisms," which occur 
according to postulated principles that form synapses from correlations. 

Synapses from Successful Correlations 

Legendy was fully aware that synapses from correlations are too simple; 
in his third section, his 14th remark is: "Presumably template formation 
is, in certain systems, biologically censored when correlations are 'too per­
fect,' for, the alternative would be the unchecked formation and boundless 
proliferation of useless templates. One may speculate that the notorious 
difficulties in eliciting plasticity in physiological experiments and the rela­
tive scarcity of successes might come from such a censorship mechanism." 
Thorndike [23] formulated such a censorship mechanism before neural net­
works were invented: "When a modifiable connection between a situation 
and a response is made and is accompanied or followed by a satisfying state 
of affairs, that connection's strength is increased." 

The presented mechanism that solves Wittgenstein's paradox is the Hebb 
rule with success, i.e., with some censorship mechanism (see below). As a 
further result, cell assemblies of few synapses emerge. Accordingly, we ide­
alize the postulate: The couplings will be chosen such that a given task 
is performed and the number of couplings (complexity) is minimized [20, 
24]. Then, we show that counting is learned with that postulate. We study 
properties and further consequences of this postulate: How can inductive 
inference be performed most effectively? Is the experimental evidence in 
favor of parallel rather than sequential processing? Altogether, the mecha­
nism presented here shows under which conditions Hebb's and Legendy's 
speculations are confirmed. 

4.2 Model for Cognitive Systems and for 
Experiences 

4.2.1 COGNITIVE SYSTEMS 

All cognitive systems considered here consist of networks, master mecha­
nisms, and peripheral processors. The latter provide a perfect transfer of 
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signals8 and symbols to and from the cognitive system and are not dis­
cussed in detail, while the master mechanism is a rule (see below) for the 
change of couplings. The neurons Si of the network take values Si = ±1 at 
discrete time steps. Their dynamics is determined by the neuronic equa­
tions [25] Si(t+ 1) = sgn(~jJijSj(t) - Ai), where sgn is the signum function, 
Ai is a threshold parameter, and the Jij are the couplings. 

4.2.2 EXPERIENCE 

For the case of inductive inference, data or experience are given. Thus, in 
addition to the model of the cognitive system, we need a model of these 
experiences. Here, experiences are modeled in terms of elementary tasks 
and tasks as follows. 

We use a trainer,9 like in studies on the committee machine [26]. The 
trainer generates questions qi with uniquely determined answers ai = M 
(qi)' Both qi and ai are sequences of symbols, each of which is taken from a 
finite set of symbols. The pair (qi' ai) is called an elementary task. By a task 
we mean a set of elementary tasks. For a consistent task we additionally re­
quire that to each question qi there be only one answer ai. The mapping M 
can be evaluated by a finite Turing machine, i.e., a Turing machine with a 
finite tape that stores up to a symbols and a finite number of statements in 
its program. Each statement consists of a finite number of elementary op­
erations. Thereby, elementary operations are either elementary motionslO 

or reading or writing a symbol from or to the actual field of the tape or 
elementary mappings. An elementary mapping is a mapping from a finite 
set of elements to another finite set of elements; e.g., the logical OR and 
NOT can be elementary mappings, and the combinations thereof are suffi­
cient to determine any function from configurations of two-valued variables 
to other configurations of two-valued variables [3]. The set Q of possible 
questions and the set A of possible answers are the sets of sequences of up 
to a symbols. So, a mapping that is evaluated by a finite Turing machine 
is such a mapping M. 

The trainer begins a dialogue by asking ql, the cognitive system replies 
ih, and the trainer answers with VI = yes if ih = ai, otherwise with 
VI = no but al. The dialogue continues analogously. The triple (qi' ai, Vi) 
is called the ith training situation. The cognitive system is adapted to the 
dialogue consisting of i elementary tasks if the cognitive system generates 
only correct answers iij = a; for j ;:; i. The mapping M is called induced 
by the trainer to the network if, for any Qj, the answer of the cognitive 

8Most generally, anything that can be transformed to symbols by peripheral 
processors is included. 

9We also include the case without a trainer but with experiences in an 
environment. 

lOElementary motions are single moves to the right or to the left. 
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system is correct. The number of nonzero couplings of the network is called 
the complexity c(N). The principle of minimization of complexity is the 
following postulate. 

Postulate: After the ith training, the master mechanism determines the 
couplings such that the dialogue consisting of i elementary tasks of a con­
sistent task is adapted to the network Nand c(N) is minimized. 

4.2.3 FROM THE HEBB RULE TO THE POSTULATE? 

1. Basic Considerations 

We now study the conditions under which networks of minimal complexity 
emerge from the Hebb rule. For this purpose we formulate and then analyze 
an appropriate class of network models [27-30]. A network has S sensor, I 
inner, and M motor neurons. We define for each elementary task J.I. 

rl-' = {I, 
0, 

if the network was successful at J.l.j 
otherwise. 

(4.1) 

The Hebb rule shall be applied with a learning rate a, a decay rate b, and 
under the condition of success. So the change of a coupling is 

(4.2) 

The Si assume values +1 (firing) and -1 (not firing). For each elementary 
task, the configuration of sensor neurons is given by the question qw The 
network generates an answer al-' at its motor neurons. By {sn we denote a 
neuronal configuration so that the values of the sensor neurons are given by 
qw The inner neurons and motor neurons take their values according to a 
corresponding Boltzmann distribution pl-'. For the change of the couplings 
only configurations with rl-' = 1 are relevant, so that 

The sum over {sn is the sum over all 2I+M states of the inner and motor 
neurons. The network is permanently stimulated by its environment. This 
is taken into account through an adiabatic approximation as follows. To 
compute ll.Jij that occurs after performing all 28 elementary tasks, we 
sum over all configurations of the 21 inner neurons and the 2M motor 
neurons taken with their probability, 

28 2I +M 28 2I +M 

ll.Jij = 2: 2: Pl-'({s~} ) (asrsr - bJij)=a 2: 2: srsr PI-'({8~})-b28 Jij. 
I-' {8~} I-' {8~} 

(4.4) 
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Accordingly, each coupling matrix Jij can be written 

25 21+M 

Jij = L L A~({8~})8t8j. (4.5) 
I-' {s~} 

We call the above Atj ( { 8~}) amplitudes and insert them into Eq. (4.4) so 
as to obtain 

25 2I+M 

tlJij = L L (aPI-' ( {s~}) - b28 Atj ( {8~}) )stsj. (4.6) 
I-' {sn 

New stimuli steadily come in through the sensory neurons and, since the 
set of input patterns is finite (28 ), the network cannot continue learning 
indefinitely. We therefore look for stationary coupling matrices, i.e., tlJij = 
O. To this end, it suffices that each term in the sum (4.6) vanishes so that 

with Ao = b;8' (4.7) 

This is a fixed-point equation for the amplitudes. As a result, the ampli­
tudes do not differ for different ij, i.e., A~ ( {8n) = AI-' ( {8~} ). 
Fixed-Point theorem: All solutions of the fixed-point equation are sta­
tionary networks (Eq. (4.7)}. 
So the fixed-point equations are sufficient for J to be stationary. 

Generating Function 

We insert Eqs. (4.3) and (4.7) into Eq. (4.5) to get the equivalent fixed-
5 

point equation for couplings 0 = Jij - Ao L:~ (oFI-' /oJij ) with FI-' = 

Tln(L:{:;~ 71-' exp( -f3H)). We express it with a generating function W: 

25 

with W = ~ LJfl- AO LFI-'. 
kl I-' 

(4.8) 

A linear stability analysis shows that each local minimum, maximum, and 
saddle point is a stable fixed point [31]. In order to obtain networks with 
minimal complexity, we modify the neural dynamics so that the motor 
neurons have no noise (zero temperature), which gives the new value of a 
motor neuron as 8i = sgn(L:j Jij8j). 

Illustrative Example 

In order to study the emergence of a small network with inner neurons and 
minimal complexity, we model one sensor neuron Sb one motor neuron 82, 

and two inner neurons 83 (necessary) and 84 (redundant). We consider the 
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Fig. 4.3. Network emerging after training the negation task. x-axis: temperature, 
y-axis: coupling times bla, solid lines: solutions of fixed-point equation (4.7). 
The data have been obtained by computer simulation. The upshot is that above 
T=2 only necessary couplings (0; upper branch) are present, near T=2 hysteresis 
occurs, and below T=2 redundant couplings (0; lower branch) appear. 

negation task S2 = -SI' We require the condition J 12 = J21 = 0 so that an 
inner neuron becomes necessary. As a result, above a critical temperature 
2, the couplings with the necessary neuron S3 are 1 while the others are 
O. That is, there occurs a spontaneous breaking of the symmetry so that 
one inner neuron is taken to form a network of minimal complexity. Below 
T = 2, the couplings with the unnecessary neuron are nonzero; cf. Fig. 4.3. 

In biological terms, the condition J 12 = J 21 = 0 means that there happen 
to be no synapses J 12 and J21, the weight of which could be modified by 
the Hebb mechanism. Consequently, the task is performed via inner neu­
rons. The used neurons become coupled with large weights; this emerging 
structure may be regarded as a cell assembly. 

2. Analysis of Symmetry Breaking 

In the above example the solutions J of the fixed-point equation exhibit a 
spontaneous breaking of symmetry. As a consequence, there occurs a net­
work of minimal complexity. To understand symmetry breaking for three 
learning procedures (2a-c below), we study fluctuations. For detailed argu­
ments, see [27]. So we consider the fixed-point equation at {3 = 0 [see Eq. 
(4.8)], 

25 ,,2I+M JI. JI. JI. 

J \ '" L.J{s~} " Si Sj (4.9) 
ij = "0 L...J 2I+M 

JI. L:{sn "JI. 

(2a) By chance, one of the couplings h3 and J24 is larger, say it is J23' 

Then S4 does not influence S2, that is, "JI. does not depend on S4, i.e., 
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S4 is not necessary for success. Consequently, the couplings with S4 

vanish [see Eq. (4.9)]. This is not so for sa. So small networks emerge, 
because neurons that are necessary for success become coupled. 

(2b) If the correct answer is fixed at S2 (supervised learning), then no 
neuron is necessary for success; thus, no neuron becomes coupled at 
f3 = o. 

(2c) If S2 fluctuates, then 'TI-' depends on S2 only. Then, at f3 = 0, success 
is achieved only randomly; so, no inner neuron becomes necessary for 
success; thus, no inner neuron becomes coupled. 

4.3 Inductive Inference 

Under what conditions does inductive inference occur? What is necessary, 
sufficient, and optimal for inductive inference? 

Lemma: For a given mapping M, a network NM of finite complexity c(NM) 
exists that maps each qi correctly to ai = M(qi). 

Two proofs will be outlined. The first is a direct construction, the second 
is an application of [10] and is stated only briefly. 

First Proof: By definition, M can be generated by a finite Turing machine. 
The proof is performed by constructing a finite network that simulates a 
given finite Turing machine. Without restriction of generality, we assume 
that, at each field of the finite tape of the Turing machine, either a -1 
or a 1 is stored. Each such field can be simulated in the network by a 
neuron that is coupled to itself by a positive coupling, has zero threshold, 
and thus stores the value once given to it. There is a network Nc of finite 
complexity c that counts up to the number of fields of the tape [20,30]. Nc 
can simulate the actual position of the head of the Turing machine. It also 
can be modified such that it can count forward or backward selectively [32]. 
Thus, the elementary motions can be simulated by Nc . To each neuron that 
simulates a field one can associate a neuron that takes the value 1 if and only 
if the respective number is represented by Nc . A simple network Nrw can be 
constructed that reads and writes if desired and if the respective associated 
neuron takes the value 1. Hence, reading and writing can be simulated 
by Nrw • Finally, any elementary mapping can be simulated by a network 
of finite complexity c since the logical OR and NOT, and combinations 
thereof, can be simulated by a network. Altogether, the Turing machine 
can be simulated by the network constructed above. 

Idea of Second Proof: Since the Turing machine is finite, its tape is finite; 
hence, the set of questions Q and answers A is finite and accordingly the 
number of mappings M is finite. Furthermore, such mappings are realizable 
in a finite network according to [10]. 



132 4. Inferences Modeled with Neural Networks 

The first proof is applicable more generally to 'lUring machines with 
unlimited tape and networks with unlimited external memory (see Sec. 
4.4). Both proofs are applicable to dialogues in which some symbols are 
hidden. 

Straightforward consequences of the lemma demonstrate under which 
conditions a mapping M is established by a network. Among all networks 
that map each qi correctly, there are one or more networks No of smallest 
complexity c(No). By construction, any network generated by the master 
mechanism has a c smaller than or equal to c(No). The number mo of 
dynamically nonequivalentll networks of c smaller than or equal to c(No) 
is finite [33J. Thus, the number me of errors (iij ::j: aj) that the network 
can make is me :5 mo. After a finite time to, the network makes no more 
errors. Let us call a question qi to which the network answers incorrectly 
instructive (in a given dialogue). If at time to + 1 the mapping M has not 
yet been induced to the network, then the trainer failed12 to ask at least 
one additional instructive question. We define: A trainer who does not fail 
to ask an instructive question is called instructive. By a rule we mean a set 
of 1 Q 1 different questions, each with its answer. We call a rule reducible, 13 

if 1 Q I> mo. As an immediate consequence, we obtain Theorem 1. 

Theorem 1:14 An instructive trainer induces a given mapping M to the 
network in a finite dialogue. To a consistent task the network incorporates a 
rule that depends on the task. To each reducible rule there is an instructive 
trainer that provides a dialogue consisting of less than I Q I elementary 
tasks. 

4.3.1 OPTIMAL INDUCTIVE INFERENCE 

We now turn to the comparison of alternative master mechanisms J-L and 
networks II. Now a "generalized" cognitive system consists of peripheral 
processors, a master mechanism J-L, and a network II that is made up of in­
terconnected elements (e.g., neurons, couplings, wheels, tubes, pipes) and 
performs according to a dynamics dv • The elements belong to K types 
Ek, k = 1, ... , K, the number of elements of type k is nk (elementary com­
lexity). The master mechanism provides a coordination of these elements. 
For each such coordination the cognitive system establishes a mapping from 

llDynamically equivalent networks generate the same dynamics. 
12Even if the trainer was instructive and the cognitive system identified the 

mapping, it could not be aware of it; thus, an ambiguity remains. 
13Most rules of practical interest are reducible because they have relatively low 

complexity. 
14This theorem holds for recursive networks, feedforward networks, attractor 

networks, and essentially also for networks made of wheels, tubes, pipes, etc.; see 
below. 
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each input (and possibly from initial values) to a corresponding output. A 
generalized complexity is any linear combination cg = ~kaknk with posi­
tive coefficients ak. We require that the generalized complexity be bounded, 
cg ~ C. 

Because cg ~ c, only a finite number of elements is contained in the 
network. Consequently, only a finite set Mmaz of mappings M can be in­
corporated by the network. The cardinality of Mmaz is called the creative 
capacity Kc of the network, because the answers need to be created by 
the network. By inductive capacity Ki we denote the number of mappings 
that can be incorporated by a given cognitive system. During the training, 
the master mechanism provides realizations of mappings Mj E Mmaz. The 
master mechanism that realizes adaptation of the dialogue and minimiza­
tion of complexity with the generalized complexity cg is called 1-£1. We call 
1-£1 optimal because Ki = Kc for 1-£1. In general, Ki ~ Kc 15 (it would be in­
teresting to observe the ratio KdKc for various animals). There are other 
master mechanisms that are optimal as well,16 e.g., master mechanisms 
that adapt to any dialogue are optimal. 

4.3.2 UNIQUE INDUCTIVE INFERENCE 

A master mechanism 1-£ provides unique inductive inference if it identifies 
each reducible rule through an appropriate dialogue consisting of less than 
I Q I elementary tasks. The minimization of 1-£1 is important for the unique­
ness of inductive inference. According to Theorem 1, 1-£1 provides unique 
inductive inference. In contrast, a master mechanism 1-£' that adapts to any 
dialogue and gives the first answer of the dialogue in a novel elementary 
task does not identify each reducible rule through a dialogue with I Q I -1 
questions. 

4.3.3 PRACTICABILITY OF THE POSTULATE 

Typically, the minimization of complexity [35] requires much computing 
time if a general or random set of elementary tasks is considered [36]. For 
the special case of a feedforward network, the time required for minimizing 
the number of neurons of the network grows faster than polynomially with 
the number of the hidden units, i.e., it is NP-complete. However, this is 
of little relevance for many important and nonrandom tasks. For example, 
the minimization of complexity in networks has been successfully applied 
to the modeling of transitive inference in pigeons [23], learning orthography 

15For instance, the Hebb rule is a master mechanism which does not provide 
adaptation if the network contains neurons that do not take inputs. As a con­
sequence, Ki < Kc for the Hebb rule and such a network. (In the human brain, 
most neurons do not take inputs.) 

16For a game simulating inductive inference, see [34]. 
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[37], electrostatics [38], geometry [39], counting [20], and calculating [32]. 
Furthermore, inductive inference works essentially in the same manner if 
the minimization of complexity either is used in a statistical procedure with 
finite computing time or emerges from a statistical network model [27-30]. 
Finally, in certain applications, decoupling into modules is possible [32]. 

4.3.4 BIOLOGICAL EXAMPLE 

A pigeon in a Skinner bOX17 had to choose between two stimuli; this is the 
elementary task [40, 24]. The stimuli were A, B, C, D, E. To each pair we 
designate the answer qi; and the correct answer is rewarded. In the training 
phase, the dialogue consisted of four elementary tasks (arrow to rewarded 
stimulus): (A f- B), (B f- C), (C f- D), (D f- E). After the pigeons learned 
to respond correctly, (B f- D) was given as a novel, fifth elementary task, 
but without reward. 87.5% of the answers were correct, i.e., the pigeons 
inferred transitively. 

The network model shows that transitive inference is of minimal com­
plexity. However, a TUring machine likewise requires minimal complexity, 
i.e., program length, for transitive inference. In order to decide whether the 
pigeon's performance was sequential or parallel, we suggest considering the 
following dialogue: 

(A f- B), (B f- 0), (0 f- D), (D f- E), (E f- A), 

(A f- 0), (B f- D), (0 f- E), (D f- A), (E f- B). 

Altogether, essentially 12 dialogues exist in this framework. Among these, 
the suggested dialogue is relatively complex for a network, but not for a Tur­
ing machine. Meanwhile, experiments with humans have been performed 
with this dialogue. The suggested task was relatively difficult for humans 
and pigeons [41]. This supports the assumption that humans dealt with this 
situation in a parallel fashion, i.e., that they performed "network-like." The 
point is that the "system of that task" is obvious to the reader, because here 
the elementary tasks are ordered systematically. However, the test persons 
received the same elementary tasks in terms of a computer game without 
useful order, could not reorganize, and hence performed "network-like." 

4.3.5 LIMITATION OF INDUCTIVE INFERENCE IN TERMS 
OF COMPLEXITY 

Complexity measures are likewise used for inductive inference in frame­
works (e.g., parameters for fits to data, coding data, approximate repre­
sentaion of data in relatively low dimension) without networks; see, e.g., [42, 

17 A Skinner box is an experimental device, in which the response of an animal 
to a stimulus is studied. 
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43]. In particular, if inductive inference is addressed, then the formation of 
scientific theories is addressed as well [38]. First, we ask: Is a network with 
the minimizing master mechanism J1.1 a reasonable tool for the formation 
of scientific theories from "isolated phenomena"? We consider the following 
examples: pattern formation in clouds, the crystalline structure of a dia­
mond, and a cobweb. Although these examples exhibit significant geometric 
structures (which would be detected through J1.t), they are explained dif­
ferently. The structure in clouds is explained as a result of the mechanical 
motion of many molecules, the crystalline structure is explained as a result 
of quantum mechanical interactions, while the coweb is explained by its 
purpose - a tool for catching insects. Hence, the answer is no. Second, we 
ask: Is a network with the minimizing master mechanism Ji.l a reasonable 
tool for the formation of scientific theories from "sufficiently large sets of 
isolated phenomena"? Because there exist so many phenomena, we cannot 
even study, let alone answer, this question. 

4.3.6 SUMMARY FOR INDUCTIVE INFERENCE 

An a priori principle is necessary for inductive inference and is provided 
by the minimizing master mechanism J1.1. The postulate is an optimal a 
priori principle. Among all complexities, only Cu is asymptotically relevant 
and is, therefore, considered in the following, i.e., the complexity is the 
number of couplings. The master mechanism minimizes c under certain 
conditions, which we treat as modifications of the model developed so far. 
Consequently, the results can be interpreted as solutions of a minimization 
problem with additional conditions. 

This minimization is specified as follows. If the cognitive system needs a 
certain amount of complexity, it generates that complexity only for the time 
it is needed, and it deletes the respective couplings as soon as possible. This 
final deletion of synapses is in agreement with the above self-organization 
mechanism, in which couplings to unnecessary neurons are destabilized. 

4.4 External Memory 

How does a cognitive system with external memory perform its tasks, and 
what is its relation to a Turing machine? To answer these questions, we 
consider two modifications of the theory developed so far. 

First modification. The cognitive system shall have access to external 
memory,18 the elementary units of which are called locations. The periph-

l8In a biological cognitive system, external memory might be realized by neu­
rons or assemblies of neurons. In particular, the formatio reticularis performs 
primarily operational tasks, while other parts of the brain perform primarily 
memorizing tasks. 
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eral processor guarantees reading from and writing to locations.19 Because 
the complexity c is minimized, the cognitive system stores questions and 
the corresponding answers on locations without using the network. The 
dialogue is adapted to the cognitive system and the complexity vanishes, 
i.e., c = O. In the case of counting, such a cognitive system will be unable 
to generate new numbers and will perform worse than a cognitive system 
without locations [20]. If the available locations are unlimited, no inductive 
inference is performed by the cognitive system. 

Second modification. From now on the locations are limited appropri­
ately. (For the sake of simplicity, we will assume that the cognitive system 
applies locations only after it has incorporated M.) The cognitive system 
contains several networks Ni . Let us define an instruction to be a set of 
symbols on locations that is readable by a peripheral processor and ac­
tivates a specific performance of a peripheral processor. More precisely, 
the instruction specifies under which condition a certain symbol is written 
on a certain position and at which position the next instruction is to be 
read. (The condition is obeyed if certain symbols are at certain positions.) 
From now on it also is assumed that the peripheral processor can read and 
perform such instructions.2o 

The above modification leads to several interesting consequences. First, 
by means of inductive inference, a rule in a given set of training situations 
will be incorporated into a network. In the following, we denote by Nl the 
network that incorporates the rule. Second, the cognitive system becomes21 

a Turing machine.22 The application of the incorporated rule can be per­
formed by a finite set of discrete operations on a finite set of symbols on 
locations, because the rule has already been incorporated into a finite net­
work. These operations can be handled by the peripheral processor without 
any network if appropriate instructions are written on locations. Hence, Nl 
is unnecessary if the cognitive system writes appropriate instructions on lo­
cations. Because the above possibility to reduce c to 0 exists, the master 
mechanism realizes that possibility, i.e., writes the instructions, and sets c 
to O. In that final state, the cognitive system can be understood as a Turing 
machine, and, for that purpose, all locations have to be interpreted in a 
linear order by some convention. It remains to specify how the cognitive 
system generates appropriate instructions. 

These instructions need not be guessed; rather, they can be extracted 

19These skills can be learned in the sense of Sec. 4.3. 
20This can be trained as specified in Sec. 4.3. 
21This result generally can be applied to automatic programming. Its real­

ization is straightforward, because only minimization procedures need to be 
implemented. 

22 Also in the first case of unlimited locations the cognitive system can be in­
terpreted as a (very trivial) 'lUring machine that handles the storage of questions 
and answers on its tape. 
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from N1 . For this purpose, the cognitive system specifies one location for 
each neuron of Nl and records all values of these (two-valued) neurons while 
processing the incorporated rule. Then, another network N2 is "trained" 
as follows. After every action (reading or writing) of the peripheral pro­
cessor, network N2 is asked: "What is the next action of the peripheral 
processor, and by which instruction is it expressed?" Thereby N2 can use 
as inputs only signals that are inputs to the peripheral processor. These 
signals are transferred by appropriate couplings that are generated by the 
master mechanism. Due to the first part of the question, the network N2 
will incorporate a rule that allows the prediction of the action of the periph­
eral processor as a function of input signals to the peripheral processor. Due 
to the second part of the question, N2 generates the required instructions. 

4.4.1 COUNTING 

We specify an elementary counting task as follows. Map a natural number 
given in its binary representation to its successor. In the final state of 
c = 0 (see first modification), the peripheral processor has to perform 
an algorithm that finds the successor to a given natural number. In the 
following, one such algorithm is given. (1) Write the given number on a 
first line. (2) Write a 1 below with corresponding digits one below the 
other. (3) Leave a third line free underneath.23 (4) Start with the right­
most digit and, for each digit, do the following. If there is no 1 in the first 
three lines, write a 0 on the fourth line at the position of the corresponding 
digit. If there is one 1 in the first three lines, write a 1 on the fourth line 
at the corresponding digit. If there are two 1 's in the first three lines, write 
a 0 on the fourth line at the respective digit and a 1 on the third line, one 
digit to the left. 

4.5 Limited Use of External Memory 

Is it possible to systematically divide a given task into subtasks? What is 
the essential subtask of counting? What is its complexity? How can the 
cognitive system learn from a finite set of elementary tasks an infinite set 
of elementary tasks, namely, to count numbers, i.e., to generate numbers 
successively without restriction by a largest number. Once again, we first 
treat a modification and then indicate its consequences. 

The idea is to make certain texts on locations "taboo," namely, the in­
structions, and thereby to force the cognitive system to incorporate the 
mapping corresponding to a subtask: For every question, only empty lo­
cations are given to the cognitive system. These are the only available 

23The number to be written on this line can be interpreted as carry. 
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+ 

Fig. 4.4. XOR: An arrow denotes Jij = ±1. In this figure, all thresholds are 1. 
S5 = XOR(Sl, S2) and nee = 6. For counting, nee = 9. 

locations to find an answer; thus, no instructions are available. Then, a 
question is written on locations. Finally, the cognitive system is asked to 
answer. The consequence is that the network will incorporate a rule; see 
Theorem 1. Thereby, it will incorporate neither what the rule acts on, 
namely, on questions, nor any (including intermediate) results that the 
cognitive system generates, because these are on locations. A more gen­
eral modification is the following: One can construct analogous procedures 
of presenting locations to the cognitive system with "auxiliary texts" and 
questions in order to incorporate any desired aspect in the network while 
keeping all other aspects on the locations. The main point of the above 
procedure is that a network can be driven selectively. Thus, complexities of 
tasks or sub tasks can be investigated selectively. 

4.5.1 COUNTING 

With this modification, we are prepared to study the incorporation of a 
rule for counting by a network. For the neuronic equations, we denote the 
complexity by nee and prove the following. 

Lemma: In order to map the pair (S1, S2) according to XOR{S1, 82), six 
couplings are necessary and sufficient. Here, XOR denotes the "exclusive 
or" operation, and feedforward networks are considered. 

Idea of the Proof (as presented in (32J). The pair (81, 82) can take four 
configurations from which (-1,-1) and (1,1) must be separated. With the 
sums (Ja181 + Ja282 + >'a) in the sign, one neuron can separate only one 
configuration; in Fig. 4.4, 84 separates (-1,-1) and so does 83 with (1,1). 
Both neurons must be connected to 85; hence, nec = 6. 

With this lemma, we prove the desired (Sec. 4.1) result about counting. 

Proposition: For a network with limited use of locations, and for the task 
of mapping a given number onto its successor, nee = 8. For the task of 
counting, nee = 9. 
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~. ----... + 
Fig. 4.5. Cycle of length 4: All thresholds are 0 in this case, and the neurons 
take the values (-1,-1), (-1,1), (1,-1), (1,1) cyclically. This network is necessary 
for the control of counting and contributes nee = 2. 

Idea of the Proof ({92]). In order to control the data to and from the head 
(of the Turing machine), four time steps are necessary: (1 & 2) read & 
map, (3) write, (4) move. These are provided by the network in Fig. 4.5. A 
network performing additions according to the algorithm discussed in Sec. 
4.4 is of minimal complexity. Thereby, for two digits a and b the new digit 
is XOR(a, b) and the carry is AND (a, b). Thus, six couplings are necessary 
for XOR, none for AND because AND(sl' S2) is already realized by S3 (Fig. 
4.4), and 2 for control, i.e., 8 for adding a 1 and another one for repeating 
this process for counting. 

4.5.2 ON WITTGENSTEIN'S PARADOX 

As was shown in Sec. 4.3, with the aid of the postulate of minimization of 
complexity, counting can be learned from a finite set of elementary tasks. 
The above proposition shows that the required complexity is only 9. We 
conclude that the identification of the uniquely determined correct way 
of counting ad infinitum practically can be performed by a network with 
the assumed master mechanism, i.e., with the postulate of minimization 
of complexity. This postulate emerges from the Hebb rule under appro­
priate conditions. The result is relevant for Wittgenstein's paradox [8,9]. 
The essence of this paradox is that pupils practically learn to count from 
elementary tasks, although the extension from the given elementary tasks 
ad infinitum is not uniquely determined. Our result illustrates how a finite 
series, which by itself is not uniquely extendable, is extended uniquely and 
adequately ad infinitum. Thus, if one assumes that children act accord­
ing to a master mechanism like that of the principle of minimization of 
complexity, which can be provided via the Hebb rule, they learn to count. 

Furthermore, such a master mechanism cannot be learned without al­
ready using a similar master mechanism. The application of a master mech­
anism of the proposed kind appears to be a part of the nature of children. In 
this manner, the paradox is solved by naturalization, as is modeled through 
our cognitive system. More precisely, we have explained how an assumed 
property of natural nervous systems solves the paradox. The study shows, 
in agreement with Wittgenstein, that the ability to count cannot be trans­
ferred to a cognitive system. But it is constructed by the cognitive system 
according to elementary tasks and to the master mechanism. 
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FUrthermore, Wittgenstein's paradox can be interpreted as an example 
for the limitations of definability. It is well known that for any mathemat­
ical theory undefined terms must be included. For instance, in the case 
of Euclid's geometry, the undefined terms are [44] point, line, extremities 
of a line (i.e., points), straight line, surface, extremities of a surface (i.e., 
lines), and plane surface. We already gave a well-defined procedure for en­
abling the cognitive system to learn undefined terms in a unique manner 
in Sec. 4.3. Uniqueness requires an instructive trainer who exists according 
to the postulate, particularly due to minimization. Finally, this solution of 
Wittgenstein's paradox supports the central idea of intuitionistic logics [11] 
that humans can count ad infinitum. 

4.6 Deductive Inference 

How does deductive inference emerge in a cognitive system? In order to 
study this question, we first formulate our main framework. A question 
qi that can be answered in principle, but not in the required time by the 
application of a rule, is called a problem about the rule. Such a problem 
requires a prediction about a certain future activity of a network. If the 
network performs straightforwardly, then this activity takes place only after 
the moment at which the answer is required. 

4.6.1 BIOLOGICAL EXAMPLE 

The monkey Sultan is in a cage. At the ceiling is the obligatory banana, too 
high to reach without a tool. There is a box in the cage; Sultan puts it under 
the banana, climbs on the box, and gets the desired fruit. Rana, another 
monkey, watches the scene and is exposed to the same situation afterwards. 
Rana pulls the box to some place in the cage, climbs on it and fails to get 
the banana. Sultan tries again and gets the banana; Rana watches, tries 
again, and fails [45]. We interpret this finding as follows: Sultan makes the 
"ansatz" to increase his height by putting something under his feet. Rana 
observes that Sultan pulls a box, climbs on the box, and gets the banana; 
Rana reproduces what she observed. The different actions exhibited by 
Sultan and Rana are possibly due to different histories of internal changes. 

4.6.2 MATHEMATICAL EXAMPLES 

The examples given below are assumed as tasks for a cognitive system. 
Later, we will discuss in detail how the cognitive system treats them. Our 
first example can be handled by a cognitive system with either inductive 
or deductive inference. Consider the question of whether, after a year of 
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Fig. 4.6. In the network for hypotheses NH (see text), the relation F(l-l) = F(l) 
is incorporated by the above network. This is the essence of the proof by complete 
induction. After irrelevant signals are eliminated from the merged network Nm , 

the future events are predicted by one neuron only, and they are all the same. 

counting, a counting network would still generate a sequence of numbers 
such that the respective sequence of last digits reads ... 0 1 0 1 0 1 .... This 
and the following question are to be answered within a time shorter than 
a year, say a day. The second example is the question of whether there is a 
largest prime number. 

The above cognitive system that performs according to the postulate will 
try to answer randomly, and it eventually will correct itself if the answer 
is wrong. Apparently, this is not the best strategy because the question is 
to be answered within a day, say and there is a chance to generate a more 
appropriate answer during that time. An additional master mechanism for 
problems (MMP) will be introduced that is able to "make the most out of 
its time." 

In the following, problems of a certain format (covering a relatively large 
set of problems) will be considered. We are given a mapping M : ql -+ al 
for I E L that is incorporated in Nl by inductive inference. Let F for any 
IE L be another mapping from pairs (ql, all to ±1 that can be performed 
by a finite Turing machine in a finite amount of time. The (question of the) 
problem is whether F(ql, al) = 1 for alII E L. If this is the case, we will 
say that the elementary tasks of (ql, al) have the property PF. In the first 
period (learning), F is induced to a network by inductive inferencej i.e., the 
problem is induced to the cognitive system. In the following, we denote this 
network by NF . In the second period (internal change), an MMP elaborates 
an answer. Two MMPs are considered: The inductive MMP picks out a 
finite (limited by the available time) subset of L and checks whether F = 1 
(for any I in this subset). The deductive MMPmerges Nl with NF such that 
the answer al generated by Nl is inserted for al into NF. (For simplicity, 
we do not distinguish whether ql is taken from the trainer or generated by 
Nl as well.) Then, this MMP will (try to) minimize the complexity of the 
merged network called Nm . This minimization yields one of the following 
cases. If c(Nm ) = 1, then either F does not depend on t or F alternates 
with tj see Fig. 4.6. These two cases are discriminated by the MMP through 
explicit consideration of the possible values of the neuron(s) at the ends 
of the coupling. In the first case and F = 1 for I = 0, the pairs (qt, al) 
have the property PF. If one I with F = -1 is found, if F alternates, or if 
c(Nm ) t= 1, then the property PF is not detected. 
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Fig. 4.1. Relevant signal flow: In our first mathematical example, the equality 
of the last digits of numbers that are generated subsequently by Nl is checked 
(two lines merge, i.e., two signals flow to the same vertex v); one such last digit 
d1 determines the subsequent d2. 

4.6.3 RELEVANT SIGNAL FLOW 

The act of proving a prediction in this framework is performed by the 
act of minimizing complexity. The act of minimization of complexity plays 
a key role in the above framework of the deductive MMP and should be 
investigated systematically. In its full generality, this is beyond the scope of 
the present investigation, but a straightforward "ansatz" will be outlined; 
we denote the corresponding MMP as the standard MMP in the following. 

The value of a mapping F depends on the values of neurons. These, in 
turn, depend on the signals coming from other neurons, and so forth. This 
suggests that we consider a signal diagram (Fig. 4.7) that contains all flows 
of signals relevant for the prediction. The events that can occur in the 
merged network Nm can be described by signals that propagate through 
the diagram. This signal-flow ansatz allows us to consider the propagation 
of signals in the signal diagram as a mapping MH. The signals at time t 
are the questions, and the relevant signals (i.e., all signals that are not yet 
identified as irrelevant) at time t + 1 are the answers. 

The mapping MH can be incorporated into a third network NH by in­
ductive inference.24 It is sufficient for NH to evaluate those signals that 
are relevant for the evaluation of F, i.e., those that ultimately enter the 
evaluation of F. This implies that, if there are identifiable rules in the flow 
of relevant signals, these will be identified by N H. The rules identified by 
NH are called hypotheses. So far, the procedure is inductive and cannot ex­
clude nonconservative internal changes. However, if we now have rules for 
the flow of signals incorporated by N H that can be verified by considering 
a finite set of configurations of the finite set of involved neurons, such rules 
can be verified explicitly by considering this finite set of configurations. 

24This type of inductive inference is a straightforward generalization of that 
elaborated in Sec. 4.3. Here, several answers are acceptable, viz. all rules about 
relevant and also possibly irrelevant signals. The trainer does not provide the 
correct answer but just yes or no, i.e., whether or not the hypothesized rule 
is empirically correct (for a few tests). Note that it is straightforward for the 
deductive MMP to check whether N H failed to predict a relevant signal. 
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Let us specify that the standard MMP does consider such finite sets of 
configurations explicitly. 

The standard MMP yields a network N H of relatively low complexity c 
that provides exactly the same signals (which are relevant for the question 
under consideration) as Nm . This reduction of complexity is achieved by 
inductive inference. The question then is: How do relevant signals flow? 
This inductive inference is verified or falsified deductively. Thus, deductive 
inference emerges here. The standard MMP provides an analysis of in­
corporated causal relations, because the signals flow deterministically and 
already have been incorporated. 

4.6.4 MATHEMATICAL EXAMPLES REVISITED 

In the first example with inductive inference, N H will find a simple rule 
for the signal flow in Nm . One such rule is that the value of F (as defined 
above) at time t is a function of the values of the last digits dl and d2 of 
two numbers, subsequently generated by NI at times t - tl - t2 and t - tl, 
respectively (Fig. 4.7). This mapping F checks whether these digits are 
unequal. Furthermore, by inductive inference, N H realizes that the value 
of such a last digit d2 at time t - tl depends on the value of the digit dl at 
time t - tl - t2' Hence, F only depends on that digit dl at a certain time. 
These hypotheses formed by N H can be explicitly checked by the deductive 
MMP by considering a finite set of signal configiurations. This is the case 
because Nm is finite. Finally, two cases remain to be considered explicitely. 
The above last digit dl (at time t - tl - t2) is 1 or - 1. In both cases, F 
takes the value 1. Thus, the statement is verified by the cognitive system. 

4.6.5 FURTHER ANSATZ 

The above characterized signal-flow ansatz is not appropriate for all prob­
lems. Consider our second mathematical example, i.e., the question of 
whether there is a largest prime number. There are finite networks that 
check whether numbers are prime or not, or which number of a pair of 
numbers is larger, or whether for a given prime there is a larger one. How­
ever, the answer to the question apparently cannot be found by using the 
signal-flow ansatz. But it can be found if a new ansatz is provided. For 
example, one may make a slight increase in complexity of the cognitive 
system25 as follows. 

One assumes a largest prime and, thus, a finite set of primes, and con-

25S0 far, we have explained how the cognitive system can perform inferences 
by using mechanisms like the Hebb rule, the minimization of complexity, or the 
signal flow analysis. These mechanisms use data or synapses that are already 
present. In contrast, an ansatz is relatively new, see Rana and Sultan and the 
conclusion. 
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siders the number x, which is the product of these primes plus 1. This 
construction can be made in terms of a network, and with the standard 
MMP the cognitive system can conclude that x is prime. The point is that 
the construction, and in particular x, has not been found from an analysis 
of the signal flow of Nm but must be regarded as a new ansatz in this 
framework. 

The above discussion suggests that the deductive MMP also can be ap­
plied if further ansatz somehow are provided [15J. In neurobiological terms, 
these ansatz have to be provided by an associative memory, i.e., they are 
distributed among many synapses. Consequently, it is not expected that 
one can adequately measure the difference between Sultan and Rana (see 
above) in terms of single neurons. 

4.6.6 PROOFS BY COMPLETE INDUCTION 

In order to illustrate that the studied MMP is widely applicable, we note 
(without proof) the following. Any proof about a sequence of cases Xl, lEN, 
that can be performed by complete induction also can be generated by 
the standard MMP. In particular, corresponding propositions A(1) and 
A(l) - A(l + 1) can be derived within the proof by complete induction. 
Hence, the corresponding Nm can be reduced to the network of Fig. 4.6. 

4.6.7 ON SIEVES 

By a case we denote a configuration of signals that represents a pair (qt, at), 
is generated by NI, and is transferred to NF. The network NF that tests 
a property PF of a case is metaphorically called a sieve for a case. Those 
cases that are in accordance with the property PF fall through the sieve, 
while the others do not. Conversely, a property PF that can be checked 
by a finite Turing machine in finite time for one single case generated by 
Nl can be checked by NF. Alternatively, NF can be interpreted as a sieve 
that discriminates networks N 1 , such that those Nl that generate cases in 
accordance with the property PF fall through the sieve, while the others 
do not. In this context, we call N F a sieve. 

A series of properties PFk' k E K, is a unique characterization of certain 
mathematical objects, and the series is identified as the format of any axiom 
system for these objects.26 The corresponding series of sieves NFk playa 
key role27 in the incorporation of axiom systems into networks. 

26More generally, these objects need not be mathematical objects [3]. For in­
stance, an object that is yellow, lengthy, curved, and tastes like a banana is a 
banana. 

27 A practical advantage of a series of sieves is that in cognitive systems trans­
formations and compositions of sieves are possible and essential for deductive 
reasoning. The detailed investigation thereof is beyond the scope of this chapter 
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How does a cognitive system generate sieves 'I Sieves are generated by 
a variant (the signal flow of Nl instead of Nm is analyzed) of the stan­
dard MMP as follows. Rules about the signal flow in Nl are hypothetically 
formed by N H and verified afterwards. We generalize the property PF as 
follows. F is a function from a case to ±1. If N H works under the constraint 
that the identified rules have the format of properties [i.e., these rules tell 
us whether a case x ofthe signal flow is generated by Nl (F(x) = 1) or not 
(F(x) = -1)], then we identify NH as a sieve. 

Axiom Systems in Terms of Sieves 

Although the ultimate origin of the contents of the cognitive system is seen 
in the elementary tasks, it is possible to begin with the axioms, as is the 
case for the axiomatic method [48]. 

What is an axiom system 'I A sufficient characterization in terms of prop­
erties from which no part can be eliminated, such that the remaining is 
still sufficient, is called a minimal sufficient characterization, or an axiom 
system. Consequently, a series of sieves is a candidate for an axiom system 
because it is it characterization in terms of properties. 

What is a useful axiom system'l We call a network Nl and a series of 
sieves N Fk ,k E K, self-consistent if the cognitive system can obtain the 
series of sieves N Fk' k E K, from N1, and vice versa. Altogether, we are 
prepared to show that our cognitive system is able to establish to any 
consistent task an axiom system in terms of a series of sieves that is self­
consistent with the corresponding N1 . 

Theorem 2: From any consistent task, an axiom system can be gener­
ated by a cognitive system in a self-consistent manner using the postulate, 
locations, and the standard MMP. 

Proof: Consider any consistent task. There is a network NI that incorpo­
rates a corresponding rule; see Theorem 1. We construct a series of sieves 
as follows. 

As a first series, we take the trivial set of sieves consisting of one sieve 
NFl' which generates the answer to a given question by (a copy of) NI' 
If (and only if) the entering answer equals the answer generated by NFu 
then the entering answer falls through NFl' 

As a second series, we add to the first sieve NFl additional sieves N Fk , k > 
1, which we introduced in Sec. 4.6.7. 

In order to obtain a third series of sieves N Fj ,j E J, we eliminate from 
the second series irrelevant signals via the method introduced in Sec. 4.6.3. 

but is given in [15, 46]. The description of such transformations in [10] is regarded 
as inconclusive [47] for feedback networks. Furthermore, sieves can be applied to 
more than count ably many objects which then are represented in a symbolical 
manner (like 71'). This is the basis for novel results about logic [18]. 
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I consistent task I I set of axioms I 

Fig. 4.8. Axioms obtained by the cognitive system. Left: Nl incorporates a rule 
from a consistent task via inductive inference. Upper arrow: The standard MMP 
generates an axiom system in tenns of a series of sieves. Conversely, from a series 
of sieves the same Nl is reproduced. Thus, Nl and the series of sieves are self­
consistent. 

Finally, we show that Nl and the third series of sieves N Fj ,j E J are self­
consistent, i.e., we show that we can reproduce Nl from N Fj ,j E J (Fig. 
4.6). For that purpose, we take each question ql of the dialogue and generate 
the answer al as follows: We generate answers at random, use N Fj' j E J, 
as a sieve, and take the answer al that falls through. This answer al is the 
same as that of the dialogue because Nl makes this answer; hence, N H 
generates this al, this al falls through the second series of sieves, and then 
al also falls through the third series of sieves. 

4.7 Conclusion 

Learning. The master mechanism that minimizes the complexity estab­
lishes an optimal a priori principle, guarantees that a trainer can be in­
structive to the network, provides unique inductive inference, and emerges 
from the Hebb rule. The master mechanism can be understood as follows. It 
emerges from the Hebb rule. Its adaptation part guarantees that inductive 
inference takes place. Its minimization part guarantees uniqueness. These 
three properties together solve Wittgenstein's paradox by naturalization. 

Internal change. The goal of conservative internal change is to make 
predictions about future activities of (other) networks. Conservative inter­
nal changes are mapped to formal logic as follows. Networks are interpreted 
as a model for a logical calculus. Internal changes model transformations of 
logical formulas. The consistency problem of logic is mapped to the problem 
to provide conservative internal changes. 

Links between learning and internal change. A formal logical cal­
culus does not address learning. In contrast, for Brouwer [11] the (learned) 
counting ability of humans was the central idea of intuitionistic logic. We 
study this link with a learning network that establishes a formal axiom 
system to any consistent task. 

Second link. As a tool for conservative internal change, a master mecha­
nism is investigated that uses inductive and deductive inference. The master 
mechanism extracts possibly relevant signal flows in a hypothetical man­
ner by the former and verifies or rejects these hypotheses by the latter. 
This combination is advantageous: First, inductive inference is blind for 
nonconservative internal changes but not for rules inherent to signal flows, 
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while verification is blind for such rules but detects nonconservative inter­
nal changes. Second, the conservative internal changes cover infinite objects 
(Fig. 4.6); this "infinite predictability" is ultimately based on the word 
"all" in the sentence: "The neuronic dynamics is valid for all neurons at 
any time." 

Third link. New ansatz are efficient tools for internal change in the 
modeled cognitive systems. Typically, new ansatz are provided by the cul­
tural heritage. The modeled cognitive system is able to learn and to change 
these, i.e., to reject, reconstruct, analyze, reorganize, use, modify, combine, 
or improve these ansatz. 
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Statistical Mechanics of 
Generalization 
Manfred Opper and Wolfgang Kinzel1 

with 18 figures 

Synopsis. We estimate a neural network's ability to generalize from ex­
amples using ideas from statistical mechanics. We discuss the connection 
between this approach and other powerful concepts from mathematical 
statistics, computer science, and information theory that are useful in ex­
plaining the performance of such machines. For the simplest network, the 
perceptron, we introduce a variety of learning problems that can be treated 
exactly by the replica method of statistical physics. 

5.1 Introduction 

Neural networks learn from examples. This statement is obviously true for 
the brain, but artificial networks also adapt their "synaptic" weights to a 
set of examples. After the learning phase, the system has adopted some 
ability to generalize; it can make predictions on inputs which it has not 
seen before; it has learned a rule. 

To what extent is it possible to understand learning from examples by 
mathematical models and their solutions? It is this question that we em­
phasize in this chapter. We introduce simple models and discuss their prop­
erties combining methods from statistical mechanics, computer science, and 
mathematics. 

The simplest model for a neural network is the perceptron. It maps an 
N-dimensional input vector e to a binary variable (1' E {+1, -I}, and the 
function is given by an N-dimensional weight vector w: 

(1' = sign (w· e) . (5.1) 

Motivated by real neurons, the components of w may be called synaptic 
weights; i. e., w( i) is a measure of the strength of the influence of the neuron 
signal e(i) to the output neuron (1'. 

lphysikalisches Institut, Universitlit Wiirzburg, D-97074 Wiirzburg, Germany. 
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For a given w this function separates the input space by a hyperplane 
into two parts, w . e > ° and w . e < 0, and the hyperplane is normal to 
w. But also for a given input e, the space of weights w is divided into two 
parts with different outputs 0'. Equation (5.1) gives a very limited class of 
all possible functions from RN to ±l. But this limitation is necessary for 
a good generalization, as we shall show later. 

In the simplest case, the perceptron operates in two ways: in a learning 
and in a generalization phase. In the learning process, the network receives 
a set of P = aN many examples, i.e., input/output pairs (Uk, ek), k = 
1, ... , aN, which were generated by some unknown function Uk = F(ek). 
The weight vector w is adapted to these examples by some learning algo­
rithm, i.e., the strengths of the synapses are changed when one or more 
examples are shown to the perceptron. Of course, the aim of learning is 
to map each pair correctly by Eq. (5.1), and the number of examples for 
which the network disagrees with the shown output, Uk =F sign (w· ek), 
is the training error E: 

aN 
E = L 0 (-O'k w . ek) . (5.2) 

k=l 

o is the step function, O(X) = ( sign x + 1) /2. If the examples are generated 
by another perceptron with weights Wt, then it is possible to obtain zero 
training error, ct = 0, for instance, by using the perceptron learning rule 
(see [1]). 

After the learning phase, the perceptron has achieved some knowledge 
about the rule by which the examples were produced. Therefore, the net­
work can make predictions on a new input vector e that it has not learned 
before. Let (0', e) be a new example that the network has not seen be­
fore. Then the probability that the perceptron gives the wrong answer, 
0' =F sign (w· e), is given by 

c = 0 (-0' W • e) , (5.3) 

where the bar means an average over all possible examples (0', E'). 
The calculation of the generalization error c as a function of the fraction 

a of the learned examples is the main subject of this chapter. We call 
the learning network student and the example producing rule the teacher. 
Hence, c is the probability of disagreement between student and teacher on 
a new input e. c(a) depends on the structure of student and teacher, on 
the structure of the examples, and on the learning algorithm. 

From very general concepts one obtains bounds and relations between dif­
ferent generalization errors. Using methods of statistical mechanics devel­
oped from the theory of disordered solids (spin glasses), one obtains exact 
results on c(a) for infinitely large networks (N --+ 00). Section 5.2 intro­
duces general results, while the statistical mechanics approach is presented 
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in Sec. 5.3. Section 5.4 discusses scaling ideas, from which the asymptotic 
behavior of the generalization error can be understood in some cases. A 
variety of applications for perceptrons are reviewed in Sec. 5.5. 

This chapter is not supposed to review the new field of generalization 
using neural networks. (For a review we recommend the article by Watkin, 
Rau, and Biehl [2].) But we want to give an introduction to the field with 
an emphasis on general results and on applications of our own group at 
Wiirzburg. We apologize for not referring to a large number of interesting 
and important results of our colleagues and friends. 

5.2 General Results 

The theory of learning in neural networks has benefitted from an interplay 
of ideas that come from various scientific fields; these include computer sci­
ence, mathematical statistics, information theory, and statistical physics. 
In the following, we try to present some of these ideas. We review a va­
riety of general results that can be obtained without specifying a network 
architecture. 

5.2.1 PHASE SPACE OF NEURAL NETWORKS 

In this section we adress the problem of noise-free learning in networks with 
binary outputs. We assume that an ideal teacher network, with a vector of 
parameters Wt, exists, who will give answers ($ or e) on2 input vectors e 
without making mistakes. 

Let us now look at the phase space of all teachers Wt, described by a pa­
rameter vector Wt, for fixed inputs el"" ep. Before knowing the teacher's 
correct answers to all of these inputs, a learner could partition the phase 
space into maximally 2P cells or subvolumes, each cell U corresponding to 
one of the 2P possible labelings (= answers) Uk = ±I, k = 1, ... , P. In 
general, a given type of neural network will not be able to produce all 2P 

outputs on the given inputs. If the teacher network has a very complex 
architecture, we can assume that, by suitable choices of its parameters, 
more combinations of outputs, in other words, more cells in phase space, 
can be realized than for a less complex teacher. As we shall see in the next 
section, this number of cells plays an important role for the learner's ability 
to understand the teacher's problem. 

After the teacher has given the answers, we know to which cell Wt be­
longs. In the so-called consistent learning algorithms, one trains a student 
network to respond perfectly to the P training inputs. In the following, 

2In general, we do not assume that the dimensions of parameter space and 
input space are equal. 
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we assume that the student belongs to the same class of networks as the 
teacher. Thus, after learning, the student has parameters w s , which belong 
to the teacher's cell. 

Will the probability of making a mistake on unknown inputs always be­
come small when P grows large, whatever consistent algorithm we choose? 

Surprisingly, the answer is yes, if the teacher has a bounded complexity. 
As a measure for this complexity, the so-called Vapnik-Ohervonenkis (VO) 
dimension, which comes from mathematical statistics, has been introduced 
into computer science. We will try to review some of its basic ideas in the 
next section. 

5.2.2 VC DIMENSION AND WORST-CASE RESULTS 

The maximal number of cells in the teacher's space is 2P for P input vectors. 
But, due to the teacher's internal structure, the actual number of cells for 
a set of inputs may not grow exponentially fast in P. A combinatorial 
theorem, independently proved by Sauer [3J and Vapnik and Chervonenkis 
[4J, gives an upper bound on this number: If d is the size of the largest set of 
inputs realizing all 2d cells, then, for any set of P > d inputs, the number 
N(P, d) of cells will only grow like a polynomial in P. d is called the VO 
dimension. 

Formally, Sauer's lemma states: 
P ~ d~ 1: 

N(P, d) ~ t, (~) ~ (e:) d (5.4) 

A sketch of the proof of Eq. (5.4) is given in Appendix 5.1. Equation (5.4) 
shows, that the VC-dimension plays a similar role as the capacity of the 
class of teacher networks. For P > > d, only an exponentially small fraction 
of input-output pairs can be stored in the net. For the perceptron, one has 
exactly d = N, the number of couplings. For general feedforward networks 
with N couplings and M threshold nodes, the bound d ~ 2N . log2 (eM) 
was found in [5J. 

Using Sauer's lemma, Blumer, Ehrenfeucht, Haussler, and Warmuth [6J 
showed a worst-case result for the performance of consistent algorithms. 
To understand their result, consider the following learning scenario: After 
a student has learned a number of P independent random examples per­
fectly, he or she makes a prediction on an unknown input vector e, which 
was drawn from the same distribution as the training examples. The stu­
dent's probability of making a mistake on the random input e defines the 
generalization error e. Different students (algorithms) will have different 
e. In general, their performance will depend on the random training set, 
which makes e a random variable. So we can define the probability pee), 
that there exists a student, who learns the examples perfectly but makes 
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an error larger than c. In [6] it was shown that, for P> 8/c, 

p(c) '5:. N(2P, d) . 2-!P/2 '5:. 2 (2e;') d 2-!P/2. (5.5) 

Statistical physicists often discuss the thermodynamic limit d, P - 00, 

0: = Pld fixed. In this limit, Eq. (5.5) means that no errors larger than 

2ln(2eo:) 
cma:r: = --'------'-

0: 

will occur, whatever consistent student we choose. 
Due to lack of space, we cannot sketch the proof of Eq. (5.5) here. A 

simpler theorem, which relates errors and the number of cells within the 
Bayesian framework of learning, will be proved in Sec. 5.2.4. 

The power of the va method lies in the fact that no specific assump­
tion on the distribution of inputs, other than their independence, must be 
made. Further, the architecture of the teacher problem to be learned is 
characterized by only a single number, the va dimension. 

As a drawback of the worst-case results, one often finds that ''typically,'' 
the error bounds are too pessimistic. In the next two sections, we will 
discuss a more optimistic learning scenario. We show what is gained if, 
besides the teacher's complexity, more prior knowledge, expressed by a 
probability distribution on the teacher's parameters, is available. 

5.2.3 BAYESIAN ApPROACH AND STATISTICAL MECHANICS 

The statistical mechanics approach to learning is closely related to concepts 
established in mathematical statistics and information theory [7, 8, 9, 10, 
11]. To explain these connections, let us first briefly remind the reader of 
some ideas from density estimation in mathematical statistics. 

A common problem in statistics is to infer a probability density, 'Pe(y), 
from a sample of P data values, yP == Y1, ... , YP, independently drawn from 
this distribution. Here we assume that the class of distributions is known 
up to an unknown parameter O. For example, assume 'Pe{y) = (27r)-1/2 . 
e-(1/2)(y-II)2, i.e., a Gaussian density, where 0, its mean, is unknown. 

One approach to this problem is to estimate the value of 0 first and then 
to approximate the unknown density by 

'P9(y), 

where 0 is the estimate. A well-known method is the maximum likelihood 
estimation, which uses a 0 that makes the observed data most likely, i.e., 
which maximizes the likelihood 

(5.6) 



156 5. Statistical Mechanics of Generalization 

For the Gaussian density, this leads to the simple arithmetic mean 

P 
A -1,", 
0= P L..JYk. 

k=1 

In the so-called Bayesian approach to density estimation, all prior knowl­
edge (or lack of the same) of the unknown parameter is expressed by a prior 
distribution p( 0). For example, if the (Bayesian) statistician knows that the 
unknown mean of the Gaussian will not be too large or too small, say 0 
must be between -1 and + 1, he or she could assume that 0 is uniformly 
distributed in this interval. Rather than giving a single estimate of 0, as 
in the maximum likelihood case, the Bayesian calculates the posterior dis­
tribution p(O/yP), which represents his or her knowledge or uncertainty of 
the parameter after having observed the data values. This is derived by the 
Bayes Formula, which expresses the joint density P(yP, 0) of the data and 
the parameter in two ways using conditional densities: 

p 

P(yP,O) = p(O) . II P9(Yk) 
k=l 

P(yP,O) = p(O/yp ) . P(yp). (5.7) 

The posterior density is then 

«()/ p) = p(O) . nf-1 P9(Yk) 
P Y P(yP ) , (5.8) 

with the normalization 

P 

P(yp ) = J dO II P9(Yk) . p(O). 
k=1 

(5.9) 

Note that, for p( 0) = const, the maximum of Eq. (5.8) is just the maximum 
likelihood estimate. 

Then, if the Bayesian is asked to present an estimate of the unknown 
density, he or she will return the posterior averaged density 

(5.10) 

which in general will not belong to the class of densities originally consid­
ered. Besides the most likely value of 0, this estimate includes neighboring 
values as well. 

It can be shown that, if the parameter is actually distributed according 
to p(O), then Eq. (5.10) gives the best approximation to the true density 
on average [4]. 
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The justification of a prior probability for 0 often has been questioned. 
Even if it is not satisfied, the posterior density Eq. (5.8) will, under some 
mild conditions, be highly peaked around the true value of 0 for P --+ 00. 

The dependence on the actual shape of p( 0) will disappear asymptotically. 
Let us now translate these ideas into the language of supervised learning. 

The data observed in a learning experiment are the examples consisting of 
P input-output pairs aP == {(al, el)' ... ' (ap, ep)}. In general, we assume 
that there is a possibly stochastic relation between the inputs and the 
outputs, which can be expressed by a relation of the type 

a = F(Wt, e, "noise"). (5.11) 

W t is a parameter vector representing an ideal classifier or teacher. In con­
trast to the previous section, we include the possibility that the observations 
may contain errors ("noise"). 

Using a neural network, which can implement functions of the type F 
(with "noise"=O!), the task of the learner is to find a student vector Ws that 
best explains the observed data. This can be understood as an estimation 
of the parameter W for the distribution 

(5.12) 

where f is the density of the inputs and 1'w(ale) is the probability that, 
given an input e, one observes an output a. 

The statistical physics approach to learning is closely related to the 
Bayesian idea. Based on the pioneering work of Gardner [12], one may 
study ensembles of neural networks to capture a "typical" behavior of their 
learning abilities. Such ensembles are defined by a Gibbs distribution, 

(5.13) 

with partition function 

z = J dw· p(w). exp (-(3t,E(Wj Uk,ek)) . (5.14) 

E is the training energy of the kth example and (3-1 is the learning tem­
perature in a stochastic learning algorithm. In p( w), all constraints on the 
possible couplings are summarized. 

Equation (5.13) has an interpretation as the posterior distribution [Eq. 
(5.8)] of coupling parameters if we identify 

p( 0) --+ 

1'8(YP ) --+ 

1'(yp ) --+ 

p(W) 

1'w(aP) oc ni=l exp(-(3E(Wj Uk,ek)) 
1'(aP) oc z. 

(5.15) 
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As an example, let us consider a perceptron. We assume that the ideal 
classification u = sign(N-1/ 2Wt . e) is inverted by output noise, i.e., u = 
77·sign(N-l/2Wt ·e), where 77 = -1 with a probability e-fJ /1+e-fJ , and {3-1 
is the noise temperature. Fixing the inputs, the probability of observing P 
output labels is 

'P (uP) = IIP {9(UkN-1/2w. ~k) + e- fJ9( -UkN - 1/2w . ~k)} 
W 1 + e-fJ 1 + e-fJ 

k=1 

= (1 + e-fJ)-p . exp [-{3 t 9( -UkN - 1/ 2w . ~k)l. (5.16) 
k=1 

A second possibility of misclassification arises when the coupling parame­
ters, or network weights, of the teacher are uncertain to some degree, i.e., 
Wt is replaced by Wt+v, where v is Gaussian with 0 mean and V·V = {3-1. 
Now, 

P 

'Pw(uP) = II H( _{31/2ukN-l/2W . ~k)' (5.17) 
k=1 

where 

H(x) = 100 
Dt 

and 
Dt = dt . (211")-! . exp( -it2) 

is the Gaussian measure. 
To summarize, we obtain for the training energies 

for output noise 
for weight noise. 

(5.18) 

The case of output noise also can be formulated for general neural net­
works and leads to a total training energy that is just the number of inputs, 
for which the noisy outputs (1 and the student's answer disagree. 

From the Bayesian viewpoint, the posterior distribution could be used 
to make predictions on new inputs ~ by calculating the output with the 
largest posterior probability. This is the Bayes algorithm, which, for binary 
outputs [ef. Eq. (5.1O)J, answers 

u = sign [/ dw p(wl(1P)F(w,~, "noise" = 0)] . (5.19) 

Unfortunately, this represents a superposition of many neural networks, 
each given by a coupling vector w. In general, this output cannot be re­
alized by a single network of the same architecture, but requires a more 
complicated machine. 
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An algorithm that also uses the entire posterior density is the Gibbs al­
gorithm [9,10, 13J, which draws a a single vector w at random according to 
the posterior Eq. (5.13). This is precisely what we would call the "typical" 
neural network in statistical physics. 

This should be contrasted with a maximum likelihood strategy, which 
simply chooses a student vector [for p(w) = constJ that minimizes the 
training energy E. In the case of noisy outputs, the student would try 
to learn perfectly as many examples as it can, even if a fraction of them 
contains wrong classifications. 

In general, perfect knowledge of the prior distribution of teachers will 
not be available. Nevertheless, the Gibbs distribution [Eq. (5.13)J is a nat­
ural device for defining learning algorithms, even if they are not optimally 
matched to the learning problem. We will discuss some examples in the 
section on perceptrons. 

5.2.4 INFORMATION-THEORETIC RESULTS 

In this section we explore in more detail what would happen if the Bayesian 
assumption was perfectly realized. That is, we assume that "nature" actu­
ally selects teacher problems at random, and that their prior distribution 
is completely known by the student.3 

Learning more and more examples, the student's knowledge of the un­
known teacher parameters grows. This knowledge gained by learning a new 
example is expressed in the so-called information gain. As was shown by 
Haussler, Kearns, and Shapire [13J, this quantity can be related to the aver­
age error made by a student using the Gibbs and Bayes algorithms. Finally, 
using information theory and the VC approach, inequalities for errors can 
be derived. We restrict ourselves to the case of noise-free learning. A more 
general treatment can be found in [14J. 

We assume for this section that the inputs are fixed, SO that the only 
randomness is in the choice of the teacher, and, for the Gibbs algorithm, 
in the choice of the student. 

Having observed P classified inputs, we know that the teacher is con­
strained to one of the N(P, d) nonempty cells. Thus, the posterior density 
for the teacher's parameters is 0 outside the cell (see Fig. 5.1 for a percep­
tron) and equals 

(5.20) 

inside the cell, where 

3This a natural assumption for physics students, who, in preparing their ex­
ams, often use a catalog of the professor's questions from previous exams. 
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(w·w)=N ~_ 

/ Wt 

Fig. 5.1. Sketch of the phase space of weights for a perceptron. Left: Before 
learning, the vector Wt is completely unknown and assumed to be randomly 
distributed on the surface of an N-dimensional sphere. Right: After learning of 
P input-output examples ek' ak, the teacher Wt must be in a smaller cell of the 
phase space with boundaries given by the planes akw, ek = 0, k = 1, ... , P. 
A new input (dashed line) divides the cell into two new subcells, V+ and V-, 
corresponding to the two possible answers. 

V(aP ) == Vp = 1 p(w) dw 
cell 

(5.21) 

is its (weighted) volume, satisfying I:O'l ... O'p=±l V(aP ) = 1. 
Let us begin with the Gibbs algorithm and fix the teacher for a moment. 

The learner chooses a vector Ws at random, with density [Eq. (5.20)]. If a 
new input is added, the cell is divided into two subcells (Fig. 5.1). If an 
output cannot be realized, we will formally assume a new cell with zero 
volume. 

Let us compare the student's prediction on the new input with the 
teacher's answer. Both agree only if the student vector Ws is in the same 
cell as the teacher's. Averaging over w s , this will happen with probability 

y _ Vp +1 
- Vp , (5.22) 

where VP+1 is the volume of the teacher's new cell. The probability of 
making a mistake thus is given by 1 - Y. 

The Bayesian prediction would weight the answers of the two sub cells 
with their corresponding posterior probabilities and vote for the output 

a = sign[V+ - V-j. 

Thus, the answer of the largest cell wins. Since the Bayesian gives the 
answer with largest posterior probability, he or she will, on average, have 
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the lowest number of mistakes over all of the algorithms.4 The Bayesian 
will only make a mistake if the teacher is in the smaller volume, i.e., if 
Y < !. To this algorithm we can assign the number 

8(1 - 2Y) E {O, I}, (5.23) 

which counts as a "I" when the algorithm makes a mistake. 
Finally, by observing a new classified input, our uncertainty on the 

teacher's couplings will be reduced if the volume of the teacher's cell 
shrinks.5 Formally, this corresponds to an information gain, 

/).1 = -[In(Vp +1) -In(Vp)] = -In(Y). (5.24) 

Obviously, Y, the volume ratio, is a random variable with respect to the 
random teacher and the inputs. Performing the average over the teacher 
only, simple and useful relations between the information gain and the 
probabilities of mistakes may be derived next. 

Clearly, Y does not change if the teacher is moved inside a cell. Thus, 
we can average any function F(Y) over the space of teachers, first by in­
tegrating over all teachers inside a cell, and then summing over all cells, 
labeled by their configuration uP+! of outputs: 

(F(Y») = (5.25) 

The factor V(uP+!) is the integral over the new cell [Eq. (5.21)]. Thus, 
outputs, which cannot be realized, are counted with zero weight. 

We first will show the useful relation 

(F(Y») = (YF(Y) + (1- Y)F(l- Y»). (5.26) 

Beginning with the right-hand side, and using the definition in Eq. (5.25), 
we fix the first P labels and sum over the up+!. Let V+ and V- be the two 
possible subvolumes and Y+ = V+ jV(uP), Y- = 1-y+. The summation 
over up+! gives a contribution 

V+[Y+ F(Y+) + Y-F(Y-)] + V-[Y-F(Y-) + y+ F(Y+)] = (5.27) 
V(uP)[y-F(Y-) + y+ F(Y+)] = V-F(Y-) + V+ F(Y+) 

4We always assume that the teacher actually was drawn from the assumed 
prior distribution. 

15 An interpretation of -In(Vp) in terms of the stochastic complexity of Rissa­
nen [151 has been discussed in [161. Viewing the learning of the examples as an 
encoding of the outputs in the network's parameters w, this quantity measures 
how many bits we need to describe the parameters if we use only a finite set of 
discrete values for the components of w. 
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Fig. 5.2. Graphic demonstration of the inequalities min(Y, 1- Y) (lower curve) 
~ 2(Y - y2) (middle curve) ~ -1/2ln 2(Yln Y +(1- Y) In(l- Y)) (upper curve). 

to Eq. (5.26). Here we have used V+ + V- = V(a P ). Summing over the 
remaining labels, we obtain Eq. (5.26). 

Using relation (5.26), the total probabilities of mistakes, in other words, 
the errors averaged over all teachers (but for fixed inputs), are given by 

CGibbs = (1 - Y) = 2( Y _ y2 ) 
CBayes = (8(1 - 2Y») = (min(Y, 1 - Y»), 

(5.28) 

where the first equality is from Eq. (5.22) and the second from Eq. (5.23). 
The average information gain is rewritten as 

(t::.I) = -(In(Y)) = -( Y In Y + (1 - Y) In(l - Y) ). 

By comparing the three curves in Fig. 5.2, we conclude that 

CGibbs ~ 2cBayes 

1 
CGibbs ~ 2In(2) (t::.I). 

(5.29) 

(5.30) 

Although the random Gibbs algorithm is not optimal, its error is of the 
same order of magnitude as that of the optimal Bayes algorithm. 

The second inequality (5.30) indicates that, in order to gain a lot of in­
formation on the teacher, a student should select inputs on which his or her 
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performance is bad. This can be utilized in the so-called query algorithms 
(see Sec. 5.5.4). 

Using the VC method and Eq. (5.30), an estimate of the decrease of the 
generalization error for the Gibbs algorithm can be obtained [13J. 

Summing the second inequality (5.30) from P = 0 to P = M - 1, we can 
bound the average cumulative number of mistakes, 

(5.31) 

where we have used the fact that the individual terms 

AI = -[In(Vp+1) -In(Vp)J 

sum up to -In(VM) == -In(V(aM)). Since the volume of each cell equals 
its probability, the sum in the last expression equals the entropy of the 
distribution of outputs. 

As is well known from information theory, the entropy is maximal if 
all probabilities are equal. In other words, this happens if the total unit 
volume of the phase space is equally divided under the N(M, d) cells. Thus 
we obtain the inequalities 

M-l 1 1 
]; f.Gibbs(P):::; 21n(2) In (N(M,d)) :::; 21n(2) .d(ln(M/d) -1). (5.32) 

The logarithmic growth in M indicates a faster decay of errors than the 
worst-case result f.(P) ~ In(o:)/o:, with 0: = P/d. Rather, the estimate is 
consistent with a faster decay f.Gibbs(P) <X 0:-1 , asymptotically. In fact, 
using more refined techniques, it is shown in [13J that 

f.Gibbs(P) :::; 2/0:. (5.33) 

Since this bound holds for arbitrary distributions of inputs, even very ar­
tificial ones, one might expect that, for "typical" distributions, learning 
might be even faster. Using the statistical mechanics approach, we will see, 
however, in the section on perceptrons, that the 0:-1 decay also holds for 
a natural distribution of inputs. 

A greater speed of generalization only can be achieved if the asymptotic 
information gain from new new inputs can be enlarged. We will come back 
to this idea in Sec. 5.5.4. 

5.2.5 SMOOTH NETWORKS 

Most parts of this chapter deal with networks that have binary outputs and 
the sign transfer function. Often in technical applications of neural nets, the 
transfer functions between in- and outputs are highly nonlinear, but they 
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nevertheless are smooth functions. This property is utilized in the so-called 
backpropagation algorithm [28], where a training energy is minimized via 
gradient descent. This requires the calculations of derivatives of the energy 
with respect to the coupling parameters. 

It turns out that the asymptotic behavior of the generalization errors 
can be calculated easier than for binary outputs. 

We assume a learning algorithm that is defined by the Gibbs ensemble 

(5.34) 

We assume that Uk is a function of the inputs and a teacher parameter 
vector. In the following we will not assume that the problem is completely 
learnable. Then the aim of a learner will be to find a network that minimizes 
the training energy averaged over the space of all examples. If P, the number 
of examples, grows large, we expect that the final state of the network 
converges to the optimal value Wo, for which 

(5.35) 

for all i. The bar denotes the average over the examples, and the derivative 
is with respect to the components wei). 

The generalization error after learning P examples is 

e = J dw p(wluP ) E(wj U, ~). (5.36) 

We further expect that the posterior density is strongly peaked at its max­
imum w, the maximum likelihood estimate. The fluctuations around this 
value are, to the lowest order, Gaussian with zero mean and covariance: 

(w{i) - wei»~ (w{j) - w(j))) ~ {f3 p)-l (U-l)ij, (5.37) 

where 

P 

Uij = p-1 EM)j L E{w; Uk, ek)w=w ~ 8i8j E{w; u, e)· (5.38) 
k=l 

Expanding Eq. (5.36) around (w = w), and averaging over the Gaussian 
fluctuations in Eq. (5.37), we get 

e ~ E(w;u,~) + ~(f3P)-l L:Uij(U-1)ij. 
ij 

(5.39) 

The sum on the right-hand side simply equals N, the number of weights. 
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For P large, Vi will be close to the optimum wo. To estimate the difference 
between Vi and wo, we use the fact that w = Vi extremizes the learning 
energy, i.e., it fulfills 

p 

0= p-1/28i 2: E(w; Uk, ~k)w=w ~ 
k=l 

P 

p-1/28i 2: E(w; Uk, ~k)W=WO + 2: UijvP(w(j) - w(j)O), (5.40) 
k=l j , 

where we have expanded to the first order at w = wO. We also neglected 
the dependence of Uij on w. The first term, 'Yi, is a sum of independent 
random variables and is, in the limit, Gaussian distributed. We find from 
Eq. (5.35) that 'Yi = 0 and 

'Yi 'Yj ~ 8i E· 8jE == Iij . (5.41) 

Using this information, we can solve Eq. (5.40) to get 

P (w(i) - wO(i)) (w(j) - w0(j)) ~ (U-1 I U-1)ij. (5.42) 

Finally, we expand the first term of Eq. (5.39) at wO up to the second order 
in (w(i) - w(i)O); the first order clearly vanishes. Using Eq. (5.42), we get 

1 -1 N 
e ~ emin + 2pTr(U I) + 2f3P' (5.43) 

emin is the minimal error achieved by the parameter wO. 
This result has been shown in [17J using the replica method. In [18J, a 

similar result has been proved using the analogy to density estimation in 
mathematical statistics. In this framework, the matrix I is proportional to 
the so-called Fisher Information, defined as 

Iij = J dy 8i In('P8(y)) . 8j In('P8(y)), (5.44) 

Here we have used the terminology of Sec. 5.2.3 and we assumed that the 
parameter () is a vector. I plays an important role in the asymptotics of 
statistical estimation procedures [4]. 

The result in Eq. (5.43) has the same ex: p-1 behavior as the decay 
of the Gibbs errors in Eq. (5.33). It should be noted, however, that the 
definition (5.36) of the generalization error does not correspond to a binary 
classification problem like the ones treated in the previous sections. If we 
would force a smooth network to give "straight" answers EEl or e, by clipping 
its outputs after training, the generalization error may be different. As we 
will see in Sec. 5.5.2, for the ADALINE algorithm, a slower performance 
e ex: lIn can be observed in such a case. 
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5.3 The Percept ron 

5.3.1 SOME GENERAL PROPERTIES 

The perceptron shows many interesting features that distinguish it from 
other neural networks. 

One of the oldest rigorous results for perceptrons is the number of pos­
sible output combinations or cells. Besides the estimate of Sauer's lemma, 
we know a precise result for the perceptron, given by Cover [19] in 1965: 
For any set of P inputs in general position,6 one has exactly 

N(P, N) = 2 L ~ 1 , 
N-l (P ) 
i=O ~ 

(5.45) 

where N is the number of weights. Equation (5.45) also yields P = N for 
the largest number of input vectors with N(P,N) = 2P • Thus, the VC 
dimension equals N. 

The independence of N(P, N) from the location of input vectors is no 
longer valid when we look at other networks. Perceptrons with binary 
weights already show large fluctuations for this quantity. Based on ex­
act enumerations on small systems [20], but for many samples of random 
inputs, we have obtained lower bounds on the VC dimension d for this 
model. Finite-size scaling (see Fig. 5.3) indicates that for N - 00 we will 
have d~ N/2. 

Another striking feature is the simple geometric picture (Fig. 5.4) of the 
perceptron's classification ability. In the space of the inputs, the vector of 
couplings defines a separating plane perpendicular to w. Inputs on the side 
of this normal vector are classified as $, while those on the other side are 
classified as e. Perceptrons realize linear-separable functions. 

As a consequence of this geometric picture, we can easily find the gener­
alization error € (= probability of making a mistake) when the inputs have 
a spherical distribution. Such a distribution can be realized from indepen­
dent, normally distributed cartesian components ~(j), j = 1, ... ,N, with 
density 

(5.46) 

For fixed teacher and student, one finds 

€ = ~ arccos C:: I,::,) . (5.47) 

Equation (5.47) will be used extensively in the following sections. Although 
this theorem can be derived by averaging over the Gaussian random vari­
ables, it is immediately clear from the geometric construction of Fig. 5.4. 

6 Any subset of inputs containing no more than N input vectors is linearly 
independent. 
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Fig. 5.3. VC dimension for the perceptron with binary weights. The curve gives 
a lower bound as a function of N, the number of weights. The data were obtained 
from large samples of input sets upon calculating the number of possible labelings 
by scanning all 2N weight vectors. 

Hyperplanes 

Fig. 5.4. For a perceptron, teacher Wt and student W II determine separating 
planes in the input space. Inputs are mapped onto e if they are in the same 
half-space as Wt, •• Thus, the generalization error equals the ratio c = 8/7r of area 
with different outputs and total areas. 
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Note that, for N -+ 00, any distribution with the same first two moments 
will give the above result. A popular choice is ~k(j) = ±1 with probability 
1 
2· 

5.3.2 REPLICA THEORY 

In this section we develop a general framework that will allow us to treat 
a variety of perceptron learning problems using the replica method. 

Following Gardner's approach, we will consider a Gibbs ensemble of per­
ceptrons defined by the distribution 

with partition function 

z = J dw p(w)· exp (-f3t.E(w;u"e,)) . 
In the following we will keep the form of Eq. (5.48) rather general: We will 
only assume that E depends on the internal fields N-1/2UkW . ek. Thus, 
we consider partition functions of the type 

P 

Z(uP) = J dw pew) . II iP(N-1/2UkW . ek), 
k=l 

(5.49) 

with an arbitrary iP. 
We constrain the coupling vectors to the surface of a sphere, i.e., 

pew) = Vo-18(w . w - qoN), 

with Vo = eN/ 2(ln211"+1) ~ J 8(W· w - N)dw. Finally, dw = nf=l dw(j) is 
the volume element in cartesian coordinates. 

One of the basic assumptions of the statistical mechanics approach can 
be stated as follows: The free energy per coupling:F, defined by 

(5.50) 

is a self-averaging quantity for N -+ 00 and most "natural" distributions 
of the random examples. This means that it equals its average 

:F = N-1 • L P(uP ) InZ(uP ) (5.51) 
Ul ••• up=±l 

for almost all realizations of the random examples. Here, 
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is the total probability over all teachers (and noise) that, given the inputs, 
the binary classifications qP will be observed. The bar denotes the average 
over the distributions of inputs. If Eq. (5.48) was actually the posterior 
distribution corresponding to a prior distribution of random teachers (see 
Sec. 5.2.3), we would have 

(5.52) 

where the normalization 

C = L Z{qP) 
O'l ... O'p=±l 

is assumed to be independent of the inputs. In general, we will not restrict 
ourselves to Eq. (5.52), but rather we will use the more general ansatz, 

1'{qP) = Zt{qP)/Ct 
P 

Zt{qP) = J dWt Pt{w) . II fPt{N-1/2qkWt . (k), (5.53) 
k=l 

where fPt can be different from fP and 

Pt{w) = Vo- 16{wt . Wt - N). 

To perform the average over the inputs, the replica trick is utilized: 

where 

En = L Zt{qP)zn{qP) (5.55) 
O'l ... O'p=±l 

is the weighted and averaged n-times replicated partition function. Equa­
tion (5.55) will be calculated for integer n, and the result then will be 
continued to reals. 

Since all inputs are assumed to be statistically independent and drawn 
from the same distribution, we get 

Sn = J dWt p(Wt) IT dWa p(wa) 
a=l 

X C~, ifI.(N-l/'UW.' e) il ifI(N-l/'uw •. e) P (5.56) 

For the inputs, we use the Gaussian distribution (5.46). fP and fPt depend on 
(only via Ua = N- 1/ 2qWa .(, a = 1, ... , n, and Un+! = Ut = N-l/2qWt .(. 
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For fixed couplings, these are joint Gaussian random variables with 0 means 
and second moments Qab = UaUb = N-1wa . Wb. Thus, we have, for P = 
aN, 

n+l 

N-1ln(Sn) = N-1ln J II dWa Pa(wa) exp[aNg1(n)] 
a=l 

(5.57) 

with 

n 

e'h(n) = 2<Pt(un+dQ}) II <p(ua{Q}). (5.58) 
a=l 

The average over the Ua can be performed with the help of the following 
basic assumption of mean-field theory. 

For N -+ 00, the integrals over Wa will be dominated by regions in the 
phase space where the matrix elements Qab assume nonfiuctuating values. 
These are the order parameters, which determine the macroscopic physics of 
the network. Assuming that replica symmetry is valid, the order parameters 
will obey Qab = q, for a =f b and a, b ~ n. Further, Qa,n+1 = R. 

q = N-1wa . Wb is the typical overlap between any two student vectors 
Wa and Wb, which are drawn randomly from the Gibbs distribution (5.48). 
Accordingly, R = N-1Wt . Ws is the overlap between a teacher and a 
student. By Eq. (5.47), the knowledge of the order parameters enables us 
to obtain the generalization error via 

1 
c = - arccos(Rj ,.fijO). 

7C' 
(5.59) 

Using the replica-symmetric ansatz, the Gaussian fields can be con­
structed explicitly, 

(5.60) 

for a ~ nand 
(5.61) 

where Za, y, t are independent Gaussian variables with variance 1. Obvi­
ously, these variables yield the correct second moments. Now the Gaussian 
average is easily performed, yielding 

e91 (n) = 2 i: Dt i: DY<Pt (Y(l- R2/q)1/2 - tR/ql/2) 

x [I: Dz <P (zJqO - q - tJq) r (5.62) 

Again, Dt = (27C')-1/2e-l/2t2 dt is the Gaussian measure. Using the saddle­
point method, for N -+ 00, we finally get 

lim N-llnSn = Extrq,R [agl + g2]. 
N-oo 
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The second term is an entropic term coming from the phase-space integral, 
where the order parameters q and R are fixed: 

n+l 

eN92 (n) = l'o-(n+l) J II dWa II 8(wa . Wb - NQab). 
a=l a~b 

(5.63) 

In replica symmetry, it is not hard to evaluate this expression, giving the 
result 

n-l 1 [ 2] (h = -2- ln(qo - q) + "2 In (qo - q) + n(q - R ) . (5.64) 

Finally, performing the derivative with respect to n yields 

(5.65) 

where 

J~oo Dy <I>t (Y(l - R2/q)1/2 - tR/ql/2) 

J~oo Dy <I>t(Y) 
(5.66) 

x In [I: Dz <I> (zJqO - q - t..;'Q)] 

and 

1 1 q - R2 
F2 = "2 ln(qO - q) + "2 (qO _ q) . (5.67) 

Extremizing the free energy in Eq. (5.65), we will get the physical values of 
the order parameters q and R, which in turn determine the generalization 
error c. 

5.3.3 RESULTS FOR BAYES AND GIBBS ALGORITHMS 

Before we come to specific deterministic learning algorithms, we will study 
the performance of the Gibbs algorithm for a perceptron. As in Secs. 5.2.3 
and 5.2.4, we will assume that the prior distribution of the teacher is known 
to the student. 

However, it should be noted that, for the spherical density of inputs 
in Eq. (5.46), by symmetry, the order parameters will not depend on the 
actual teacher. Thus, for this special density, the following results will hold 
not only on average, but also for any specific teacher. If noise is present in 
the teacher's classifications, we also will assume that the student will know 
the type of noise and its strength. 

The interpretation of the Gibbs ensemble as the posterior distribution 
in the Bayesian sense simplifies the algebra. In this case we always have 
<I> = <I>t. 
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Then, teacher and student will enter the replica theory in a completely 
symmetric way. The teacher is just another replica, so that, from the be­
ginning, we can set q = Rand qo = 1. 

Now Eq. (5.65) is replaced by 

{ 0: 100 1 q} F = Extrq Ao -00 A(t; q) In [A(t; q)] + 21n(1 - q) + 2 ' (5.68) 

where 

(5.69) 

and 

Ao = I: Dz <I>(z). 

It is interesting to note that this expression could have been derived by a 
slight modification of the standard replica trick, where we replace the limit 
n ~ 0 by n ~ 1. Setting Zt = Z, we get 

F = lim ~N-l1n ~ zn(aP ). (5.70) 
n-+l an 6 

O'l ... O'p=±l 

We now give explicit expressions for noise-free and noisy teachers [see 
Eq. (5.18)]: 

leading to 

{ 
8(u) 

<I>(u) = exp[-,88(-u)] 
H( -,8-!u) 

{ 
H(-yt) 

A(t; q) = e- f3 + (1 - e- (3 )H(-yt) 
H(-yt) 

no noise 
output noise 
weight noise, 

no noise 
output noise 
weight noise 

(5.71) 

(5.72) 

with 'Y = Jq/1 - q and -y = Jq/1- q + 1/,8. For output noise, Ao = 
~(l+e-f3), and Ao = ~ in the other cases. Calculating the order parameter 
q from Eq. (5.68), yields the Gibbs error as: 

1 
CGibbs = - arccos(q). (5.73) 

7r 

For noisy outputs, this is the probability that the student will find the ideal 
output of the teacher. 

Solving the order parameter equation asymptotically for 0: ~ 00, i.e., 
q ~ 1, one obtains 

without noise 
output noise 
weight noise 

(5.74) 
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C1 , C2 are functions of the temperature. C1 converges to the value 0.62 for 
f3 -+ 00, whereas C2 goes to 0, indicating the crossover to the faster decay 
in the noise-free limit. 

The decay OC 0:-1 in the noise-free case is of the same order as the 
bound (5.33) discussed in Sec. 5.2.4. Remarkably, this asymptotic decay 
still persists if output noise is included. When the noise temperature grows 
large (i.e., f3 -+ 0), the coefficient Cl diverges like 4/ f32. 

The case of weight noise also has been studied in [8, 21]. However, the 
authors calculated the Gibbs error for a different algorithm, which uses 
the sum of mistakes [the first line in Eq. (5.18)] as the learning energy. 
With an optimized learning temperature, eGibbs ~ 0:-1/ 4 was found. With 
a 0 temperature learning, which corresponds to minimizing the training 
energy (maximum likelihood), the behavior is even worse. This shows that 
the generalization ability can be remarkably enhanced if more information 
on the teacher is included in the learning algorithm. 

The error of the Bayes algorithm has been calculated in [9, to]. We will 
give a different derivation by looking at the volume ratio, 

V(aP+l) 
y = V(aP ) , (5.75) 

previously defined in Sec. 5.2.4. Equation (5.75) describes the reduction of 
the volume of the teacher's cell when a new input is learned. As was shown 
in Sec. 5.2.4, Y can be used to find Gibbs and Bayes errors, as well as the 
information gain. 

Obviously, Y is an average of the function 9{N-1/2ap+l Wt . (P+l) over 
all couplings of the teacher's old cell V(aP ). We can write 

(5.76) 

One of the basic assumptions of the replica-symmetric mean-field theory is 
the clustering hypothesis [22], which states that the thermodynamic fluctu­
ations of different components Wt(j) of Wt are uncorrelated in the thermo­
dynamic limit. From the central limit theorem, we conclude that, for fixed 
input (P+l' the field N-1/2ap+l w'(P+l can be written as N-1/2ap+l (w)· 
(P+1 +v, where the fluctuating part v is Gaussian distributed and has vari-
ance 

(v2 ) = N-l«w. w) - (w)2) = 1- q. (5.77) 

Here, we have again used the clustering hypothesis, yielding 

q = N-1w a • Wb = N-1(w)2. (5.78) 

Performing the average over v gives the expression 

Y = H (N- 1/ 2ap +l (w) . (P+l) , 
vr=q (5.79) 
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which holds for a fixed input pattern and classification label in the thermo­
dynamic limit! The Bayesian algorithm votes for that value of UPH which 
gives the largest volume, in other words, the largest value for Y. By its 
definition, H(x) = J:z:oo Dt > ~, if x> O. This has the consequence that a 
student with coupling vector Wa = (w) will always make the optimal Bayes 
decision. 

This was first shown in [23] by means of a slightly different argument. It 
is nontrivial because, in general, the "Bayesian student" does not belong to 
the phase space of the teachers. Finally, to get the Bayes error, we simply 
have to find the average overlap between the student and a random teacher 
[Eq. (5.47)]: 

Hence, 
1 

CBayea = - arccos( Jq). 
11" 

(5.80) 

(5.81) 

Solving the order parameter equation (5.68), we get an asymptotic decay, 

CBayea ~ 0.44 . 0:-1, 

for large 0:. A comparison of Gibbs and Bayes errors is given in Fig. 5.5. 
Different algorithms to achieve the performance of the Bayes prediction 
can be found in [2, 9, 24]. 

We will end this section by calculating the density of Y. We first need 
the probabilities of the classification labels Up+l = ±l. These probabilities 
are proportional to the volumes of the two new cells. Thus, they simply 
equal Y(up+d! Using that N-1/2(W} . (PH is Gaussian distributed with 
respect to the random input (PH' with variance equal to (W}2 = q, we 
find 

fey) = 21: Dt H(-yt) 8(Y - H(-yt». (5.82) 

Here, 'Y = J qj1 - q and 8(-) is Dirac's 8-function. Equation (5.82) is de­
picted in Fig. 5.6 for different values of q. This density is also valid for 
discrete couplings as long as replica symmetry is exact. Figure 5.7 gives 
a result for fey) obtained from simulations of perceptrons with binary 
weights. Here, the volumes of the cells were found by counting the number 
of discrete coupling vectors belonging to each cell. 

The smooth behavior of fey) somehow seems to contradict the VC re­
sults. Since the number of cells grows only like a polynomial in P, most 
of the cells will not be split into two pieces by adding a new input. Thus, 
f (Y) should contain 8-functions at Y = 0 and Y = 1, corresponding to one 
new cell with the old volume, and one with 0 volume. This would in fact 
be true if all of the cells had the same volume. We conclude that those cells 
which are not cut into two pieces have neglectable volume (probability) in 
the thermodynamic limit. 
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Fig. 5.5. Comparison of Gibbs and Bayes generalization errors. 

6 

5.4 Geometry in Phase Space and 
Asymptotic Scaling 

The result of the replica theory for the Gibbs algorithm shows an asymp­
totic decay of the error eGibbs ~ 0:-1. The same power law was obtained as 
an upper bound from the VC theory in Sec. 5.2.4. While for the replica cal­
culation a specific distribution of inputs was assumed, in the VC approach 
only the VC dimension of the network entered the theory. Thus, arises the 
question of whether the asymptotic scaling of the generalization error can 
be explained using only a few parameters of a network. 

As we will see, simple geometric scaling arguments will bring us a step 
closer to this idea of universality. We begin with the perceptron. The phase 
space of all perceptrons is a simple manifold - the surface of a sphere. The 
generalization error, 

1 
e = - arccos(ws . Wt), (5.83) 

7r 

which is valid for normalized teacher and student vectors, is just the ar­
clength of the shortest line (the geodesic) between Ws and Wt, and e is a 
natural distance between perceptron networks. 

A second contribution to a geometry in phase space comes from the 
information theoretic results of Sec. 5.2.4. We remember that the average 
information gain for any new input is an upper bound for the Gibbs error 
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Fig. 5.6. Density of the volume ratio Y for q = 0.1 (bell-shaped curve), q = 0.3 
(flatter curve), and q = 0.7 (curve peaked at 1). 

on that input. Assuming that both quantities will be of the same order 
asymptotically, we set 

(5.84) 

Vp is the volume of the teacher's cell and e is, as we have shown, a typical 
distance in the cell. Since the number of couplings N is the dimension of 
the manifold, we expect that 

Vp~eN. 

Then, with P = aN, Eq. (5.84) can be written as 

8 
e{a) = - 8aln{e{a)), 

from which the asymptotic relation 

e{a) ~ a-I 

follows. 

(5.85) 

(5.86) 

As a further consequence we see that, if the learner can select examples 
such that the asymptotic information gain becomes a constant for each new 
input, then a faster decay of the generalization error like 

e ~ exp{-aN(L.H}) (5.87) 
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Table 5.1. Volumes in input space 
0 1 O2 0 3 0 4 0 5 0 6 0 7 0 8 

(Fa -1 -1 -1 -1 1 1 1 1 
(Fb -1 -1 1 1 -1 -1 1 1 
(Fe -1 1 -1 1 -1 1 -1 1 

is expected. In fact, such behavior is observed for query algorithms (see 
Sec. 5.5.4). 

The interpretation of the generalization error as a distance between net­
works is no artefact of the perceptron. Generalizing Eq. (5.83) to arbitrary 
networks, we will show that the probability ~(t, s) (over all inputs) that two 
networks with parameters Wt and Ws do not give the same answer defines a 
metric in the space of networks (of a given type). The only nontrivial part7 

is the triangular inequality. Consider three parameter vectors Wa,Wb,We 

and divide the input space into 8 sets with volumes 0 1, ... ,08 , Ei Oi = 1, 
according to the outputs (Fa,b,e (see Table 5.1). Then, ~(a, b) Probability 
of all E, for which Wa and Wb have different outputs = 0 3 + 0 4 + 0 5 + 0 6 • 

Similarly, ~(b, c) = O2 + 0 3 + 0 6 + 0 7 and ~(a, c) = O2 + 0 4 + 0 5 + 0 7• 

Thus, 

This completes the proof of the triangular inequality. 
So we can expect that the asymptotic scaling of the learning error based 

on the simple geometric picture is valid for more general types of networks 
or learning machines. 

Based on similar ideas, an asymptotic scaling of the information gain 
(~I) ~ a-I for noise-free learning was predicted in [25]. Using this simple 
geometric picture, we now derive an asymptotic result for the Gibbs error 
in the case of learning with strong output noise [26]. This will be shown for 
a general network, where only the number N of free adjustable parameters 
enters the calculation. 

We consider a teacher network with a noisy output, 

(5.88) 

The teacher's ideal answer is inverted, i.e., TJ = -1, with probability 
e-13 /1 + e-13 independent of the inputs. The task of the learner is to con­
struct a deterministic, i.e., noise-free, student network ws , 

(5.89) 

7We neglect the possibility that two different parameters w .. and Wb will give 
the same outputs on all inputs. 
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who will be able to give the teacher's ideal answers [T} = +1 in Eq. (5.88)]. 
We will use the Gibbs algorithm to construct such a network. This al­
gorithm will draw a W s randomly from the posterior distribution of the 
unknown teacher, after having seen P noisy examples. Using the ideas of 
Sec. 5.2.3, the students will have probability 

where 

Z(qP) ~ J dw exp (-Pt,E(W;qk'~k)) . (5.91) 

E(WsiUk,ek) equals 1 if Uk 'I- F(ws,ek)' i.e., if the student does not learn 
the outputs correctly. 

By using the Gibbs algorithm, the student will not simply try to minimize 
his or her learning error, but instead will make mistakes on the observed 
labels with probability e-(3/1 + e-(3. This is precisely the rate at which the 
teacher produces wrong outputs. Using the temperature {3-1, the student 
assumes a priori that a fraction of the teacher's answers are not correct. 

Fixing teacher and student for a moment, the probability that the stu­
dent's and the teacher's ideal answer disagree on a new input e, i.e., that 

(5.92) 

is given by 

~(t,s) = 1- L E(WtiU,e)E(wsiU,e)· (5.93) 
CT=±l 

Given the P outputs, the teacher and the student have the same distribu­
tion [Eq. (5.90)] by the definition of the algorithm. Using this fact, and 
weighting all possible output configurations with their probability [Eq. 
(5.52)], P(uP ) = C-l . Z(uP ), we can average Eq. (5.93) over teachers 
and students: 

(~(t,s)) = 

I: C-1 . Z(uP ) J dWt dws ~(t, s) . p(wtluP) . p(wsluP ). (5.94) 
CTl ... CTp=±l 

The total Gibbs error is obtained by averaging this expression over the 
training inputs. This can be done with the replica method, in a form similar 
to Eq. (5.70). One finds, using Eqs. (5.90) and (5.91), 
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with the replica Hamiltonian 

n 

Gn = -In[ L exp( -,8 L E(wa, 0', e))· (5.96) 
u=±l a=l 

This result has an interesting limit for strong noise, i.e., small ,8: 

n,8 f32n2 ,82 
Gn({Wa}) = -ln2 + 2"" - -8- + 4 LLl(a,b) + 0(,83). 

atfb 
(5.97) 

Here we have made use of the fact that (E(wa; 0', e))2 = E(wa; 0', e) and 
LS±l E(wa; (1, e) = 1. Inserting this into Eq. (5.95), we get 

82 J n 
€Gibbs ~ - ~~ 8n8B In II dWa exp[-BLLl(a,b)], 

a=l atfb 
(5.98) 

where the derivative with respect to B has to be taken at B = Pf32/4. The 
phase-space integral in Eqs. (5.98) is the partition function for n classical 
"particles" at temperature B-1 interacting with the pair potential Ll(a, b). 

If the number of examples P grows large, the effective temperature B-1 
goes to 0 and the particles are close together at the minimum of the poten­
tial. In other words, Ll(t, s) vanishes, and we have perfect generalization! 

To estimate the speed of generalization, we fix one of the couplings, 
e.g., W n' If all distances Ll (n, b) are small for large B, then the triangular 
inequality will enforce all other distances Ll(a, b) to be small as well. 

Our basic assumption is that for small distances the manifold of parame­
ters W is locally flat. In suitably chosen coordinates, with Wn at the origin, 
Wa == wa(i), i = 1, ... , N, the volume element (wn is fixed) 

N 

dWa ~ II dwa(i) (5.99) 
i=1 

is locally cartesian. Also, the distances Ll (a, b) are expected to be of the 
form Ll[{wa(i) - wb(i)}] for wa(i) - wb(i) « 1, and Ll should obey the 
"regular scaling" of a length, 

(5.100) 

Then we can simply scale the inverse temperature B out of Eq. (5.98) by 
using BWa (i) as new coordinates. We get 

• f'V _ I' ~ I [B-(n-1)N] _ N 
€Gtbbs - n~ 8n8B n - B' (5.101) 

Setting B = P,82/4, we get 

(5.102) 
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This coincides with the known result in the case of the perceptron. Note, 
however, that in the present approach we have made no assumptions on 
the distribution of inputs and the special architecture of the network. 

Since exact replica calculations for multilayer networks become techni­
cally very involved, we expect that the geometric approach will provide a 
useful alternative, at least in asymptotic regions. It would be interesting. to 
establish a connection with the VC results. 

5.5 Applications to Perceptrons 

In this section we discuss several applications of the statistical mechanics 
of generalization. In particular, we concentrate on the simplest case: the 
teacher as well as the student are simple one-layer perceptrons, with one 
input layer e, one weight layer Wt or w s , respectively, and one output bit 
0'. As before, we normalize the teacher weight vector to Wt • Wt = N: 

(5.103) 

The student tries to learn a set of aN = P input-output examples 
O'k,ek ,k = 1, ... ,aN, given by the teacher network. In the following, sev­
erallearning rules are considered; in addition, the structure of the teacher 
may be different from that of the student, or it may even change with time. 
It turns out that the simplest case - perceptron learns from perceptron 
- already shows many interesting phenomena. 

The advantage of simplicity is the fact that one obtains exact mathe­
matical relations, for example, the generalization error e as a fuction of 
the number aN of learned examples. Furthermore, the simple structure 
is always a part of more complex networks, and from understanding the 
perceptron it may be possible to derive results for multilayer networks. 

5.5.1 SIMPLE LEARNING: HEBB RULE 

The learning rule that easily can be analyzed [27] is the Hebb rule: At each 
presentation of a new example (Uk, ek) the product of input and output 
bits is added to the corresponding weight, 

Ws (t + 1) = w-:'(t) + ~ Uk ek . (5.104) 

If each example is presented once, and if the initial weight vector is 0, 
then the final weights are given by 

1 p 

w-:' = . fiT L Uk ek . 
vN k=l 

(5.105) 
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Note that ak is given by the teacher, 

(5.106) 

Now we study the case of random inputs ek' We are interested in the 
generalization error £, which, following Eq. (5.47), is given by the overlaps 
R = Wt . waiN and qo = Wa . waiN: 

c = ~ arccos (~) . (5.107) 

At each step of presenting a new example (ak' ek) the teacher-student 
overlap R = Wt . waiN changes by an amount tlR given by 

(5.108) 

However, for different input patterns ek , the variable u = Wt· eklVN is 
Gaussian distributed (u = sum of independent random numbers) with 

u=o and 
- 1 
u2 = - Wt • Wt = 1 . 

N 
(5.109) 

Hence, with iUT = J2/7r, on average, the teacher-student overlap changes 
by the amount tlR = J2/7rIN, which gives 

R=j! a. (5.110) 

The square of Eq. (5.104) gives the change of the student-student over­
lap, and one has 

(5.111) 

The variable z = wa(t) . eklVN is again Gaussian distributed with 

and zu=R. 

The correlations between z and u are taken into account by the substitution 
z = Ru + J qo - R 2t with t2 = 1 and tu = O. One obtains for the average 
of tlqo 

(5.112) 
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Fig. 5.S. Generalization error for Hebbian learning. The other two curves are 
the Bayesian error and the Hebbian training error. 

This gives 
qo =a+R2 , (5.113) 

and, as the final result, 

c =..!:. arccos ( fI 0: ) = ~ arctan ({1r\27r0: . 
7r V; j 0: + ~0:2" V 20.) 

(5.114) 

Hebbian learning also may be considered as a drifting random walk of w 8 

in an N-dimensional vector space [2]. The component of w 8 in the direction 
of the teacher increases like J2/7r0: while, perpendicular to the teacher, the 
student performs a random walk with mean-square displacement 0:. The 
ratio of the two lengths determines tan(7rc), according to Fig. 5.4. 

Figure 5.8 shows the generalization error c [Eq. (5.114)] as a function of 
the number of learned examples a. If only a finite number of examples has 
been stored (0: = 0), the network cannot generalize, and one has c = 0.5. 
But if the number of examples is of the order of the number of weights, c 
decreases. For large values of 0:, Eq. (5.114) gives 

c <X l/va. (5.115) 

Hence, asymptotically, the Hebbian rule is worse than the Bayesian op­
timum e ~ 0.44/0:. Nevertheless, it is surprising that the rule gives a rea-
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sonably low error c. That is, the Hebbian network cannot learn perfectly; 
its training error 

(5.116) 

is nonzero for any a > O. With the Gaussian variables u and t as before, 
one has 

(5.117) 

which gives [27] 

ct = ! - Joo Du erf (u ~ + _1 ) 
2 y; y'2a (5.118) 

o 

Hence, for a ~ 5, one finds a maximal training error of about 10%, which 
appears to be rather large. Nevertheless, the Hebbian network is able to 
generalize reasonably well. 

5.5.2 OVERFITTING 

If one has a cost function E that depends continuously on the weight vector 
W 8, then a learning rule may be defined as a gradient descent in the N­
dimensional weight space: 

(5.119) 

In many applications, the cost function is defined as the quadratic de­
viation between student and teacher output. In a multilayer feedforward 
network with continuous activation functions, the gradient rule is called 
error backpropagation [28]. 

Unfortunately, a gradient cannot be defined for binary student output. 
But one may try to learn the binary teacher output by a linear student 
network, minimizing the cost function 

(5.120) 

with Uk given by the teacher network, Uk = sign (Wt' t.k/ V'N). This 
gives the learning algorithm 

W8 (t + 1) = w 8 (t) + Jw (1 - .IN Uk w 8 (t) t.k) Uk t.k . (5.121) 

This algorithm has been studied for more than 30 years [29]; it is called 
ADALINE. For attractor networks it improves the storage capacity for 
random patterns from ac = 0.14 (Hebbian weights) to ac = 1 [30]. 



Manfred Opper and Wolfgang Kinzel 185 

For E = 0, Eq. (5.120) gives aN many linear equations for the N un­
known coefficients of w s : 

~ Ws ek = sign (~ Wt .ek); k = 1, ... ,aN. (5.122) 

If the input patterns ek are linearly independent, one can solve this equation 
for a < 1. But, for a > 1, it is obvious that Eq. (5.122) cannot be fulfilled; 
although the rule is realizable, the ADALINE algorithm cannot learn it 
perfectly. The training error Et increases for a > 1 to a nonzero value. 

Although the learning algorithm is defined by the linear network, its 
training and generalization errors still are defined by the nonlinear network 
(J' = sign(w· e). Both of the errors can be calculated analytically using the 
replica method of Sec. 5.3.2 [31]. Using the Gibbs weight exp[-.8E], one 
finds the properties of the stationary state of the weight vector w 8 (i.e. 
after having learned for infinitely many timesteps t) from the limit .8 -+ 00. 

In Eq. (5.66) we replace q>(u) by 

q>(u) = ~exp [-! .8 (u _1)2] (5.123) 

and q>t by 
(5.124) 

Then we solve the saddle-point equations for the order parameters q and 
R. For the limit .8 -+ 00, we have to consider two cases: 

a < 1 : In this case, one has E = 0, and the length .J'iiO of the student w s is 
a free parameter that is maximized by qo -+ q. One finds 

a-R2 
qo = 1 . -a 

(5.125) 

a > 1 : One has only one minimum of E, and q converges to qo automatically. 
However, the quantity .8(qO-q) remains finite and nonzero. One finds 

R = J2/'Tr; 
1+ 1 (a-2) 

qo = 11' • 
a-I 

(5.126) 

These equations show that the length of the student vector diverges when 
a approaches the value 1. This means - since the overlap R between the 
teacher and the student remains finite - that the generalization error e 
increases to 1/2. At a = 1, the network cannot generalize, although it has 
learned perfectly! 

The linear network tries to learn a nonlinear problem; for a ~ 1, it does so 
by increasing the length of the weight vector. This gives a low performance 
of generalization; this effect has been named over fitting [27]. For a > 1, 
the network cannot learn perfectly, and its generalization error decreases. 
Figure 5.9 compares the ADALINE rule with other learning rules. 
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Fig. 5.9. Comparison of generalization errors for ADALINE learning, perceptron 
learning with optimal stability, and the optimal Bayes prediction. 

For small a values, Eq. (5.125) agrees with the Hebbian rule equations 
(5.110) and (5.113). In fact, the ADALINE algorithm only adds an addi­
tional weight to the Hebbian term Uk F-k/VN that is small for small a. For 
large a, one finds 

e IX. 1/..;a, (5.127) 

which is again the result of the Hebbian network. Note that in both cases 
the training error is nonzero. 

It is interesting to note that the results for the order parameters [Eqs. 
(5.125) and (5.126)] can be obtained without the replica method, by an 
explicit calculation of the coupling vectors [60]. This will be shown in Ap­
pendix 5.2. 

Finally, we want to mention that the dynamics of ADALINE learning can 
be solved exactly, in contrast to nonlinear learning rules [32, 33, 34, 35]. 
It can easily be shown that the dynamics is governed by the spectrum of 
eigenvalues of the matrix 

P 

Bij = ~ L ~k(i) ~k(j). 
k=l 

(5.128) 

B measures correlations between different input bits; note that at each 
input unit i the P different training vectors define a P-dimensional vector, 
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and Eq. (5.128) gives the product of those vectors. B is a kind of random 
matrix; its spectrum is a distorted semicircle between the values (1 ± y'(i)2 
with an additional degenerate eigenvalue 0 for 0: < 1, [32, 1]. One finds 
that for 0: -+ 1 the longest relaxation time diverges like IVa - 11-2 • Hence, 
one obtains a critical slowing down at the transition to perfect learning. 

5.5.3 MAXIMAL STABILITY 

The simple perceptron Ws has learned an example ek if 

(5.129) 

Its ability to generalize is related to the fact that the sign function maps 
similar input vectors e to the same output bit Uk. But from the above 
equation it is obvious that this property is optimal if the quantity 

Uk 
fl.k = VN Ws . (k (5.130) 

is as large as possible (for fixed norm Ws • wsIN). The quantity 

A _ • ukVN Ws '(k 
u-mln I I 

k Ws 
(5.131) 

is called the stability of the perceptron, and a good learning algorithm 
should maximize the stability fl.. For attractor networks, a similar relation 
is assumed between the stability and the size of the basin of attraction [12]. 

Equation (5.131) can be related to quadratic optimization with boundary 
conditions: 

Minimize w . w 
with the conditions ~ w . ek ~ 1 

for all patterns (k' 

It turns out that the optimal perceptron w s classifies the training examples 
into two classes [36]: One set of patterns is right at the boundary fl.k = 1, 
and the second set is in the interior of the allowed region. But only the first 
set has to be learned by the perceptron, namely, one has 

1 
Ws = fiT L Xk ek 

vN k 
(5.132) 

with coefficients Xk that are 0 for the second set. The number O:elJN of the 
examples belonging to the first set can be calculated by the replica method; 
it is shown in Fig. 5.10 as a function of o:N many random examples (k' 
O:ell remains smaller than 1, even for 0: -+ 00. Only O:ellN many examples 
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Fig. 5.10. Effective number of inputs per weight to be learned by the perceptron 
with optimal stability. 

have to be learned by the network; and for these the ADALINE learning 
rule is sufficient, leading to E = 0 in Eq. (5.120). For large a, most of the 
added training examples are useless since they give t1k ~ 1 and do not 
change the student Ws (they are not learned). Of course, this is related to 
the fact that the generalization error is small. 

Optimal stability has a surprising geometric implication: Consider a set 
of aN many random points e on the unit hypersphere in aN-dimensional 
space. Label each point black or white randomly. Then a two-dimensional 
projection of the points looks like Fig. 5.11(a). For N - 00 and a < 2, 
a perceptron with optimal stability A. > 0 exists (Sec. 5.3.1). This means 
that there is a weight vector ws , and a two-dimensional projection on a 
plane containing Ws looks like Fig. 5.11(b). Now black points are separated 
from white ones and there is a gap A. between the two clouds. Precisely at 
the boundary planes of the gap there are ael I N many points. Hence, just 
by rotating the cloud of random points one can find a view where the black 
and white points are clearly separated. 

There is an interesting general relation between aefJ and e, which holds 
independently of the distribution of the inputs. Consider the case where a 
P + 1st example (e, u) is added to the training set of P = aN inputs. If 
we run our algorithm on this new, enlarged set, the coupling vector of the 
P input problem is only changed if 
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N-1/ 2(JW . e < 1, 

where W is the vector of the old couplings. If, on the other hand, 

N-1/ 2(JW • e ~ 1, 

the old couplings also provide optimal stability for the P + 1 pattern system. 
If this happens, then the new pattern is uncorrelated to w. 

Let 'Po be the probability over the distribution of the new input for this 
event. It turns out that 'Po and the probability G for a correct generalization 
on the new input are rather similar: 

'Po = Pr(N-1/ 2(Jw . e ~ 1) 
G = Pr(N-1/ 2(Jw • e ~ 0). (5.133) 

Since 1 > 0, it is clear that Po ~ G, so that we have for the generalization 
error 

c = 1 - G ~ 1 - 'Po. (5.134) 

Now, a'Po is the average, relative number of patterns that need not be 
learned explicitly. Conversely, aeJ J = 0.(1 - 'Po) is the average fraction of 
patterns that must be learned. Since we always have aeJJ ~ 1, we get from 
Eq. (5.134) 

ac = 0.(1 - G) ~ aeJJ ~ 1. (5.135) 

Thus, we will always have c ~ 1/0.. 
There are several algorithms that are guaranteed to find the optimal 

perceptron for aN many random examples ek' Unfortunately, one cannot 
classify the examples according to Eq. (5.132) in advance; hence, one has 
to learn all of them instead of a fraction aeJ J /0. of them, which becomes 
very small for 0.-"'00. 

One algorithm (Minover [38]) is an extension of the standard Rosenblatt 
[37] rule; another faster algorithm (Adatron [39]) is related to the quadratic 
optimization discussed above. But algorithms derived from standard opti­
mization theories also have been developed [40]. 

All of these algorithms converge to the perceptron with maximal stability. 
Its properties have been calculated in [31] using the replica method of 
Gardner [12] introduced in Sec. 5.3.2. Now the function ~ of Eq. (5.66) is 

(5.136) 

and ~t(u) = 9(u). Maximizing K, shrinks the volume in student space Wa 

to a single point, and the overlap q = Wa • Wb/ N approaches the square of 
the norm, i.e., q -... qo = Wa . waiN. 
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Figure 5.9 shows the generalization error as a function of the size 0: of 
the training set. € decreases monotonically and behaves like 

0.50 
€ ~--

0: 
(5.137) 

for 0: --+ 00. Hence, asymptotically, the perceptron with optimal stability 
can generalize much better than the Hebbian or ADALINE rule (for which 
€ ~ 1/..;a). It performs only slightly worse than the Bayesian lower bound 
of Sec. 5.3.3, although this difference means that maximal stability does 
not imply optimal generalization. 

5.5.4 QUERIES 

In the previous applications of the statistical mechanics of neural networks 
only random input patterns were considered. However, it seems obvious 
that the student network can improve its generalization performance if 
it selects input patterns according to its present state of knowledge. In 
particular, if the fraction 0: of learned examples is large, a new random 
plane is unlikely to cut the (small) version space into two parts ofroughly 
the same size; hence, the gain of information about the teacher is very small 
(see Sec. 5.2.4). 

Much more information can be obtained if the student selects a question 
according to its present state [41]. For the simple perceptron, a good choice 
seems to be a pattern ek that is perpendicular to the weight vector WS' 

Such a pattern is at the border of knowledge; tiny chances of W s produce 
different answers. 

For the simplest learning rule, e.g., the Hebbian algorithm discussed in 
Sec. 5.5.1, one easily obtains a differential equation for the overlap Rand 
the length qo, which determine the generalization error. Equation (5.111) 
gives L':l.qo = lIN since ek . Ws = 0 by construction. Hence, one has 

qo = 0: • (5.138) 

But IWt' ekl of Eq. (5.108) also can be easily calculated. With IWtl = 
VN, the component of Wt perpendicular to Ws has a length VNsin(J, 
where (J is the angle between the teacher and the student vectors. If ek is 
chosen randomly in the plane perpendicular to WS , then Wt ek is Gaussian 
distributed with variance 

(Wt • ek)2 = N sin2 (J 

= N(l - cos2 (J) • (5.139) 

With cos (J = RI v'Qo = RI..;a, one finds 

(5.140) 
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Fig. 5.12. Comparison oflearning with selected and random inputs, using Hebb's 
rule. 

which gives, with Eq. (5.108), 

dR = f%. J 1 _ R2 . 
da Y; a 

(5.141) 

The solution R(a) determines the generalization error c(a) by c = 
arccos (R/Va)/rr. 

Figure 5.12 compares the results of random and selected examples. Al­
though the generalization error is lower for "intelligent" questions, the 
asymptotic decay for large values of a is c <X 1/ Va for both cases. 

This is different if the whole set of examples is relearned after a new 
pattern was selected. Then the perceptron with maximal stability gives an 
exponential decay of the generalization error with an increasing fraction 
a of the number of learned examples [41, 42]. For random patterns, the 
Bayesian bound of Sec. 3.3.3 as well as the optimal perceptron give c <X 1/ a. 
Hence, in this case, selected examples give much better performance. 

For more complicated networks it may be difficult to find patterns at 
the border of knowledge: An algorithm has been investigated that uses the 
principle of maximal disagreement between several students as a selection 
process [43]. Several students are trained on the same set of examples by 
an algorithm that selects students randomly in the version space. Then an 
algorithm starts which selects a new example for the training set: Many 
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random input vectors are presented to the students, and one is chosen 
on which the students disagree most. This problem has been solved using 
the replica theory. For large a, the gain of information becomes constant, 
yielding an exponential decay of the generalization error; this even holds 
for only two students. 

Selecting examples according to the weight vector W s (or several vectors 
ws ) may not be the best way of selecting examples. If the student learns 
a new example that is perpendicular to all of the previous ones, the gen­
eralization error is much lower than for the examples perpendicular to the 
actual Ws (a) [2J. However, this algorithm works only for a < 1. 

5.5.5 DISCONTINUOUS LEARNING 

If one increases the number of examples, one expects that the generalization 
error of a network continuously decreases to its minimal possible value for 
a --+ 00. If the rule is completely learnable, then the asymptotic error is 0, 
at least for perfect learning. However, a different behavior is observed for 
perceptrons with binary weights: For small a, e decreases; but at a critical 
value ac , e jumps discontinuously to a lower value that is 0 for a realizable 
rule [44, 45J. This transition occurs even for high-temperature learning. In 
this case, it can be easily described analytically, since one does not need 
replicas [47J. We consider the case where both the teacher and the student 

are simple perceptrons with binary weights W s , Wt E {1/..fN, -1/..fN} N. 

The student learns a set of aN many examples «(k' Uk) from the teacher, 
and the training algorithm is a Monte Carlo procedure. After learning each 
weight vector, Ws occurs with probability 

p(ws ) ex: exp [-,8 ~ e [-(Wt . ek)(ws . ek)l] . (5.142) 

For high temperatures, T = 1/,8, the free energy I per synapse of the ther­
mal equilibrium after learning is only a function of the overlap R between 
the teacher and the student: 

a,8 1 - R 1 - R 1 + R 1 + R -,81 = --;- arccos R - -2- ln -2- - -2- ln -2-' (5.143) 

The first term is the generalization error, and the second term is the entropy 
of Ising variables with magnetization R. Note that T and a appear only as 

aeff = a/T. (5.144) 

Hence, in the limit T --+ 00, the network has to learn a --+ 00 many exam­
ples. The minimum of I(R) gives the equation that determines the overlap 
R: 

a,8 
R = tanh ..;r-:::Ji2' 

11' l-R 
(5.145) 
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Solving these equations, one finds three different regimes of aeff: 

1. For aeff < 1.7, a state with R < 1 is the minimum of f. The gen­
eralization error decreases from e = ~ at aef f = 0 to e ~ 0.2 at 
aeff = 1.7. 

2. Between 1.7 < aeff < 2.1, the state with R < 1 is a local minimum, 
only; the state R = 1 has lower free energy. Hence, the system has a 
first-order transition to perfect generalization. 

3. For aeff > 2.1, the metastable state with R < 1 disappears. 

Note that for large a the network collapses to its ground state at high 
temperatures! To understand this, consider a small deviation 6R = 1 - R 
from the state of perfect generalization. The energy increases like E ex: 
N J8ij,. This increase cannot be compensated for by the entropy increase 
68 ex: N{6R) In{6R). Hence, the state R = 1 is always a local minimum of 
f{R); and if the initial state of the student is identical to the teacher, then 
no Monte Carlo algorithm can move the student out of this state of perfect 
generalization. Increasing the complexity of the student network by using a 
multilayer architecture with binary weights leads to even more phases and 
discontinuous transitions of the generalization error [46]. 

At zero temperature, i.e., for perfect learning, the first-order transition 
for the binary weight perceptron occurs at a c = 1.245 [45]. Approaching the 
transition from below, a -+ ac, the entropy 8 obtained from the number 
of weight vectors w B that learn aN many examples perfectly goes to O. 8 
has been calculated by the replica method. 

Figure 5.13 shows the phase diagram of the binary perceptron obtained 
from replica calculation including replica symmetry breaking (RSB) [47]. 
In addition to the three phases discussed above, there is a spin-glass phase 
where a solution with one-step RSB exists; this solution is metastable. The 
spin-glass phase indicates a complex space of students {ws } who learn 
perfectly. Its implications for a dynamics of the binary weight perceptron 
are still unclear. A direct treatment of the dynamics gives new types of 
freezing transitions [48]. 

How many questions does one have to ask in order to obtain a complete 
knowledge about the N unknown weights of the student w s? For binary 
weights, one needs at least N questions; hence, the minimal possible number 
of patterns for which a transition to perfect generalization occurs is N. This 
gives a lower bound . 

ac > 1. (5.146) 

Therefore, learning random patterns with a transition ac = 1.245 is not 
the optimal way of asking questions. A better strategy seems to be learning 
patterns at the border of knowledge, as was discussed in Sec. 5.5.4. In fact, 
a replica calculation gives ac ~ 1.14 [42]. 
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Fig. 5.13. Phase diagram for the perceptron with binary weights (taken from 
[47]). To the left of the dashed line, the equilibrium state has R < 1. To the right, 
the state of perfect generalization (R = 1) is the absolute minimum of the free 
energy. Between the dashed line and the solid spinodal line, the R < 1 state is 
metastable. In the region marked by "SG," a one-step replica symmetry breaking 
predicts a metastable spin-glass phase. 

For T = 0, all results so far have been obtained by phase-space calcula­
tions. This means that one calculates the volume of all students who learn 
perfectly. However, a practicable training algorithm does not exist yet. In 
fact, finding a W 8 may be an NP-hard problem of combinatorial optimiza­
tion [48,49], at least for Q < 1.63 (the upper limit of the spin-glass phase), 
for which an algorithm converging in a time that is a polynomial in N does 
not exist. Then even simulated annealing does not yield perfect learning. 

5.5.6 LEARNING DRIFTING CONCEPTS 

In the previous sections the examples were given by a rule ( = teacher) 
defined by a perceptron with a stable weight vector Wt. All of the examples 
were learned iteratively, that is, the training algorithm was repeated for all 
of the examples until it converged. 

But neural networks also may be useful for situations where the rule 
slowly changes with time, and the network tries to follow the changes by 
learning only the most recent examples. Hence, the teacher continuously 
changes his opinion and the student tries to adapt to such a dynamic pro­
cess by learning the examples and, if possible, predicting Wt for the next 
time step. 

In the simplest case, the teacher vector Wt is performing a random walk 
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in the N-dimensional space [50, 51J with 

'" Wt(t + 1) . Wt(t) = 1 - N' (5.147) 

where '" is a measure of the drift velocity. The student learns only one 
example (e,a) with a = sign (Wt· e) given by the teacher at time t. The 
learning rule uses only information about the output bit a and the field 
h(t) of the student. One defines 

Ws(t + 1) = ws(t) (1 - ~) + ~I (a(t), h(t)) a(t) ws(t). (5.148) 

1 is a function that has to be optimized, and h(t) is the field generated by 
the student, h(t) = (l/VN) ws(t) . ej ,\ gives an additional weight decay 
which reduces the length of the student vector Ws. 

Again we need the overlaps R = Wt • ws/N and qo = Ws . ws/N to 
determine the generalization error £ = (1/11") arccos (R/vqo). But, since 
only the latest example is learned, one obtains simple differential equations 
for R(t) and qo(t), in analogy to Sec. 5.5.1. The changes of Rand q are 
given by 

6.R = ~[f(a,h(t))~eat-('\+"')R] (5.149) 

t::.qo ~ [!Ca, h(t» a h(t) + ~f2(a, h(t» - ,\qo] 

These equations have to be averaged over different examples e and different 
random walks of the teacher Wt. For random examples one obtains 

dR 
da 

dqo 
da 

Wt e 
= I(a, h) TN a - (,\ + ",)R (5.150) 

Wt· e 1 2 = 2/(a, h) VN +"21 (a, h) - 2'\qo . 

The fields Ws . e and Wt . e are correlated Gaussian variables that allow 
an easy calculation of the average values n similar to Sec. 5.5.1. The 
"time t" has been replaced by aN, the number of learned examples. 

As before, the simplest learning rule is the Hebbian one, with 1 = 1. In 
this case, one finds without decay (,\ = 0): 

R(a) (5.151) 
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Fig. 5.14. Generalization errors for the learning of drifting concepts, using Heb­
bian learning (with and without weight decay), the perceptron algorithm, and 
the on-line algorithm with optimal f given in [53]. 

Figure 5.14 shows the generalization error c(o:) given by these equations. 
It has a minimum at some 0: value but then increases to c = 1/2. Hence, 
the student cannot generalize if he or she has learned too much! 

The reason for this surprising feature is the fact that the Hebbian cou­
plings have equal strengths for all of the examples. But, since the teacher 
changes his or her direction, the examples produced some time ago destroy 
the most recent information that is important for generalization. 

In fact, a weight decay>. > 0 produces lorgetting [52]; hence, the error 
c:(o:) decreases to a stationary value c:(oo) that can be minimized with 
respect to >.; the result is shown in Fig. 5.15. The minimal asymptotic 
error increases with small drift parameters TJ as 

1 1/4 copt(OO) ~ 7r3/ 4 TJ • (5.152) 

A better training algorithm is the perceptron learning rule [1], with 
I(a, h) = 0 (K - ah/qo). Now, c(oo) can be minimized with respect to the 
two parameters K and >.. One finds [50, 51] for small TJ values 

c(oo) ~ 0.511]1/3 . (5.153) 

The same power of 1] is found if the learner knows c(o:) and uses this 
information to derive an optimal function I(a, h) [53]. 
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Fig. S.lS. Stationary value c:(oo) for learning of drifting concepts using the 
learning algorithms mentioned in Fig. 5.15. Also, the effect of queries is included. 

An additional improvement is obtained by selecting examples as in Sec. 
5.5.4. For the Hebb rule with optimal decay, one finds 

e( 00) = .!. arccos vrk ~ f2.. 
7r +'17r y; (5.154) 

Using e(a) with an optimal I, the generalization error decays exponentially 
fast to the same asymptotic error [Eq. (5.154)]. 

Of course, a random walk cannot be predicted by definition. But for 
deterministic changes of the teacher or for biased random walks it should 
be possible to predict future actions of the teacher by studying the history 
of the presented examples. The statistical mechanics of such problems still 
have to be formulated. 

5.5.7 DILUTED NETWORKS 

In the previous examples the student had the same structure as the teacher. 
But it may be interesting to study cases where the student has to deduce the 
structure of the teacher from the set of presented examples. A simple case 
is the diluted teacher: Both teacher and student are simple perceptrons, but 
a certain fraction I of the couplings is erased. This means that the teacher 
has a fixed set of weights that are equal to 0, and the student also has a 
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fixed fraction of 0 weights, but he or she is allowed to choose which bonds 
are to be erased. 

Hence, the student has additional dynamic variables C E {O, I}N, which 
are multiplied with the weights w 8 E RN. For this problem, the perceptron 
of optimal stability can be calculated using the phase-space integral of 
Gardner, but now with the additional discrete variables C [54]. One obtains 
the generalization error g as a function of a, f8,ft, where f8 and ft are the 
fraction of nonzero bonds of the student and teacher, respectively. One finds 
that g has a minimum as a function of f8, and for large Q this minimum 
approaches f8 ~ It-

Again, the replica calculation does not provide us with a learning al­
gorithm. Finding the optimal configuration c is presumably an NP-hard 
problem of combinatorial optimization, similar to the binary perceptron. 
Therefore, a practicable algorithm does not exist, yet. However, one might 
guess that, by learning the complete network and by erasing the weak 
bonds, one may obtain a good approximation of the optimal perceptrons. 
In fact, this is the case for attractor networks (= random teacher) [55]. 

A fast and effective dilution algorithm is given by the Hebbian couplings: 

Ci = 0 if (5.155) 

where s is determined by f8. For this fixed dilution vector c, the remaining 
weights are determined by the standard algorithms for the perceptron of 
optimal stability [1]. 

The generalization error g has been calculated analytically [54]. The order 
parameters now are defined by 

N 

q = N1f L CiWa(i) Wb(i) 
8 i=l 

N R = NJ,;,; t;CiWt(i) ws(i). (5.156) 

Rand q determine g as usual. Figure 5.16 shows the result. For fa < ft, 
the target rule is unrealizable; the student cannot reproduce the teacher 
perfectly, even for Q -+ 00. For fs > ft, the student has too many degrees 
of freedom, which deteriorates his or her ability to generalize. Hence, g 

has a maximum that approaches fs -+ ft for a large fraction Q of learned 
examples. 

Note that fs is a fixed parameter. What remains is to find an algorithm 
that determines the optimal dilution fraction fs of the student. By such 
a learning rule the student would be able to explore the structure of the 
teacher. 
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Fig. 5.16. Generalization error as a function of student dilution i. for a teacher 
with dilution it = 0.2. The dashed curve separates training with errors (left) and 
without errors (right). 

5.5.8 CONTINUOUS NEURONS 

Up to now we have mainly discussed output neurons with the step transfer 
function sign (x). The teacher as well as the student is a network with 
binary output a E {+ 1, -I}. But functions with continuous output also 
are interesting. First, they model a continuous firing rate as a function of 
excitation potential for real neurons; and, second, tasks for neurocomputers 
may involve analog signals, and learning rules like gradient descent work 
only for continuous functions [56]. 

In the context of statistical mechanics, continuous neurons have been 
studied for a simple percept ron [57]. The teacher and the student are per­
ceptrons with weight vectors Wt and w s , respectively. But now the output 
signal is given by 

a = tanh (IN W· e) , (5.157) 

where "I is a parameter that measures the degree of nonlinearity of the 
transfer function. An increase of the student's length qo = Ws . wslN can 
be compensated for by a decrease of the slope "Is of Eq. (5.157). Hence, 
only the product "I; qo has a physical meaning, and the student has the 
freedom to adjust its slope "Is during learning. In [57], qo = 1 was chosen. 

Learning again is expressed as minimizing a cost function E, which is 
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chosen as the quadratic deviation 

(5.158) 

By defining 

l1k = (JNWt '~k)' (5.159) 

one observes that E = 0 implies E = 0 for the function 

(5.160) 

This is just the cost function for a linear network! For a < 1, E = 
o gives less equations than unknowns, and the solution with minimal "18 
(corresponding to minimal norm) is given by the pseudoinverse as in Sec. 
5.5.2. Using the replica method, one finds [57] 

R=y'Q. (5.161) 

For a> 1, E = E = 0 gives perfect generalization with "18 = 'Yt and R = 1. 
The generalization error c can be defined by 

(5.162) 

i.e., the quadratic deviation between the answers of the teacher and the 
student for random patterns. 

One finds for a < 1 
00 00 

c=~ J Dx J Dy[tanh('Ytx )-tanh('Yt\/a(l-aY)+'Ytax)f 
-00 -00 

(5.163) 
while c = 0 for a > 1. Figure 5.17 shows the results c(a) for different 
teacher slopes 'Yt. Surprisingly, for 'Yt > 1. 33, the generalization error in­
creases with a when only a small number a of examples has been learned. 

5.5.9 UNSUPERVISED LEARNING 

In the previous sections, a teacher function presented answers to random 
inputs to a student network. Hence, the teacher classified the input pat­
terns. 

However, sometimes one would like to find a classification of input pat­
terns without knowing the answer of a teacher; hence, the input patterns 
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Fig. 5.11. Generalization errors for student and teacher with a "tanh(r·)" trans­
fer function. 'YT is the gain factor of the teacher. 

ek have a structure that the student network has to find out. Recently 
this problem of unsupervised learning was studied in the framework of the 
statistical mechanics of simple perceptrons [58]. 

The inputs are no longer completely random, but they have an internal 
structure defined by a teacher vector Wt: The patterns ek belong to two 
"clouds" with respect to the overlap to the teacher. The distribution of 
U = Wt' t;.k/ffi is a double Gaussian, that is, each peak has a width 1 and 
the two peaks are separated by 2p/ffi with a parameter p = 0(1). Note 
that the patterns have only a very weak overlap p/ffi with the teacher 
vector Wt. In contrast to the previous problems, the student does not know 
the sign of u. 

Learning again is expressed as minimizing a cost function E, and statis­
tical mechanics of the phase space of all students W s is used to calculate 
the overlap R = Wt . wslN after having learned o:N many examples ek 
taken from the double peak distribution. 

Two cost functions have been considered: 

(5.164) 

EB = - L O(K -Iws . ekll..fN) . (5.165) 
k 

The first corresponds to principal component analysis [56] and the second 
to finding the perceptron of maximal stability K, i.e., one maximizes K with 
EB = 0, if possible. 

In both cases, one finds a critical value o:c below which the student 
cannot generalize (R = 0). Only if the number of learned examples is larger 
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than acN can the student develop an overlap with the teacher direction. 
Of course, the sign of the classification cannot be deduced, since it is not 
shown by the teacher (unsupervised learning). Figure 5.18 shows the critical 
number ac as a function of p, which measures how strong the double peak 
structure of the cloud of patterns shows up. For the first case, ac diverges 
with P > 0, and one finds 

(5.166) 

But, surprisingly, the perceptron with maximal stability cannot generalize 
if the distinction p of the two classes of input patterns is smaller than 
Pc = \1'2. And, even for a -+ 00, the generalization error does not decrease 
to 0, but one has 

R(a -+ 00) = ± v'1- 2/p2 for a> v2 . (5.167) 

5.6 Summary and Outlook 

We set out to convince the reader that the study of simple mathematical 
models is a promising way to understand at least part of a neural network's 
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abilities to learn from examples. Thus, in the first part of this chapter we 
tried to review a few of the basic theoretical ideas and tools which are 
currently discussed in the computer science and statistical physics hterature 
on neural networks. 

The Vapnik-Chervonenkis method, well known in theoretical computer 
science, is able to bound the generalization error using only a single pa­
rameter of the class of networks, rather than their complete architecture. 

The statistical physicist's tools, which mainly are based on the replica 
method, are designed for very large nets and allow for the exact calcula­
tion of learning curves in a variety of circumstances. Here, however, one is 
practically restricted to simple architectures and some hopefully "natural" 
probability distributions for the examples to be learned. 

In the second part of the chapter we concentrated on the statistical physi­
cist's methods and presented a variety of learning problems that can be 
treated exactly for a special network, the perceptron, which is far from 
being a toy model. Although there is a great interest to study more com­
plicated, multilayer nets [2], the amount of recent results for perceptrons 
suggests that there are still more interesting facts to be discovered for this 
machine. 

We found a rich structure of learning curves that may not be easily re­
covered within the VC framework. This stems from the fact that problems 
such as overjitting, discontinuous learning, or intelligent dilution are es­
sentially related to either specific learning algorithms or specific features of 
the network architecture. On the other hand, comparing the VC predictions 
and the concrete learning curves for the perceptron, we found that the VC 
bounds match the correct order of magnitude for the typical asymptotic 
behavior in many cases. Thus, it seems that the asymptotic region can be 
estimated correctly by using only a few parameters of a neural network. 

It would be a challenge to combine statistical physics methods based on 
the replica trick and the VC techniques. Such an approach may be helpful 
and important in treating multilayer nets when the complex structure of 
the network's phase space makes exact replica calculations a hard task. 

Acknowledgments. We thank Andreas Mietzner for assistance and acknowl­
edge support from the Deutsche Forschungsgemeinschaft and the Volkswa­
genstiftung. 

Appendix 5.1: Proof of Sauer's Lemma 

As can be easily seen, the first inequality of Eq. (5.4) is proved if we can 
show the following theorem: 

Consider a sequence of inputs eP = e l' ... , e p. If there is an integer d, 
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such that the number N(e P ) of cells or output configurations fulfills 

(5.168) 

then we can find a subsequence of these inputs, of length d + 1, for which 

N(edH ) = 2dH. 

The proof is by induction on P and d. It is easy to see that the theorem 
holds d = O. It also holds for any P ~ d because, in this case, the premise 
(5.168) can never be fulfilled: The sum of binomials is then 2:: 2P . But 
N(eP ) must always be ~ 2P . 

Let the assertion be true for all d ~ do and all numbers of inputs. Now, 
assume that the theorem is also true for d = do + 1 and for P < Po inputs. 
We then will show that it holds for all P. 

We add a Po + 1st input e and assume the premise (5.168): 

(5.169) 

If, on the first Po inputs, we had N(e PO ) > L:1~6I (~o), then, by the in­
duction assumption, the theorem is true. 

So let us discuss the other case: 

We divide the old cells (those for the first Po inputs) into two groups: a 
group M2 , which contains cells that will split into two subcells on presenting 
the new input, i.e., both outputs are possible on e. The remaining cells, 
i.e., those which do not split, are contained in MI' Obviously, 

(5.170) 

The bars denote the number of cells in the groups. Now, we study two 
possibilities: If IM21 ~ L:1~o (~O), then, by Eq. (5.170), we would have 

N((Po+l) ~ ~' (~o) + ~ (~o) = 

doH (Po + 1) L . , 
i=O Z 

(5.171) 
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by a standard addition theorem for binomials. But this contradicts our 
condition (5.169). So we are left with the second possibility: 

IM21 > t, (~o). 
By the induction assumption we can find a subsequence of length do + 1 
out of the first Po inputs, such that the teachers of the cells in M2 produce 
2110+1 cells. Since these are able to give both possible answers on the new 
input ~, we have constructed a subsequence of length do + 2 with 2110+2 

output combinations. This completes the proof. 

Appendix 5.2: Order Parameters for ADALINE 

For a < 1 it is well known [59J that the coupling vector can be explicitly 
written as 

Ws = N-1/ 2 2: Uk(O-l)kl~' (5.172) 
kl 

with Okl = N-l~k • ~l. The length of the coupling vector is then 

qo = N-1w· W = N-1 2:Uk(O-l)kIUI. (5.173) 
kl 

The basic idea is to calculate the order parameters from an average over 
the teacher. Technically, it is useful to choose Gaussian distributed teacher 
vectors with density 

g(Wt) = (21r)-N/2 . exp( -~Wt . Wt). 

This realizes a homogeneous distribution on the surface of a sphere. The 
outputs are then Uk = sign(uk), where the fields Uk = N-l/2Wt . ~k are 
Gaussian variables with 

(Uk Ul) = Oklo 

For random inputs, Okl is typically of order N-1/ 2 for k =/: l, and 

for k = 1 
for k =/: l. 

One can show [IJ that for random inputs and N -+ 00, 

N-1 ~(O-l)kk = ~. 
L..t I-a 

k 

(5.174) 

(5.175) 

(5.176) 

Using this equation, and inserting Eq. (5.175) into Eq. (5.173), we get 

(5.177) 
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Finally, for the second order parameter, we get 

(5~178) 

The case 0: > 1 can be treated by the same method. We will not give the 
details here [60]. We only mention that Ws is the minimum ofthe quadratic 
learning error 

~)O'k - N-1/ 2W • ek)2. 
k 

Taking the gradient, we get explicitly for the ith component 

with 

and 

ws(i) = 'L)B- 1)ij/j, 
k 

Bij = N-1 I:ek(i)ek(j) 
k 

I; = N-1/ 2 I: O'kek(j)· 
k 

(5.179) 

(5.180) 

Again, the order parameters can be claculated by averaging over the teacher 
vector. 
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Bayesian Methods for 
Backpropagation Networks 
David J.e. MacKay! 

with 10 figures 

Synposis. Bayesian probability theory provides a unifying framework for 
data modeling. In this framework, the overall aims are to find models that 
are well matched to the data, and to use these models to make optimal pre­
dictions. Neural network learning is interpreted as an inference of the most 
probable parameters for the model, given the training data. The search in 
model space (Le., the space of architectures, noise models, preprocessings, 
regularizers, and weight decay constants) also then can be treated as an 
inference problem, in which we infer the relative probability of alternative 
models, given the data. This provides powerful and practical methods for 
controlling, comparing, and using adaptive network models. This chapter 
describes numerical techniques based on Gaussian approximations for im­
plementation of these methods. 

6.1 Probability Theory and Occam's Razor 

Bayesian probability theory provides a unifying framework for data model­
ing. A Bayesian data modeler's aim is to develop probabilistic models that 
are well matched to the data, and to make optimal predictions using those 
models. The Bayesian framework has several advantages. 

Probability theory forces us to make explicit all of our modeling as­
sumptions. Bayesian methods are mechanistic: Once a model space has 
been defined, then, whatever question we wish to pose, the rules of proba­
bility theory give a unique answer that consistently takes into account all 
of the given information. This is in contrast to non-Bayesian statistics, in 
which one must invent estimators of quantities of interest and then choose 
between those estimators using some criterion measuring their sampling 
properties; there is no clear principle for deciding which criterion to use to 

lCavendish Laboratory, University of Cambridge, Madingley Road, Cam­
bridge, CB3 OHE, United Kingdom (mackay@mrao.cam.ac.uk). 
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measure the performance of an estimator; nor, for most criteria, is there 
any systematic procedure for the construction of optimal estimators. 

Bayesian inference satisfies the likelihood principle [1]: Our inferences 
depend only on the probabilities assigned to the data that were received, 
not on properties of other data sets which might have occurred but did not. 

Probabilistic modeling handles uncertainty in a natural manner. There is 
a unique prescription (marginalization) for incorporating uncertainty about 
parameters into our predictions of other variables. 

Finally, Bayesian model comparison embodies Occam's razor, the princi­
ple that states a preference for simple models. This point will be expanded 
on in Sec. 6.1.1. 

The preceding advantages of Bayesian modeling do not make all of our 
troubles go away. The Bayesian is left with the twin tasks of defining an ap­
propriate model space for the data, and implementing the rules of inference 
numerically. 

6.1.1 OCCAM'S RAZOR 

Occam's razor is the principle that states a preference for simple theories. 
If several explanations are compatible with a set of observations, Occam's 
razor advises us to buy the least complex explanation. This principle is 
often advocated for one of two reasons: The first is aesthetic ["A theory 
with mathematical beauty is more likely to be correct than an ugly one 
that fits some experimental data" (Paul Dirac)]; the second reason is the 
supposed empirical success of Occam's razor. Here we discuss a different 
justification for Occam's razor, namely, 

Coherent inference embodies Occam's razor automatically 
and quantitatively. 

To explain this statement, we first must introduce the language in which 
inferences can be expressed; this is the language of probabilities. All co­
herent beliefs and predictions can be mapped onto probabilities. We will 
use the following notation for conditional probabilities: P(AIB,1£) is pro­
nounced "the probability of A, given Band 1£." The statements Band 
1£ list the conditional assumptions on which this measure of plausibility 
is based. For example, if A is "it will rain today," and B is "the barom­
eter is rising," then the quantity P(AIB,1£) is a number between 0 and 
1 that expresses how probable we would think "rain today" is, given that 
the barometer is rising, and given the overall assumptions 1£ that define 
our model of the weather. This conditional probability is related to the 
joint probability of A and B by P(AIB,1£) = P(A, BI1£)/ P(BI1£). Note 
that the conditioning notation does not imply causation. P(AIB) does not 
mean "the probability that A is caused by B". Rather, it measures the 
plausibility of proposition A, assuming that the information in proposition 
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B is true. With apologies to pure mathematicians, we will use the same 
notation for probabilities of discrete variables and for probability densities 
over real variables. 

Having enumerated a complete list of these conditional degrees of belief, 
we then can use the rules of probability to evaluate how our beliefs and 
predictions should change when we gain new information, i.e., as we change 
the conditioning statements to the right of our "I" symbol. For example, 
the probability P{BIA, 11.} measures how plausible it is that the barometer 
is rising, given that today is a rainy day; this probability can be obtained 
by Bayes' rule, P{AIB, 11.} = P{BIA, 11.}P{AI11.}/P{BI11.}. Here, our overall 
model of the weather, 11., is a conditioning statement on the right-hand side 
of all the probabilities. All inferences are conditional on subjective assump­
tions. Bayesian methods force us to make these tacit assumptions explicit, 
and then provide rules for reasoning consistently given those assumptions. 

We evaluate the plausibility of two alternative theories 'HI and 11.2 in 
light of data D as follows: Using Bayes' rule, we relate the plausibility of 
model 11.1 given the data P{11.lID) to the predictions made by the model 
about the data P(DI11.l) and the prior plausibility of 11.1, P(11.l). This gives 
the following probability ratio between theory 11.1 and theory 11.2: 

P(11.1ID) P(11.l) P(DI11.l) 
P(11.2ID) = P(11.2) P(DI11.2)' 

(6.1) 

The first ratio (P(11.d/P{11.2)) on the right-hand side measures how much 
our initial beliefs favored 11.1 over 11.2. The second ratio expresses how well 
the observed data were predicted by 11.1, compared to 11.2. 

How does this relate to Occam's razor when 11.1 is a simpler model than 
11.21 The first ratio (P(11.l)/P(11.2)) gives us the opportunity, if we wish, 
to insert a prior bias in favor of 11.1 on aesthetic grounds, or on the basis 
of experience. This would correspond to the motivations for Occam's razor 
discussed in the first paragraph. But this is not necessary: The second ratio, 
the data-dependent factor, embodies Occam's razor automatically. Simple 
models tend to make precise predictions. Complex models, by their nature, 
are capable of making a greater variety of predictions (Fig. 6.1). So, if 11.2 is 
a more complex model, it must spread its predictive probability P{DI11.2} 
more thinly over the data space than 11.1. Thus, in the case where the data 
are compatible with both theories, the simpler 11.1 will turn out to be more 
probable than 11.2, without our having to express any subjective dislike 
for complex models. Our subjective prior just needs to assign equal prior 
probabilities to the possibilities of simplicity and complexity. Probability 
theory then allows the observed data to express their opinion. 

Let us turn to a simple example. Here is a sequence of numbers: 

2,4,6,8 (6.2) 

The task is to predict what the next two numbers are likely to be, and infer 
what the underlying process probably was that gave rise to this sequence. 
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Evidence 

Fig. 6.1. Why Bayesian inference embodies Occam's razor. This figure gives 
the basic intuition for why complex models are penalized. The horizontal axis 
represents the space of possible data sets D. Bayes' rule rewards models in pro­
portion to how much they predicted the data that occurred. These predictions 
are quantified by a normalized probability distribution on D. In this chapter, this 
probability of the data given model1ti, P(DI1ti), is called the evidence for 1ti. A 
simple model1tl makes only a limited range of predictions, shown by P(DI1tl)j 
a more powerful model1t2, which has, for example, more free parameters than 
1t1, is able to predict a greater variety of data sets. This means, however, that 
1t2 does not predict the data sets in region Cl as strongly as 1t1. Suppose that 
equal prior probabilities have been assigned to the two models. Then, if the data 
set falls in region C1, the less powerfu.l model1t1 will be the more probable model. 

We assume that it is agreed that a plausible prediction and explanation 
are "10, 12" and "add 2 to the previous number." 

What about the alternative answer, "8.91,8.67" with the underlying rule 
being, "get the next number from the previous number, x, by evaluating 
-x3 /44 + 3/11x2 + 34/11"? We assume that this prediction seems rather 
less plausible. But the second rule fits the data (2, 4, 6, 8) just as well as 
the rule "add 2." So why should we find it less plausible? Let us give labels 
to the two general theories: 

'Ha The sequence is an arithmetic progression, "add n," 
where n is an integer. 

'He The sequence is generated by a cubic function of the 
form x -+ cx3 + dx2 + e, where c, d, and e are 
fractions. 

One reason for finding the second explanation, 'He, less plausible might be 
that arithmetic progressions are more frequently encountered than cubic 
functions. This would put a bias in the prior probability ratio P('Ha)/ P('He) 
in Eq. (6.1). But let us give the two theories equal prior probabilities, and 
concentrate on what the data have to say. How well did each theory predict 
the data? 

To obtain P(DI'Ha), we must specify the probability distribution that 
each model assigns to its parameters. First, 'Ha depends on the added 
integer n and the first number in the sequence. Let us say that each of 
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these numbers could have been anywhere between -50 and 50. Then, since 
only the pair of values {n = 2, first number= 2} give rise to the observed 
data D = (2, 4, 6, 8), the probability of the data, given 'Ha, is 

1 1 
P(DI'Ha) = 101101 = 0.00010. (6.3) 

To evaluate P(DI'He), we must similarly say what values the fractions c, d, 
and e might take on. A reasonable assignment might be that, for each 
fraction, the numerator is a number anywhere between -50 and 50, and the 
denominator is a number between 1 and 50. As for the initial value in the 
sequence, let us leave its probability distribution the same as in 'Ha. Then, 
including a factor of 4 in the probability of d = 3/11, since this fraction 
also can be expressed as 6/22, 9/33, and 12/44, we find that the probability 
of the observed data, given 'He, is 

P(DI'He) = (1~1) (1~1 510) (1~1 5~) (1~1 5~) (6.4) 

= 0.00000000000031. (6.5) 

Thus, even if our prior probabilities for 'Ha and 'He are equal, the odds, 
P(DI'Ha} : P(DI'Hc}, in favor of 'Ha over 'He, given the sequence D = (2, 
4,6, 8), are about three hundred million to one. 

This answer depends on several subjective assumptions, in particular, the 
probability assigned to the free parameters n, c, d, and e of each theory. 
Bayesians make no apologies for this: There is no such thing as inference or 
prediction without assumptions. However, the quantitative details of the 
prior probabilities have no effect on the qualitative Occam's razor effect; the 
complex theory 'He always suffers an "Occam factor" because it has more 
parameters, and so can predict a greater variety of data sets (Fig. 6.1). This 
was only a small example, and there were only four data points; as we move 
to larger and more sophisticated problems, the magnitude of the Occam 
factors typically becomes larger, and the degree to which our inferences 
are influenced by the quantitative details of our subjective assumptions 
becomes even smaller. 

6.1.2 BAYESIAN METHODS AND DATA ANALYSIS 

Let us now relate the discussion above to real problems in data analysis. 
There are countless problems in science, statistics, and technology which 
require that, given a limited data set, preferences be assigned to alterna­
tive models of differing complexities. For example, two alternative hypothe­
ses accounting for planetary motion are Mr. Inquisition's geocentric model 
based on "epicycles," and Mr. Copernicus's simpler model of the solar sys­
tem. The epicyclic model fits data on planetary motion at least as well as 
the Copernican model, but it does so using more parameters. Coinciden­
tally for Mr. Inquisition, two of the extra epicyclic parameters for every 
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planet are found to be identical to the period and radius of the sl m's "cy­
cle around the earth." Intuitively, we find Mr. Copernicus's theory to be 
more probable. We now explain in more detail how Mr. Inquisition's excess 
parameters are penalized automatically under probability theory. 

6.1.3 THE MECHANISM OF THE BAYESIAN OCCAM'S 
RAZOR: THE EVIDENCE AND THE OCCAM FACTOR 

Two levels of inference often can be distinguished in the task of data mod­
eling. At the first level of inference, we assume that a particular model is 
true, and we fit that model to the data. Typically, a model includes some 
free parameters; fitting the model to the data involves inferring what val­
ues those parameters should probably take, given the data. The results of 
this inference often are summarized by the most probable parameter val­
ues, and error bars on those parameters. This analysis is repeated for each 
model. The second level of inference is the task of model comparison. Here 
we wish to compare the models in light of the data, and assign some sort 
of preference or ranking to the alternatives.2 

Bayesian methods consistently and quantitatively are able to solve both 
of the inference tasks. There is a popular myth that states that Bayesian 
methods only differ from orthodox (also known as "frequentist" or "sam­
pling-theoretical") statistical methods by the inclusion of subjective priors 
which are arbitrary and difficult to assign, and usually do not make much 
difference to the conclusions. It is true that, at the first level of inference, 
a Bayesian's results often will differ little from the outcome of an orthodox 
attack. What is not widely appreciated is how Bayes performs the second 
level of inference; this section therefore will focus on Bayesian model com­
parison. This emphasis should not be misconstrued as implying a belief that 
one ought to use the Bayesian rankings to "choose" a single best model. 
What we do with the Bayesian posterior probabilities is another issue. If 
we wish to make predictions, for example, then we should integrate over 
the alternative models, weighted by their posterior probabilities (Sec. 6.5). 

Model comparison is a difficult task because it is not possible simply to 
choose the model that fits the data best: more complex models can always 
fit the data better, so the maximum likelihood model choice would lead 
us inevitably to implausible, overparameterized models which generalize 
poorly. Occam's razor is needed. 

Let us write down Bayes' rule for the two levels of inference described 

2Note that both levels of inference are distinct from decision theory. The goal 
of inference is, given a defined hypothesis space and a particular data set, to assign 
probabilities to hypotheses. Decision theory typically chooses between alternative 
actions on the basis of these probabilities so as to minimize the expectation of a 
"loss function." This chapter concerns inference alone, and no loss functions are 
involved. 
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above, so as to see explicitly how Bayesian model comparison works. Each 
model 'Hi is assumed to have a vector of parameters w. A model is defined 
by a collection of probability distributions: a "prior" distribution P{WI'Hi), 
which states what values the model's parameters might plausibly take, and 
a set of probability distributions, one for each value of w, which defines the 
predictions P{Dlw, 'Hi) that the model makes about the data D. 

1. Model fitting. At the first level of inference, we assume that one 
model, say, the ith, is true, and we infer what the model's parame­
ters w might be given the data D. Using Bayes' rule, the posterior 
probability of the parameters w is 

(6.6) 

that is, 
P . _ Likelihood x Prior 

osterlOr - E . d . 
VI ence 

The normalizing constant P{DI'Hi) is commonly ignored since it is 
irrelevant to the first level of inference, i.e., the choice of Wj but it 
becomes important in the second level of inference, and we name 
it the evidence for 'Hi. It is common practice to use gradient-based 
methods to find the maximum of the posterior, which defines the 
most probable value for the parameters, WMPj it is then usual to 
summarize the posterior distribution by the value of WMP and error 
bars on these best-fit parameters. The error bars are obtained from 
the curvature of the posteriorj evaluating the Hessian at WMP, A = 
-vv log P{wID, 'Hi), and Taylor-expanding the log posterior with 
t!:l.W=W-WMP: 

we see that the posterior can be locally approximated as a Gaussian 
with a covariance matrix (equivalent to error bars) A-I. Whether 
this approximation is good or not will depend on the problem we are 
solving. The maximum and mean of the posterior distribution have 
no fundamental status in Bayesian inference - they both can be 
arbitrarily changed by nonlinear reparameterizations. Maximization 
of a posterior probability is only useful if an approximation like Eq. 
(6.7) gives a good summary of the distribution. 

2. Model comparison. At the second level of inference, we wish to 
infer which model is most plausible given the data. The posterior 
probability of each model is 

(6.8) 
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Notice that the data-dependent term P(DI1ii) is the evidence for 1ii, 
which appeared as the normalizing constant in Eq. (6.6). The second 
term, P(1ii), is the subjective prior over our hypothesis space, which 
expresses how plausible we thought the alternative models were before 
the data arrived. Assuming that we choose to assign equal priors 
P{1ii) to the alternative models, models 1ii are ranked by evaluating 
the evidence. Equation (6.8) has not been normalized because in the 
data modeling process we may develop new models after the data 
have arrived, when an inadequacy of the first models is detected, for 
example. Inference is open-ended: we continually seek more probable 
models to account for the data we gather. 

To reiterate the key concept: To assign a preference to alternative mod­
els 1ii , a Bayesian evaluates the evidence P(DI1ii ). This concept is very 
general: The evidence can be evaluated for parametric and nonparametric 
models alike; whatever our data modeling task - a regression problem, 
a classification problem, or a density estimation problem - the Bayesian 
evidence is a transportable quantity for comparing alternative models. In 
all of these cases the evidence naturally embodies Occam's razor. 

Evaluating the Evidence 

Let us now study the evidence more closely to gain insight into how the 
Bayesian Occam's razor works. The evidence is the normalizing constant 
for Eq. (6.6): 

(6.9) 

For many problems, including interpolation, it is common for the posterior 
P{wID,1ii) ex: P(Dlw,1ii)P{wl1ii) to have a strong peak at the most 
probable parameters WMP (Fig. 6.2). Then, taking for simplicity the one­
dimensional case, the evidence can be approximated by the height of the 
peak of the integrand P(Dlw,1ii)P(wl1ii) times its width, O'wID: 

P(D l1ii) ~ P(D IWMP' 1ii) P(wMP I1ii) O'wlD • , ..,.. " , .., ., (6.10) 

Evidence ~ Best fit likelihood x Occam factor 

Thus, the evidence is found by taking the best-fit likelihood that the model 
can achieve and mUltiplying it by an "Occam factor" [2], which is a term 
with magnitude less than 1 that penalizes 1ii for having the parameter w. 

Interpretation of the Occam Factor 

The quantity O'wlD is the posterior uncertainty in w. Suppose for simplicity 
that the prior P(WI1ii) is uniform on some large interval O'w, representing 
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Fig. 6.2. The Occam factor. This figure shows the quantities that determine 
the Occam factor for a hypothesis 1ti having a single parameter w. The prior 
distribution (solid line) for the parameter has width 0'10' The posterior distribu­
tion (dashed line) has a single peak at WMP with characteristic width UlOID. The 
Occam factor is (O'wID/O'W)' 

the range of values of w that 1ii thought possible before the data arrived 
(Fig. 6.2). Then, P(wMP I1ii) = l/uw , and 

UlOID Occam factor = --, 
Uw 

(6.11) 

i.e., the Occam factor is equal to the ratio of the posterior accessible volume 
of 1ii 's parameter space to the prior accessible volume, or the factor by 
which 1ii'S hypothesis space collapses when the data arrive [2, 3]. The 
model 1ii can be viewed as consisting of a certain number of exclusive 
submodels, of which only one survives when the data arrive. The Occam 
factor is the inverse of that number. The logarithm of the Occam factor 
can be interpreted as the amount of information gained about the model 
when the data arrive. 

A complex model having many parameters, each of which is free to vary 
over a large range U 10, typically will be penalized by a larger Occam fac­
tor than a simpler model. The Occam factor also penalizes models that 
have to be finely tuned to fit the data, and favors models for which the 
required precision of the parameters UlOID is coarse. The Occam factor is 
thus a measure of complexity of the model but, unlike the VC dimension or 
algorithmic complexity, it relates to the complexity of the predictions that 
the model makes in data space. This depends not only on the number of 
parameters in the model, but also on the prior probability that the model 
assigns to them. Which model achieves the greatest evidence is determined 
by a trade-off between minimizing this natural complexity measure and 
minimizing the data misfit. 

Figure 6.3 displays an entire hypothesis space so as to illustrate the 
various probabilities in the analysis. There are three models, 1il,1i2, and 
1i3, which have equal prior probabilities. Each model has one parameter 
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Fig. 6.3. A hypothesis space consisting of three exclusive models, each having 
one parameter w, and a one-dimensional data set D. The dashed horizontal line 
shows a particular observed data set. The dashed curves below show the posterior 
probability ofw for each model given this data set (cf. Fig. 6.1). The evidence for 
the different models is obtained by marginalizing onto the D axis at the left-hand 
side (cf. Fig. 6.2). 

w (each shown on a horizontal axes) but assigns a different prior range trw 

to that parameter. 'H3 is the most flexible, i.e., the most complex model, 
assigning the broadest prior range. A one-dimensional data space is shown 
by the vertical axis. Each model assigns a joint probability distribution 
P(V, wl'Hi) to the data and the parameters, illustrated by a cloud of dots. 
These dots represent random samples from the full probability distribution. 
The total number of dots in each of the three model subspaces is the same, 
because we assigned equal priors to the models. 

When a particular data set D is received (horizontal line), we infer the 
posterior distribution of w for a model ('H3, say) by reading out the den­
sity along that horizontal line and normalizing. The posterior probability 
P(wID, 'H3) is shown by the dotted curve at the bottom. Also shown is the 
prior distribution P(WI'H3) (cf. Fig. 6.2). 

We obtain Fig. 6.1 by marginalizing the joint distributions P(D, wl'Hi) 
onto the D axis at the left-hand side. This procedure gives the predictions of 
each model in data space. For the data set D shown by the dotted horizontal 
line, the evidence P(DI'H3) for the more flexible model 'H3 has a smaller 
value than the evidence for H2 . This is because 1i3 placed less predictive 
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probability (fewer dots) on that line. Looking back at the distributions over 
w, 11.3 has smaller evidence because the Occam factor (JwID/(Jw is smaller 
for 11.3 than for 11.2. The simplest model 11.1 has the smallest evidence of all, 
because the best fit that it can achieve to the data D is very poor. Given 
this data set, the most probable model is 11.2. 

Occam Factor for Several Parameters 

If w is k-dimensional, and if the posterior is well approximated by a Gaus­
sian, then the Occam factor is obtained from the determinant of the cor­
responding covariance matrix [c.f. Eq. (6.10)]: 

P(D l11.i) P(D IWMP' Hi) P(wMP I11.i) (21r)k/2det-1/2 A, (6.12) , ., , , 
y v 

Evidence ~ Best-fit likelihood xOccam factor 

where A = -VV log P(wID, 11.i), the Hessian which we evaluated when 
we calculated the error bars on WMP [Eq. (6.7)]. As the number of data 
collected, N, increases, this Gaussian approximation is expected to become 
increasingly accurate. 

In summary, Bayesian model selection is a simple extension of maximum 
likelihood model selection: The evidence is obtained by multiplying the best­
fit likelihood by the Occam factor. 

To evaluate the Occam factor, we need only the Hessian A if the Gaussian 
approximation is good. Thus, the Bayesian method of model comparison 
by evaluating the evidence is no more demanding computationally than the 
task of finding for each model the best-fit parameters and their error bars. 

For background reading on Bayesian methods, the following references 
may be helpful. Bayesian methods are introduced and contrasted with or­
thodox statistics in [2a, 3, 4]. The Bayesian Occam's razor is demonstrated 
on model problems in [2, 5]. Useful textbooks are [1, 6]. 

Bayesian Methods Meet Neural Networks 

The two ideas of neural network modeling and Bayesian statistics might 
at first glance seem to be uneasy bedfellows. Neural networks are nonlin­
ear parallel computational devices inspired by the structure of the brain. 
Backpropagation networks are able to learn, by example, to solve prediction 
and classification problems. Such a neural network is typically viewed as a 
black box that slaps together, by hook or by crook, an incomprehensible 
solution to a poorly understood problem. In contrast, Bayesian statistics 
are characterized by an insistence on coherent inference based on clearly 
defined axioms; in Bayesian circles, an "ad hockery" is a capital offense. 
Thus, Bayesian statistics and neural networks might seem to occupy oppo­
site extremes of the data modeling spectrum. 

However, there is a common theme uniting the two. Both fields aim to 
create models that are well matched to the data. Neural networks can be 
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viewed as more flexible versions of traditional regression techniques. Be­
cause they are more flexible (nonlinear), they are able to fit the data bet­
ter and model regularities in the data that linear models cannot capture. 
The problem with neural networks is that an overflexible network might 
be duped by stray correlations in the data into "discovering" nonexistent 
structures. This is where Bayesian methods play a complementary role. 
Using Bayesian probability theory, one can automatically infer how flexible 
a model is warranted by the data; the Bayesian Occam's razor automati­
cally suppresses the tendency to discover spurious structures in data. The 
philosophy advocated here is to use flexible models, like neural networks, 
and then control the complexity of these models in light of the data using 
Bayesian methods. 

Occam's razor is needed in neural networks for the reason illustrated in 
Fig. 6.4(A). Consider a control parameter that influences the complexity of 
a model, for example, a regularization constant (weight decay parameter). 
As the control parameter is varied to increase the complexity of the model 
[from left to right across Fig. 6.4(A)), the best fit to the Training data that 
the model can achieve becomes increasingly good. However, the empirical 
performance of the model, the Test error, has a minimum as a function 
of the control parameters. An overcomplex model overfits the data and 
generalizes poorly. Finding values for model control parameters that are 
well matched to the data is therefore an important and nontrivial problem. 

A central message of this chapter is illustrated in Fig. 6.4(B). When we 
evaluate the posterior probability distribution of the control parameters, we 
find the Bayesian Occam's razor at work. The probability of a model given 
the data is not the same thing as the best quality of fit that the model 
can achieve. Overcomplex models are less probable because they predict 
the data less strongly. Thus, the "evidence" P(DatalControl Parameters) 
can be used as an objective function for optimization of model control 
parameters. 

Bayesian optimization of model control parameters has four important 
advantages: (1) no validation set is involved, so all of the training data can 
be devoted to both model fitting and model comparison; (2) regularization 
constants can be optimized on-line, i.e., simultaneously with the optimiza­
tion of ordinary model parameters; (3) the Bayesian objective function is 
not noisy, in contrast to a cross-validation measure; and (4) the gradient 
of the evidence with respect to the control parameters can be evaluated, 
making it possible to simultaneously optimize a large number of control 
parameters. 

6.2 Neural Networks as Probabilistic Models 

A supervised neural network is a nonlinear parameterized mapping from an 
input x to an output y = y(x; w, A). The output is a continuous function 
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Fig. 6.4. Optimization of model complexity. 

of the input and of the parameters Wj the architecture of the net, i.e., the 
functional form of the mapping, is denoted by A. Such networks can be 
"trained" to perform regression and classification tasks. 

6.2.1 REGRESSION NETWORKS 

In the case of a regression problem, the mapping for a network with one 
hidden layer may have the form: 

Hidden layer: a)l) = L W)~)XI + oy); hj = f(l) (a)l» (6.13) 
I 

Output layer: a~2) = Lw~J)hj +O!2)j Yi = t<2)(a~2», (6.14) 
j 

where, for example, fCl)(a) = tanh(a), and f (2)(a) = a. The "weights" w 
and "biases" 0 together make up the parameter vector w. The nonlinear 
"sigmoid" function fCl) at the hidden layer gives the neural network greater 
computational flexibility than a standard linear regression model. 
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This network is trained using a data set D = {x(m), t(m)} by adjusting 
w so as to minimize an error function, e.g., 

ED(W) = ~ LL (t~m) - Yi(X(m)jw))2. (6.15) 
m i 

This minimization is based on repeated evaluation of the gradient of ED 
using backpropagation (the chain rule) [7]. Often, regularization (also known 
as "weight decay") is included, modifying the objective function to: 

M(w) = {3ED + o:Ew, (6.16) 

where, for example, Ew = ~ Ei w;. This additional term favors small 
values of wand decreases the tendency of a model to "overfit" noise in the 
training data. 

6.2.2 NEURAL NETWORK LEARNING AS INFERENCE 

The neural network learning process above can be given the following prob­
abilistic interpretation. The error function is interpreted as minus the log 
likelihood for a noise model: 

1 
P(Dlw, (3, 7-l) = ZD({3) exp( -(3ED). (6.17) 

Thus, the use of the sum-squared errOr ED [Eq. (6.15)J corresponds to an 
assumption of Gaussian noise on the target variables, and the parameter {3 
defines a noise level a~ = 1/ (3. 

Similarly, the regularizer is interpreted in terms of a log prior probability 
distribution over the parameters: 

1 
P(wla,7-l) = Zw(o:) exp( -o:Ew). (6.18) 

If Ew is quadratic as defined above, then the corresponding prior distri­
bution is a Gaussian with variance a: = 1/0:. The probabilistic model 7-l 
specifies the functional form A of the network, the likelihood [Eq. ·(6.17)J, 
and the prior [Eq. (6.18)J. 

The objective function M(w) then corresponds to the inference of the 
parameters w given the data: 

P(wID, 0:, (3, 7-l) = P(Dlw,{3, 7-l)P(wla, 7-l) 
P(Dla, (3, 7-l) 

1 
= ZM exp(-M(w)). 

(6.19) 

(6.20) 

The w found by (locally) minimizing M(w) is then interpreted as the 
(locally) most probable parameter vector, W MP ' 
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Why is it natural to interpret the error functions as log probabilities? 
Error functions are usually additive. For example, ED is a sum of squared 
errors. Probabilities, on the other hand, are multiplicative: For indepen­
dent events A and B, the joint probability is P(A, B) = P(A)P(B). The 
logarithmic mapping maintains this correspondence. 

The interpretation of M(w) as a log probability adds little new at this 
stage. But new tools will emerge when we proceed to other inferences. First, 
though, let us establish the probabilistic interpretation of classification net­
works, to which the same tools apply. 

6.2.3 BINARY CLASSIFICATION NETWORKS 

If the targets t in a data set are binary classification labels (0,1), it is natural 
to use a neural network whose output Y(Xj w, A) is bounded between 0 
and 1, and is interpreted as a probability P(t= 11x, w, A). For example, a 
network with one hidden layer could be described by Eqs. (6.13) and (6.14), 
with f(2)(a) = 1/(1 + e-a ). The error function f3ED is replaced by the log 
likelihood: 

m 

The total objective function is then M = -G + aEw . Note that this 
includes no parameter 13. 

6.2.4 MULTICLASS CLASSIFICATION NETWORKS 

For a multi class classification problem, we can represent the targets by a 
vector, t, in which a single element is set to 1, indicating the correct class, 
and all other elements are set to O. In this case, it is appropriate to use 
a "softmax" network [8] having coupled outputs which sum to 1 and are 
interpreted as class probabilities Yi = P( ti = 11x, w, A). The last part of 
Eq. (6.14) is replaced by: 

eai 

Yi = Ei' eai' . 
(6.22) 

The log likelihood in this case is 

G = LLtilogYi(x{m)jw). (6.23) 
m i 

As in the case of the regression network, the minimization of the objective 
function M(w) = -G + aEw corresponds to an inference of the form 
in Eq. (6.20). Let us now study the variety of useful results that can be 
built on this interpretation. The results will refer to regression modelsj the 
corresponding results for classification models are obtained by replacing 
f3ED by -G, and ZD(f3) by 1. 
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6.2.5 IMPLEMENTATION 

Bayesian inference for data-modeling problems may be implemented by an­
alytical methods, by Monte Carlo sampling, or by deterministic methods 
employing Gaussian approximations. For neural networks, there are few 
analytic methods. Sophisticated Monte Carlo methods that make use of 
gradient information have been applied to some model problems [9]. The 
methods reviewed here are based on Gaussian approximations to the pos­
terior distribution. 

6.3 Setting Regularization Constants a and (3 

The control parameters a and /3 determine the complexity of the model. 
The term model here refers to a triple: the network architecture; the form 
of the prior on the parameters; and the form of the noise model. Different 
values for the hyperparameters a and /3 define different submodels. To infer 
a and /3 given the data, we simply apply the rules of probability theory: 

P( /3ID 1t) = P(Dla,/3,1t)P(a,/3I1t) 
a" P(DI1t)' 

(6.24) 

The data-dependent factor P(Dla, /3, 1t) is the normalizing constant from 
our previous inference [Eq. (6.19)]; we call this factor the evidence for a 
and /3. 

Assuming that we have only weak prior knowledge about the noise level 
and the smoothness of the interpolant, the evidence framework optimizes 
the constants a and /3 by finding the maximum of the evidence for a and /3. 
If we can approximate the posterior probability distribution in Eq. (6.20) 
by a single Gaussian, 

P(wID,a,/3, 1t) ~ Z~ exp (-M(WMP) - ~(W - WMP)TA(w - WMP») , 

(6.25) 
where A = -V'V'logP(wID,1t), then the evidence for a and /3 can be 
written as 

Z' 
log P(Dla,/3, 1t) = log Zw(a)~D(/3) (6.26) 

1 k 
= -M(WMP) - '2logdetA -logZw(a) -logZD(/3) + '2 log 211', (6.27) 

where k is the number of parameters in w. The terms -~ log det A -
log Zw(a) constitute the log of a volume factor that penalizes small val­
ues of a: The ratio (211')k/2det-l/2 A/Zw(a) is the ratio of the posterior 
accessible volume in parameter space to the prior accessible volume. The 
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maximum of the evidence has some elegant properties which allow it to 
be located efficiently by on-line reestimation techniques. Technically, there 
may be multiple evidence maxima, but this is not common when the model 
space is well matched to the data. As is shown in [10, 5J, the maximum 
evidence a = aMP satisfies the following self-consistent equation: 

(6.28) 

where w MP is the parameter vector that minimizes the objective function 
M = (3ED + aEw, and,,/ is the "number of well-determined parameters," 
given by 

"/ = k-aTrace(A-I). (6.29) 

Here, k is the total number of parameters, and the matrix A-I measures 
the size of the error bars on the parameters w [Eq. (6.7)J. Thus, "/ ~ k 
when the parameters are all well determined in relation to their prior range, 
which is defined by a. The quantity "/ always lies between 0 and k. Recalling 
that a corresponds to the variance 0': = 1/ a of the assumed distribution 
for {Wi}, Eq. (6.28) specifies an intuitive condition for matching the prior 
to the data: The variance is estimated by 0':' = (w2 ), where the average is 
over the "/ effective well-determined parameters; the other k - "/ effective 
parameters having been set to 0 by the prior. 

Similarly, in a regression problem with a Gaussian noise model, the max­
imum evidence value of (3 satisfies: 

l/{3MP = 2ED/(N - ,,/). (6.30) 

Since 2ED is the sum of squared residuals, this expression can be recognized 
as a variance estimator with the number of degrees of freedom set to "/. 

Equations (6.28) and (6.30) can be used as reestimation formulas for a 
and {3. The computational overhead for these Bayesian calculations is not 
severe: It is only necessary to evaluate properties of the error bar matrix, 
A-I. This matrix may be evaluated explicitly [11, 12, 13, 14J, which does 
not take significant time when the number of parameters is small (a few 
hundred). For large problems, these calculations can be performed more 
efficiently using algorithms that evaluate products A v without explicitly 
evaluating A [15, 16J. 

Thodberg [12J combines Eqs. (6.28) and (6.30) into a single reestimation 
formula for the ratio a/ {3. This ratio is all that matters if only the best­
fit parameters are of interest. An advantage of keeping a and {3 distinct, 
however, is that knowledge from other sources (bounds on the value of the 
noise level, for example) can be explicitly incorporated. Also, if we move 
to noise models more sophisticated than a Gaussian, a separation of these 
two control parameters is essential. Finally, if we wish to construct error 
bars, or generate a sample from the posterior parameter distribution for 
use in a Monte Carlo estimation procedure, the separate values of a and {3 
become relevant. 
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6.3.1 RELATIONSHIP TO IDEAL HIERARCHICAL 
BAYESIAN MODELING 

Bayesian probability theory has been used above to optimize the hyperpa­
rameters 0: and (3. This procedure is known in some circles as generalized 
maximum likelihood. Ideally, we would integrate over these nuisance pa­
rameters in order to obtain the posterior distribution over the parameters 
P(wID, H) and the predictive distributions P(t(N+IlID, H); however, if a 
hyperparameter is well determined by the data, integrating over it is very 
much like estimating the hyperparameter from the data and then using 
that estimate in our equations [17, 2, 18J. The intuition is that if, in the 
predictive distribution 

P(t(N+IlID, H) = J do: P(t(N+IlID,o:, H)P(o:ID, H), (6.31) 

the posterior P(o:ID, H) is sharply peaked at O:=O:MP with width alogalD, 

and if the distribution P(t(N+llID, 0:, H) varies slowly with log 0: on a scale 
of alogalD, then P(o:ID, H) is effectively a delta-function, so that: 

(6.32) 

Now the error bars on logo: and 10g{3, found by differentiating 
log P(Dlo:, {3, H) twice, are [5]: 

(6.33) 

Thus, the error introduced by optimizing 0: and {3 is expected to be small 
for 7» 1 and N -7» 1. How large 7 needs to be depends on the problem; 
but for many neural network problems, a value of 7 greater than 3 may 
suffice, since the predictions of an optimized network are often insensitive 
to an e-fold change in 0:. 

It is often possible to integrate over 0: and {3 early in the calculation, ob­
taining a true prior and a true likelihood. Some authors have recommended 
this procedure [19, 20J, but it is counterproductive as far as practical ma­
nipulation is concerned [18]: the resulting true posterior is a skew-peaked 
distribution, and, apart from Monte Carlo methods, there are currently no 
computational techniques that can cope directly with such distributions. 

Later, a correction term will be given which approximates the integra­
tion over 0: and {3 when predictions are made, i.e., as a last step in the 
calculations. 

6.3.2 MULTIPLE REGULARIZATION CONSTANTS 

For simplicity, it so far has been assumed that there is only a single class 
of weights, which are modeled as coming from a single Gaussian prior with 
a:' = 1/0:. However, in dimensional terms, weights usually fall into three 
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or more distinct groups, which for consistency should not be modeled as 
coming from a single prior. It therefore is desirable to divide the parameters 
into several classes c with independent scales O:e. Assuming a Gaussian prior 
for each class, we can define EW(e) = L:iEe w~ /2, and assign a Gaussian 
prior: 

P( {wi}IO:e, 1i) = II; exp (-L: o:eEW(e») . 
Wee) e 

(6.34) 

This gives a weight decay scheme with a different decay rate O:e for each 
class. It often is found that network performance can be enhanced by this 
division of weights into different classes. The automatic relevance determi­
nation model (Sec. 6.7) uses this prior. 

The evidence framework optimizes the decay constants by finding their 
most probable value, i.e., the maximum over {O:e} of P(DI{O:e}, 1i), and, 
as before, the maximum evidence {O:e} satisfy the following self-consistent 
equations: 

l/o:~P = 2: wrp2 he, (6.35) 
iEe 

where w MP is the parameter vector that minimizes the objective function 
M = /3ED + L:e O:eEW(e) , and 'Ye is the number of well-determined pa­
rameters in class c, 'Ye = ke-o:eTracee(A-l), where ke is the number of 
parameters in class c, and the trace is over those parameters only. 

For simplicity, the following discussion will assume once more that there 
is only a single parameter 0:. 

6.4 Model Comparison 

The evidence framework divides our inferences into distinct "levels of in­
ference," of which we now have completed the first two: 

• Levell: Infer the parameters w for given values of 0:, /3: 

P( ID /3 1i) = P(Dlw, 0:, /3, 1i)P(wlo:, /3, 1i) 
w ,0:, , P(Dlo:, /3, 1i) . (6.36) 

• Level 2a: Infer 0:, /3: 

P( /3ID 1i) = P(Dlo:,/3,1i)P(o:,/3I1i) 
0:" P(DI1i)' (6.37) 

• Level 2b: Compare models: 

P(1iID) ex: P(DI1i)P(1i). (6.38) 
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There is a pattern in these three applications of Bayes rule: At each of the 
higher levels 2a and 2b, the data-dependent factor (e.g., in level 
2a, P(Dla,,8, 'H)) is precisely the normalizing constant (the "evidence") 
from the preceding level of inference. This pattern of inference continues 
when we compare different models 'H, which might use different architec­
tures, preprocessings, regularizers, or noise models. Alternative models are 
ranked by evaluating P(DI'H), the normalizing constant of inference in Eq. 
(6.37). 

In the preceding section we reached level 2a by using a Gaussian approx­
imation to P(wID, a,,8, 'H). We now evaluate the evidence for 'H. Using a 
Gaussian approximation for P(loga,log,8ID, 'H), and neglecting the slight 
correlations in this posterior, we obtain the estimate 

P(DI'H) ~ P(DlaMP ,,8MP' 'H)P(IogaMP ' log,8MPI'H) 21l"0"1ogaIDO"log.8ID, 
(6.39) 

where P(DlaMP ' ,8MP' 'H) is obtained from Eq. (6.27), and the error bars 
on log a and log,8 are as given in Eq. (6.33). This Gaussian approximation 
over a and ,8 holds good for 'Y» 1 and N - 'Y» 1 [18J. 

6.4.1 MULTIMODAL DISTRIBUTIONS 

The preceding exposition falls into difficulty if the posterior distribution 
P(wID, a,,8, 'H) is significantly multimodal; this is usually the case for mul­
tilayer neural networks. However, we can persist with the use of Gaussian 
approximations if we introduce two modifications. 

First, we recognize that a typical optimum WMP will be related to a num­
ber of equivalent optima by symmetry operations, such as the interchange 
of hidden units and the inversion of signs of weights. When evaluating the 
evidence using a local Gaussian approximation, a symmetry factor should 
be included in Eq. (6.26) to take into account these equivalent islands of 
probability mass. In the case of a net with one hidden layer of H units, the 
appropriate permutation factor is H!2H , for general WMp. 

Second, there are multiple optima which are not related to each other 
by model symmetries. We modify the above framework by changing our 
goals; specifically, we view each of the local probability peaks as a distinct 
model. Instead of inferring the posterior over a,,8 for the entire model 'H, 
we allow each local peak of the posterior to choose its own optimal value 
for these parameters. Similarly, instead of evaluating the evidence for the 
entire model'H, we aim to calculate the posterior probability mass in each 
local optimum. This seems natural, since a typical implementation of the 
model will involve setting the parameter vector to a particular value or a 
small set of values. Thus, we do not care about the probability of an en­
tire model; what matters is the probability of the local solutions we find. 
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The same method of chopping up a complex model space is used in the 
unsupervised classification system, AutoClass [21]. 

Henceforth, the term "model" will refer to a pair {'H, Sw.}, where 'H 
denotes the model specification and Sw. specifies a solution neighborhood 
around an optimum w·. Adopting this shift in objective, the Gaussian inte­
grals above can be used without alteration to set a and {3 and to compare 
alternative solutions, assuming that the posterior probability consists of 
well-separated islands in parameter space that are roughly Gaussian. 

For general a and {3, the Gaussian approximation over w will not be 
accurate; however, we only need it to be accurate for the small range of a 
and {3 close to their most probable values. For sufficiently large amounts of 
data compared to the number of parameters, this approximation is expected 
to hold. Practical experience indicates that this is a useful approximation 
for many real problems. 

6.5 Error Bars and Predictions 

Having progressed up the three levels of modeling, the next inference task is 
to make predictions with our adapted model. It is common practice simply 
to use the most probable values of 'H, w, etc., when making predictions, 
but this is not optimal. Bayesian prediction of a new datum t(N+ll involves 
marginalizing over all of these levels of uncertainty: 

P(t(N+tlID) = L ! da d{3 ! dkw P(t(N+ll Iw, a, {3, 'H)P(w, a, {3, 'HID). 
'H. 

(6.40) 
The evaluation of the distribution P(t(N+1l lw, a, {3, 'H) for specified model 
parameters w is generally straightforward, requiring a single forward pass 
through the network. Typically, marginalization over w and 'H affects the 
predictive distribution significantly, but integration over a and {3 has a 
lesser effect. 

6.5.1 IMPLEMENTATION 

Marginalization sometimes can be done analytically. When this fails, Monte 
Carlo methods [9] may be used. The average of a function of an uncertain 
parameter q, t(q), under the posterior over q, can be estimated with tol­
erable error by obtaining a small number of samples from the posterior 
distribution for q and then evaluating the mean value of t. The variance 
of this estimator is independent of the dimensionality of q and scales in­
versely with the sample size. A cheap and cheerful way of obtaining such 
samples is described later in Sec. (6.9). Here, methods based on Gaussian 
approximations are described. 
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6.5.2 ERROR BARS IN REGRESSION 

Integrating first over W for fixed a and (3, the predictive distribution is 

If a Gaussian approximation is made for the posterior P(wID, a, (3, 11.), if 
the noise model is Gaussian, and if a local linearization of the output is 
made as a function of the parameters, 

(6.42) 

with g = ay / aw, then the predictive distribution in Eq. (6.41) is a straight­
forward Gaussian integral. This distribution has mean y( X N+1 , W MP) and 
variance 0';10,,6 = gT A-I g + O'~, where A = "V"V log P(wID, a, (3, 11.). 

Integration over the regularization constants a and (3 contributes an addi­
tional variance in only one direction; to leading order in "Y- I , P(t(N+l) ID, 11.) 
is normal, with variance [18]: 

2 T ( A-I (2 2) I I T) 2 
O't = g .l'l. + O'logolD + O'!og,6ID WMpWMP g + O'v' (6.43) 

where w~p == aWMPla/a(loga) = akIwMP ' and O'~golD = 2h and 

O'fog,B/D = 2/N - "Y. 

6.5.3 INTEGRATING OVER MODELS: COMMITTEES 

If we have multiple regression models 1-£, then our predictive distribution 
is obtained by summing together the predictive distribution of each model, 
weighted by its posterior probability. If a single prediction is required and 
the loss function is quadratic, the optimal prediction is a weighted mean of 
the models' predictions y(xN+1; WMP , 1-£). The weighting coefficients are the 
posterior probabilities, which are obtained from the evidences P(DI11.). If 
we cannot evaluate these accurately, then alternative pragmatic prescrip­
tions for the weighting coefficients exist [12, 38, 22]. 

6.5.4 ERROR BARS IN CLASSIFICATION 

In the case of linearized regression discussed above, the mean of the predic­
tive distribution in Eq. (6.41) was identical to the prediction of the mean, 
WMP . This is not the case in classification problems. The best-fit parameters 
give overconfident predictions. A non-Bayesian approach to this problem 
is to downweight all predictions uniformly, by an empirically determined 
factor [23]. But a Bayesian viewpoint helps us to understand the cause of 
the problem, and provides a straightforward solution that is demonstrably 
superior to this ad hoc procedure. 
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This issue is illustrated for a simple two-class problem in Fig. 6.5. Figure 
6.5{a) shows a binary data set, which, in Fig. 6.5{b) is modeled with a linear 
logistic function. The best-fit parameter values give predictions which are 
shown by three contours. Are these reasonable predictions? Consider new 
data arriving at points A and B. The best-fit model assigns both of these 
examples probability 0.9 of being in class 1. But intuitively we might be 
inclined to assign a less confident probability (closer to 0.5) at B than at 
A, since point B is far from the training data. 

Precisely this result is obtained by marginalizing over the parameters, 
whose posterior probability distribution is depicted in Fig. 6.5{c). Two ran­
dom samples from the posterior define two different classification surfaces, 
which are illustrated in Figs. 6.5(d) and (e). The point B is classified dif­
ferently by these different plausible classifiers, whereas the classification of 
A is relatively stable. We obtain the Bayesian predictions [Fig. 6.5{f)J by 
averaging together the predictions of the plausible classifiers. The resulting 
0.5 contour remains similar to that for the best-fit parameters. However, 
the width of the decision boundary increases as we move away from the 
data, in full accordance with intuition. 

The Bayesian approach is superior because the best-fit model's predic­
tions are selectively downweighted to a different degree for each test case. 
The consequence is that a Bayesian classifier is better able to identify the 
points where the classification is uncertain. This pleasing behavior results 
simply from a mechanical application of the rules of probability. 

For a binary classifier, a numerical approximation to the integral over a 
Gaussian posterior distribution is given in [24J. An equivalent approxima­
tion for a multiclass classifier has not yet been implemented. 

This marginalization also can be done by Monte Carlo methods. A dis­
advantage of a straightforward Monte Carlo approach would be that it is 
a poor way of estimating the probability of an improbable event, i.e., a 
P(tID, 'H) that is very close to 0, if the improbable event is most likely to 
occur in conjunction with improbable parameter values. In such cases one 
might instead temporarily add the event in question to the data set and 
evaluate the evidence P(D, t(N+lll'H). The desired probability is given by 
comparing this with either the previous evidence P(DI'H) or the evidence 
for the complementary virtual data set P(D, t(N+ll I'H). 

6.6 Pruning 

The evidence can serve as a guide for pruning, i.e., changing the model 
by setting selected parameters to O. Thodberg [12J has done this in the 
straightforward way: Each parameter in the network is tentatively pruned; 
then the new model is optimized, and the evidence is evaluated to decide 
whether to accept the pruning. 
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Samplcsfrom 
p(wlD.H} 

c) 

Fig. 6.5. Integrating over error bars in a classifier. (a) A binary data set. The 
two classes are denoted by the point styles x=l, 0=0. (b) The data are modeled 
with a linear logistic function. Here, the best-fit model is shown by its 0.1, 0.5, 
and 0.9 predictive contours. The best-fit model assigns probability 0.9 of being in 
class 1 to both inputs A and B. (c) The posterior probability distribution of the 
model parameters, P(wID, Ji) (schematic; the third parameter, the bias, is not 
shown). The parameters are not perfectly determined by the data. Two typical 
samples from the posterior are indicated by the points labeled 1 and 2. The 
following two panels show the corresponding classification contours. (d) Sample 
1. (e) Sample 2. Notice how the point B is classified differently by these different 
plausible classifiers, whereas the classification of A is relatively stable. (f) We 
obtain the Bayesian predictions by integrating over the posterior distribution of 
w. The width of the decision boundary increases as we move away from the data 
(point B). See text for further discussion. 

Here, an alternative procedure using the Gaussian approximation is de­
scribed. Whether pruning is in fact a good idea is questioned later in Sees. 
6.7 and 6.10. 

Suppose that a model's parameters have prior and posterior distributions 
which are exactly Gaussian (Le., assume that the model is locally linear, 
and that both a and (3 are well determined): 

P(wl11) = _1_ exp (-a1wTlw) 
Zw 2 

P{wID, 11) = Z~ exp (-MMP - ~LlWT ALlw) , 

where Llw = w - WMP • For brevity, a and (3 are omitted here from the 
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conditioning propositions. The evidence for 'H is 

log P(DI'H) = -MMP - ~ log det A + ~ logdet 0:1 + const. (6.44) 

We are interested in evaluating the difference in evidence between this 
model'H and an alternative model 'Hi, where the subscript 8 denotes the 
setting to 0 of parameter 8. The remaining parameters of 'Hi still have a 
Gaussian distribution but are confined to the constraint surface w . es = 0, 
where es is the unit vector in the direction of the deleted parameter. 

We can evaluate the difference in evidence between 'H and 'Hi by: (1) 
finding the location of the new optimum w~P and evaluating the change in 
MMP' f!..MMP = _!f!..wT Af!..w there; and (2) evaluating the change in log 
determinant of the distribution. 

The first task is accomplished by introducing a Lagrange multiplier. We 
find: 

MP Ws A-I w2 
Wi = WMP - 2.H. es ; f!..MMP = 2 B2 , 

as as 
(6.45) 

where the marginal error bars on parameter W B are a~ = eBA-leB = A-;!. 
The quantity f!..MMP is the saliency term that has been advocated as a guide 
for "optimal brain damage" [14, 25]. The change in evidence, however, 
involves a second "Occam factor" term that is simple to calculate. The 
change in evidence when a single parameter 8 is deleted is 

W2 a 
log P(DI'H) - log P(DI'Hi) = 2 s2 + log -!!.., 

as at» 
(6.46) 

where a~ is the prior variance for the parameter W,. This objective function 
can be used to select which parameter to delete. It also tells us to stop 
pruning (or, to be precise, that pruning is yielding a less probable model) 
once it is positive, for all parameters, 8. 

An equivalent expression can be worked out for the case of simultaneous 
pruning of multiple parameters. Consider the pruning of ks parameters. 
We obtain the joint (ks x ks ) covariance matrix for the pruned parameters, 
Es , by reading out the appropriate submatrix of A-I. Then the evidence 
difference is 

(6.47) 

Thus the Bayesian formulas incorporate additional volume terms not 
included in the "brain surgery" literature. It is not clear whether these 
terms would make a big difference in practice. In our opinion, the pruning 
technique now is superseded by the use of more sophisticated regularizers, 
as discussed in Sec. 6.7. 
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6.7 Automatic Relevance Determination 

The automatic relevance determination (ARD) model [26] can be imple­
mented with the methods described in the previous sections. 

Suppose that in a regression problem there are many input variables, of 
which some are irrelevant to the prediction of the output variable. Because 
a finite data set will show random correlations between the irrelevant inputs 
and the output, any conventional neural network (even with weight decay) 
will fail to set the coefficients for these junk inputs to O. Thus, the irrelevant 
variables will hurt the model's performance, particularly when the variables 
are many and the data are few. 

What is needed is a model whose prior over the regression parameters 
embodies the concept of relevance, so that the model effectively is able 
to infer which variables are relevant and then switch the others off. A 
simple and "soft" way of doing this is to introduce multiple weight decay 
constants, one Q associated with each input. The decay rates for junk inputs 
automatically will be inferred to be large, preventing those inputs from 
causing significant overfitting. 

The ARD model uses the prior of Eg. (6.34). For a network having one 
hidden layer, the weight classes are: one class for each input, consisting of 
the weights from that input to the hidden layer; one class for the biases to 
the hidden units; and one class for each output, consisting of its bias and 
all the weights from the hidden layer. Control of the ARD model can be 
implemented using Eg. (6.35). 

Automatic relevance determination is expected to be a useful alternative 
to the technique of pruning (Sec. 6.6), which also embodies the concept of 
relevance, but in a discrete manner. Possible advantages of ARD include 
the following: 

1. Pruning using Bayesian model comparison requires the evaluation 
of determinants or inverses of large Hessian matrices, which may be 
ill-conditioned. ARD, on the other hand, can be implemented using 
evaluations of the trace of the Hessian alone, which is more robust. 

2. Compared with a non-Bayesian cross-validation method, ARD simul­
taneously infers the utility of large numbers of possible input vari­
ables. With only a single cross-validation measure, one might have 
to explicitly prune one variable at a time in order to estimate which 
variables are useful. In contrast, ARD returns two vectors measuring 
the relevance of all input variables Xi: the regularization constants Qi 

and the "well determinednesses" "'Ii, and it suppresses the irrelevant 
inputs without further intervention. 

3. ARD allows large numbers of input variables of unknown relevance 
to be left in the model without harm. 
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Practical problems found in implementing the ARD model using Gaus­
sian approximations are as follows: 

1. If irrelevant variables are not explicitly pruned from a large model, 
then computation times remain wastefully large. 

2. The presence of large numbers of irrelevant variables in a model ham­
pers the calculation of the "evidence" for different models. Numeri­
cal problems arise with the calculation of determinants of Hessians. 
This does not interfere with the Bayesian optimization of regulariza­
tion constants, but it prevents the use of Bayesian model comparison 
methods. 

3. Although the ARD model is intended to embody a soft version of 
pruning, the approximations of the evidence framework can lead to 
singularities with an etc going to 00 if the signal-to-noise ratio is low; 
this causes inputs to be irreversibly shut off. 

In spite of these reservations, we are confident that the right direction 
for adaptive modeling methods lies in the replacement of discrete model 
choices (e.g., pruning) by continuous control parameters (e.g., sophisticated 
regularizers) . 

A common concern is whether the extra hyperparameters {etc} might 
cause overfitting. There is no cause for worry; there are two reasons. First, 
if we can evaluate the evidence, then we can evaluate objectively whether 
the new model is more probable, given the data. The extra parameters 
are penalized by Occam factors so, eventually, if we increased the number 
of hyperparameters, an evidence maximum would be reached. In fact, the 
Occam factors for regularization constants are very weak; the error bars 
on log etc scale only as 1/...fYc. This fact relates to the second reason why 
the extra parameters {etc} are incapable of causing overfitting of the data: 
The extra parameters do not make the model capable of fitting more com­
plicated data sets. Only the parameters w can overfit noise, and the worst 
overfitting occurs when the regularization constants etc are all switched to 
o. Thus, the extra hyperparameters have no effect on the worst-case capac­
ity of the model. Their effect is a positive one, namely, a damping out of 
unneeded degrees of freedom in the model. There is a weak probabilistic 
penalty for the extra parameters, simply because they increase the vari­
ety of simple data sets that the model is capable of predicting. A model 
with only one hyperparameter et is capable of realizing only one "flavor 
of simplicity," namely, "all parameters Wi are small," as opposed to the 
complex flavor, "most parameters Wi are big." A model having, say, three 
hyperparameters {etc}, can predict a total of 23 = 8 flavors of simplicity 
and complexity including the two above. 
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Fig. 6.6. Samples from the prior of a one-input network, with varying number 
of hidden units. For each curve a different number of hidden units, H, is used: 
100, 200, 400, 800, and 1600. The regularization constants for the input weights 
and hidden unit biases are fixed at O'i:, = 40 and O'hla. = 8. The output weights 
have O'~ut = 11m to keep the dynamic range of the function constant. 

6.8 Implicit Priors 

It is interesting to examine what sort of functions are generated when nets 
are created by sampling from the prior distributions of Eqs. (6.18) and 
(6.34). The study of these prior distributions provides guidelines for the 
expected scaling behavior of regularization constants with the number of 
hidden units, H. It also identifies which control parameters are responsible 
for controlling the "complexity" of the function, and which are merely 
scaling constants. For regression nets with one hidden layer of tanh units 
and a standard Gaussian prior, we find the following interesting result [27J. 

In the limit as H -+ 00, the complexity of the functions generated by the 
prior is independent of the number of hidden units. The prior on the input 
to hidden weights determines the spatial scale (over the inputs) of variations 
in the function. The prior on the biases of the hidden units determines 
the characteristic number of fluctuations in the function. The prior on the 
output weights simply determines the vertical scale of the output, and has 
no other influence on complexity. 

Figures 6.6-6.8 illustrate samples from priors for a one-input-one-output 
network with a large number of hidden units. 

Figure 6.6 illustrates that, as the number of hidden units H is increased, 
while keeping {O'~, O'bias' (O'~ut ..jjj)} fixed, the properties of a random sam­
ple from the prior remain stable. (The output weights must get smaller in 
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Fig. 6.7. Samples from the prior of a one-input network, with varying CT~. Vary­
ing CT~ alone changes both the characteristic scale length of the oscillations 
and the overall width of the region in input space in which the action occurs. 
{H,CTblaa,CT~ut} = {400,2.0,0.05}. CT~ = 40, 30, 20, 10,8,6,4. The smaller the 
value of CT~, the less steep the function. 

accordance with CT;ut OC 1/..fii in order to keep constant the vertical range 
of the function, which is a sum of H independent random variables with 
finite variance.) 

Figure 6.7 illustrates the effect of varying O'~ alone. Finally, Fig. 6.8 illus­
trates the effect of varying both O'~ and O'bias' so as to keep the range of the 
"action" over the input variable constant. The parameter CTbias determines 
the total number of fluctuations in the function. 

Progressing to multiple inputs, we obtain Fig. 6.9 by setting the weights 
into a 2:400:1 net to random values and plotting the output of the net. 
The picture shows that you can get a "random-looking" function from this 
model even though the hidden units' activities are based on linear functions 
of the inputs. 

The prior distribution over functions is symmetrical about 0, in both 
the input space and the output space. It is therefore wise, if this Bayesian 
model is used, to preprocess the inputs and targets so that 0 is at the 
expected center of the action. 

6.9 Cheap and Cheerful Implementations 

The following methods can be used to solve the tasks of automatic optimiza­
tion of {ac } and f3 (Sec. 6.3) and calculation of error bars on parameters 
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Fig. 6.8. Samples from the prior of a one-input network, with varying O"hla8' The 
number of hidden units is kept fixed at 400, with O";ut = 0.05, for all of these 
samples. The same seed was used, so that all of the weights are simply scaled by 
the regularization constants as the "movie" progresses. The ratio O"I:./O"hlas = 5.0 
in all cases, so as to keep the action in the range ±5.0. The constant O"hlas took the 
following values: 8, 6, 4, 3, 2, 1.6, 1.2, 0.8, 0.4, 0.3, 0.2. This constant determines 
the total number of ups and downs in the function. The constant 0"1:. determines 
the input scale on which the ups and downs occur. 

and predictions (Sec. 6.5) without calculation of Hessians or sophisticated 
Monte Carlo methods. These methods depend on the same Gaussian as­
sumptions as does the rest of this chapter; further approximations also are 
made. 

6.9.1 CHEAP ApPROXIMATIONS FOR OPTIMIZATION 

OF a AND {3 

On neglecting the distinction between well-determined and poorly deter­
mined parameters, we obtain the following update rules for a and f3 [cf. 
Eqs. (6.35) and (6.30)]: 

f3:= N/2ED. 

This easy-to-program procedure is expected to break down when there are 
a large number of poorly determined parameters. 
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Fig. 6.9. A sample from the prior distribution of a two-input network. 
{H, O"~, O"bias, O"~ut} = {400, 8.0, 8.0, 0.05}. 

6.9.2 CHEAP GENERATION OF PREDICTIVE 
DISTRIBUTIONS 

A simple way of obtaining random samples from the posterior probability 
distribution of the parameters follows. This approximate procedure is accu­
rate when the noise really is Gaussian, and when the model can be treated 
as locally linear. 

1. Start with a converged network, with parameters w*, trained on the 
true data set D* = {x(m) , t(m)}. Estimate the Gaussian noise level 
from the residuals using, for example, (1~ = E(t - y(w*»2/(N - k)j 
alternatively, estimate (1~ from a test set. 

2. Now define a new data set Dl by adding artificial Gaussian noise of 
magnitude (1 v to the outputs in the true data set D"'. Thus, DI = 
{x(m) , t~m)}, where t~m) = t(m) + II, where II '" Normal(O, (1~). No 
noise is added to the inputs. 

3. Next, starting from w*, train a new network on DI . Call the con­
verged weight vector WI. Because the data set will be changed little 
by the added noise, WI will be close to w*, and this optimization 
should not take long. 

4. Repeat steps 2 and 3 twelve times, generating a new data set Dj from 
the original data set D* each time to obtain a new Wj' Save the list 
of vectors W j. 

5. Separately, use each of WI, W2, '" W12 to make predictions. For ex­
ample, in the case of time-series continuation, use each Wj by itself 
to generate an entire continuation. 
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These predictions can be viewed as samples from the model's pre­
dictive distribution. They might be summarized by measuring their 
mean and variance. 

In order to get a true sample from the posterior, we also should perturb the 
prior. For each weight, the mean to which each weight decays, ordinarily 0, 
should be randomized by sampling from a Gaussian of variance 0'; = 1/0,. 

The above method is used in Bayesian image reconstruction [28J. It 
should be particularly useful for obtaining error bars when neural nets 
are used to forecast a time series by bootstrapping the network with its 
own predictions. A full Bayesian treatment of time-series modeling with 
neural nets has not yet been made. 

6.10 Discussion 

6.10.1 ApPLICATIONS 

The methods of Sees. 6.2 to 6.7 have been successfully applied to several 
practical problems. 

Thodberg has applied these methods to an industrial problem, the infer­
ence of pork fat content from spectroscopic data [12J. The evidence frame­
work yields better performance than standard techniques involving cross­
validation. This improvement is attributed to the fact that a Bayesian needs 
no validation set: All of the available data can be used for parameter fitting, 
for optimization of model complexity, and for model comparison. 

The automatic relevance determination model (Sec. 6.7) also has been 
used to win a recent prediction competition, involving modeling of the en­
ergy consumption of a building [22J. Here, the success is attributed to the 
fact that the evidence framework can be used to simultaneously optimize 
multiple regularization constants {O,c} on-line. Over 20 regularization con­
stants were involved in these networks. The scaling up of these methods 
to larger neural network problems will be helped by the use of implicit 
second-order methods [15, 16J. 

6.10.2 MODELING INSIGHTS 

An advantage of the Bayesian framework for data modeling (in the eyes of 
Bayesians) is that it forces one to make explicit the assumptions made in 
constructing the model. When a poor modeling assumption is identified, 
the probabilistic viewpoint makes it easy to design coherent modifications 
to the model. 

For example, in [l1J the standard weight decay model with only one reg­
ularization constant a was applied to a regression network. The evidence 
for different solutions was found to be poorly correlated with the empiri-
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cal performance of the solutions. This failure forced home the insight that, 
for dimensional consistency, at least three different a's are required: one 
for the input to hidden weights, one for the biases of the hidden units, 
and one for all of the connections to the outputs. Changing to this model 
with multiple regularizers produced solutions with slightly improved em­
pirical performance; most importantly, the evidence for these solutions was 
beautifully correlated with their generalization error. 

Here are some examples of other model modifications that are easily mo­
tivated from the probabilistic viewpoint. The use of a sum-squared error 
corresponds to the assumption that the residuals are Gaussian and uncor­
related among the different target variables. In time-series modeling, this 
may well be a poor model for residuals, which may show local trends. A 
better model would, for example, assume Gaussian correlations between 
residuals, such that the data error f3ED is replaced by: 

L (f30(tm _y)2 + f31(tm -y)(tm+l-Y) + f32(tm -y)(tm+2-Y) + ... ) . 
m 

(6.48) 
This would modify the "backprop" rule, so that the propagated error signal 
at each frame would be a weighted combination of the residuals at neigh­
boring frames. The network then would experience less of an urge to fit 
local trends in the data. And, when predictions are made, the model of 
correlations among residuals would be able to capture the current trend 
and modify the net's predictions accordingly. The evidence would be used 
to optimize the correlation model's parameters f3o, f3b f32, etc. 

The Gaussian noise model also might be modified to include the possibil­
ity of outliers, using a Bayesian robust noise model [6]. Probability theory 
allows us to infer from the data how heavy the tails of the noise model 
ought to be. 

Another assumption is that the output noise level is the same for all input 
vectors. As is discussed in [29, Chapter 6], this assumption can be relaxed 
by constructing a parameterized model of f3(x), which can be learned by 
evidence maximization. 

All three of the above examples could be realized as special 
cases of the following general model, in which the entire set of 
network parameters is modeled as changing in a correlated way. 
The general model could be written P({t(m)},{w(m)},w*la,~) = 
TIm P( t(m) Iw(m) )P( {w(m)} IwOo , ~ )P( wOo 101). Here, the underlying mapping 
is parameterized by wOo, which is drawn, say, from the ARD prior. The map­
ping at time m is parameterized by w(m) , which is a random sample from a 
distribution centered on w". Temporal correlations between these samples 
are defined by the parameters ~, which might be optimized by evidence 
maximization. These parameters also model the noise itself. For example, 
correlated Gaussian residuals are achieved by introducing correlated Gaus­
sian noise into the bias of the output unit. Non-Gaussian noise (long-tailed, 
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or asymmetric) could be created by introducing a Gaussian noise process 
earlier in the net; a careful choice of hidden unit activation functions could 
bias the noise distribution in accordance with our prior beliefs. If we make 
a model in which noise is modeled by fluctuations in the network param­
eters, it is easy to imagine that an input-dependent noise level could be 
learned by this model. Finally, a "mixture of experts" is another special 
case of this model, obtained when the distribution p({w(m)}lw*,<I» is a 
mixture of delta-functions. 

A final example of a probabilistic motivation for a model modification 
lies in image analysis. If we use a neural net for character recognition, 
say, then we might expect a well-trained net to have input weights that are 
spatially correlated. It is desirable to incorporate this prior expectation into 
the model adaptation process, because such priors on parameters damp 
out unnecessary degrees of freedom and reduce overfitting. One way of 
creating such a correlation is to preblur the data before feeding it into 
the network, and use the normal uncorrelated prior on the parameters. 
This is equivalent to keeping the original inputs and having a correlated 
prior on the parameters, where the correlations are defined implicitly by 
the properties of the preblur. This procedure has been used fruitfully in 
character recognition work [30J. 

Whenever a modification to a model is conceived, which can be expressed 
probabilistically, a coherent algorithm incorporating the modification can 
be mechanically derived. The automatic relevance determination model 
(Sec. 6.7) is an example of a successful model developed in this way. One 
often can observe the unanticipated emergence of elegant formulas when 
the rules of probability theory are applied to a new model. 

6.10.3 RELATIONSHIP TO THEORIES OF GENERALIZATION 

The Bayesian "evidence" framework assesses within a well-defined hypoth­
esis space how probable a set of alternative models are. However, what we 
often want to know is how well each model is expected to generalize. Em­
pirically, the correlation between the evidence and generalization error is 
surprisingly good [11, 12J. But a theoretical connection linking the two is 
not yet established. Here, a brief discussion is given of similarities and dif­
ferences between the evidence and quantities arising in work on prediction 
of the generalization error. 

Relation to GPE 

Moody's "Generalized Prediction Error" (GPE) [31J is a generalization of 
Akaike's "Final Prediction Error" (FPE) to nonlinear regularized models. 
These are both estimators of generalization error which can be derived 
without making assumptions about the distribution of residuals between 
the data and the true interpolant, and without assuming that the true 
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interpolant belongs to some particular class. Both are derived by assuming 
that the observed distribution over the inputs in the training set gives a 
good approximation to the distribution of future inputs. 

The difference between the FPE and the GPE is that the total number of 
parameters k in the FPE is replaced by an effective number of parameters, 
which is in fact identical to the quantity 'Y arising in the Bayesian analysis 
in Eq. (6.29). If ED is one-half the sum-squared error, then the predicted 
error per data point is 

(6.49) 

The added term O'~'Y has an intuitive interpretation in terms of overfitting. 
For every parameter that is well determined by the data, we unavoidably 
overfit one "direction" of noise. This has two effects: it makes ED smaller 
than it "ought to be," by 0'~/2, on average; and it means that our predic­
tions vary from the ideal predictions (those that we would make if we had 
infinite data) so that our prediction error on the same N input points would 
on average be worse by 0'~/2. The sum of these two terms, multiplied by 
the effective number of well-determined parameters 'Y, gives the correction 
term. 

Like the log evidence, the GPE has the form of the data error plus a term 
that penalizes complexity. However, although the same quantity 'Y arises 
in the Bayesian analysis, the Bayesian Occam factor does not have the 
same scaling behavior as the GPE term (see the discussion below). And, 
empirically, the GPE is not always a good predictor of generalization. One 
reason is that, in the derivation of the GPE, it is effectively assumed that 
test samples will be drawn only at the x locations at which we have already 
received data. The consequences of this false assumption are most serious 
for overparameterized and overflexible models. An additional distinction 
between the GPE and the evidence framework is that the GPE is defined 
for regression problems only; the evidence can be evaluated for regression, 
classification, and density models. 

Relation to the Effective VC Dimension 

Recent work on "structural risk minimization" [30] utilizes empirical ex­
pressions of the form: 

E "" E IN 10g(Nh} +C2 
gen - D +Cl NI'Y ' (6.50) 

where 'Y is the "effective VC dimension" of the model and is identical to 
the quantity in Eq. (6.29). The constants Cl and C2 are determined by 
experiment. The structural risk theory currently is intended to be applied 
only to nested families of classification models (hence the absence of {3: ED 
is dimensionless, like G} with monotonic effective VC dimension, whereas 
the evidence can be evaluated for any models. Interestingly, the scaling 
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behavior of this expression (6.50) is identical to the scaling behavior of 
the log evidence in Eq. (6.27), subject to two assumptions: first, that the 
value of the regularization constant satisfies Eq. (6.28); and second, that 
the significant eigenvalues (>'0 > a) scale as >'0 '" Nah. (This scaling 
holds, for example, in the family of interpolation models consisting of a 
sequence of steps of independent heights, in which we vary the number of 
steps.) Then it can be shown that the scaling of the log evidence is 

-log P(Dla, (3, 1£) '" {3EP/ + ~ (-y log(Nh) + 'Y) • (6.51) 

[Readers familiar with the Minimum Description Length (MDL) will rec­
ognize the dominant 'Y /2 log N term; MDL and Bayes are equivalent, as is 
discussed later.] Thus, the scaling behavior of the log evidence is identical 
to the structural risk minimization expression (6.50), provided that Cl = ~ 
and C2 = 1. Isabelle Guyon has confirmed (personal communication) that 
the empirically determined values for Cl and C2 are indeed close to these 
Bayesian values. It will be interesting to try to understand and develop this 
relationship. 

6.10.4 CONTRASTS WITH CONVENTIONAL DOGMA IN 

LEARNING THEORY AND STATISTICS 

Representation Theorems 

It is popular to prove the utility of a particular model by demonstrating 
that the model has arbitrary representational power. For example, "neural 
networks are good interpolation tools because they can implement any 
smooth function given enough hidden units." 

A Bayesian data modeler takes a different attitude (as, to be fair, do 
other learning theory researchers). The objective of data modeling is to 
find a model that is well matched to the data. A model that is too flexi­
ble, and which could match arbitrary data, will generalize poorly; and in 
Bayesian terms such a model is improbable compared to simpler models 
that also fit the data. Probability theory favors a model that is as inflexible 
as possible: just flexible enough to capture the real structure in the data, 
but no more. The quality of a model is judged solely by how well matched 
it is, probabilistically, to the data. 

Those who appreciate that the universal representational power of a 
model is not a good thing are often led astray by a second myth, the 
supposed need to limit the complexity of a model when there is little data. 

"The Complexity of the Model Should Be Matched 
to the Amount of Data" 

A popular idea is that, when there is little data, it is good to use a model 
with few parameters, even if that model is known to be incapable of rep­
resenting the true function. An attempt is made to match the "capacity" 
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of the model to the number of data points. This sometimes is used as the 
motivation for "pruning" a neural network [14J. 

A Bayesian need never do this; the choice of which models to consider 
is a matter of prior belief, and should not depend on the amount of data 
collected. It is now common practice for Bayesians to fit models that have 
more parameters than the number of data points [5, 32J. It is true that prob­
ability theory penalizes models that are too complicated for the data. But 
we should not therefore deliberately construct models that are so simple 
that they are incompatible with our prior beliefs. In terms of the evidence, 
it is not possible for a small data set to systematically favor the wrong 
model [5J. 

In a domain such as interpolation, our typical prior belief is that the 
real underlying function is complex and would require an infinite number 
of parameters to describe it exactly. There will never be enough data to 
determine all of the parameters of the true model. But this does not mean 
that we should use a smaller model: that would give us well-determined but 
incorrect predictions! We should use the model we believe in. No harm can 
come of this. It may be that the resulting predictions are ill-determined; 
but if the true model's predictions have huge error bars, it is surely crazy to 
use a simpler model in order to make the error bars smaller! Alternatively, 
the prior knowledge of smoothness, etc., included in the true model may 
constrain the ill-determined parameters such that the predictions are quite 
satisfactory. 

The strength of the Bayesian method, therefore, centers on the prior 
assigned to the parameters. The prominent role of the prior in Bayesian 
methods often is regarded as a weakness. But any alternative method of 
controlling the complexity of an interpolant, say, also embodies implicit 
priors - except that those implicit priors generally do not correspond to 
our real beliefs. The way forward, therefore, is to develop more sophis­
ticated probabilistic models and better computational methods for using 
them. Discrete model choices should be replaced by regularized continua 
of models, with an arbitrarily large number of parameters. 

"My Model Is Better than Your Model" 

Much of orthodox statistics is concerned with the invention of estimators 
and the evaluation of certain average case properties of those estimators 
(such as bias, variance, sufficiency, consistency, power, etc.). These criteria 
then are used to choose between different estimators; all this without any 
reference to the actual data that have been observed. Bayesians need not 
get involved in debates concerning which properties of an estimator one 
should concentrate on, or which estimator is intrinsically best. There is 
no best model. Each model corresponds to a probabilistic statement about 
the domain. One model will be better matched to some data sets, while 
another model will be better matched to others. The evaluation of the 
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evidence allows us to infer, from the particular observed data set, which in 
our space of models is the most probable model. 

An alternative way of viewing Bayesian modeling is to say that we only 
have one supermodel, composed of a number of submodels which make 
different assumptions, which have different complexities, etc. Once a su­
permodel is defined, our inferences are given by mechanically following the 
rules of probability; these inferences implicitly involve comparisons of the 
submodels, embodying the Bayesian Occam's razor. 

The subjective task that a Bayesian still has to tackle is the definition of 
the entire model space. The inventions of a good model space for a prob­
lem, and of numerical techniques for inference in that space, are nontrivial 
tasks requiring great skill. The recommended philosophy [6] is to aim to 
incorporate every imaginable possibility into the model space: for example, 
if it is conceivable that a very simple model might be able to explain the 
data, one should include simple models in the model space; if the noise 
might have a long-tailed distribution, one should include a hyperparameter 
which controls the heaviness of the tails of the distribution, such that one 
value of the hyperparameter gives the null distribution; if an input variable 
might be irrelevant to a regression, include it in the regression anyway, 
with a sophisticated regularizer embodying the concept of relevance. The 
inclusion of remote possibilities in the model space is "safe," because our 
inferences will home in on the submodels that are best matched to the 
data. The inclusion in our initial model space of bizarre models that are 
subsequently ruled out by the data is not expected to influence predictive 
performance significantly. 

6.10.5 MINIMUM DESCRIPTION LENGTH (MDL) 

A complementary view of Bayesian model comparison is obtained by replac­
ing probabilities of events by the lengths in bits of messages that communi­
cate the event without loss to a receiver. Message lengths L(x) correspond 
to a probabilistic model over events x via the relations: 

P(x) = TL(X) , L(x) = -log2 P(x). (6.52) 

Noninteger coding lengths can be handled by the arithmetic coding proce­
dure [33]. 

The MDL principle [34] states that one should prefer models which can 
communicate the data in the smallest number of bits. Consider a message 
that states which model, 'H., is to be used, and then communicates the data 
D within that model, to some prearranged precision 6D. This produces a 
message of length L(D, 'H.) = L('H.) + L(DI'H.). The lengths L('H.) for dif­
ferent 'H. can be interpreted in terms of an implicit prior P('H.) over the 
alternative models. Similarly, L(DI'H.) corresponds to a density P(DI'H.). 
Thus, a procedure for assigning message lengths can be mapped onto pos-
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II 
L-_____ L_(w_i_3)_I~_3_) ____ ~I~1 ___ L_(_D_lw_~_)_'~_3_) __ ~ 

Fig. 6.10. A popular view of model comparison by minimum description length. 
Each model 'Hi communicates the data D by sending the identity of the model, 
sending the best-fit parameters of the model w·, and then sending the data 
relative to those parameters. As we proceed to more complex models, the length 
of the parameter message increases. On the other hand, the length of the data 
message decreases, because a complex model is able to fit the data better, making 
the residuals smaller. In this example, the intermediate model 'H2 achieves the 
optimum trade-off between these two trends. 

terior probabilities: 

L(D,1i) = -logP(1i) -log(P(DI1i)6D) 

= -log P(1iID) + const. 

In principle, then, MDL always can be interpreted as Bayesian model com­
parison, and vice versa. However, this simple discussion has not addressed 
how one would actually evaluate the key data-dependent term L(DI1i), 
which corresponds to the evidence for 1i. Often, this message is imagined 
as being subdivided into a "best-fit parameter" block and a data block. 
This procedure conveys an intuitive picture of model comparison (Fig. 
6.10). Models with a small number of parameters have only a short pa­
rameter block but do not fit the data well, and so the data message (a 
list of large residuals) is long. As the number of parameters increases, the 
parameter block lengthens, and the data message becomes shorter. There 
is an optimum model complexity (1i2 in the figure) for which the sum is 
minimized. 

This picture is still too simple. We have not specified the precision to 
which the parameters w should be sent. This precision has an important 
effect (unlike the precision cD to which real-valued data D are sent, which, 
assuming cD is small relative to the noise level, just introduces an additive 
constant). As we decrease the precision to which w is sent, the parameter 
message shortens, but the data message typically lengthens because the 
truncated parameters do not match the data very well. There is a nontrivial 
optimal precision. In simple Gaussian cases it is possible to solve for this 
optimal precision [35], and it is closely related to the posterior error bars 
on the parameters, A-I, where A = - VV log P{wID, 1i). It turns out that 
the optimal parameter message length is virtually identical to the log of the 
Occam factor in Eq. (6.12). (The random element involved in parameter 
truncation means that the encoding is slightly suboptimal.) 
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With care, therefore, one can replicate Bayesian results in MDL terms. 
Although some of the earliest work on complex model comparison involved 
the MDL framework [36], MDL has no apparent advantages over the direct 
probabilistic approach. 

MDL does have its uses as a pedagogical tool. The description length 
concept is useful for motivating prior probability distributions. Also, dif­
ferent ways of breaking down the task of communicating data using a model 
can give helpful insights into the modeling process. 

On-Line Learning and Cross-Validation 

The log evidence can be decomposed as a sum of on-line predictive perfor­
mances: 

log P(DI1i) = log p(t(l) 11i) + log p(t(2) It(l), 1i)+ 

log P(t(2)lt(l), t(2), 1i) ... + log P(t(N) It(l) ... t(N-l), 1i). 

This decomposition emphasizes the difference between the evidence 
and "leave one out cross-validation" as measures of predictive abil­
ity. Cross-validation examines the average value of just the last term, 
log P(t(N) It(l) ... t(N-l), 1i), under random reorderings of the data. The ev­
idence, on the other hand, sums up how well the model predicted all of the 
data, starting from scratch. 

The "Bits Back" Encoding Method 

Another MDL thought experiment [37] involves incorporating random bits 
into our message. The data are communicated using a parameter block and 
a data block. The parameter vector sent is a random sample from the poste­
rior distribution P(wID,1i) = P(Dlw, 1i)P(wl1i)J P(DI1i). This sample 
w is sent to an arbitrary small granularity 6w using a message length 
L(wl1i) = -log(P(wl1i)6w). The data are encoded relative to w with a 
message of length L(Dlw,1i) = -log(P(Dlw, 1i)6D). Once the data mes­
sage has been received, the random bits used to generate the sample w 
from the posterior can be deduced by the receiver. The number of bits so 
recovered is -log(P(wID, 1i)6w). These recovered bits need not count to­
ward the message length, since we might use some other optimally encoded 
message as a random bit string, thereby communicating that message at 
the same time. The net description cost is therefore: 

L(wl1i) + L(Dlw, 1i) - "bits back" = log P(wl1i)P(Dlw, 1i)6D 
- P(wID,1i) 

= -log P(DI1i) -log6D. 

Thus, this thought experiment has yielded the optimal description length. 
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6.10.6 ENSEMBLE LEARNING 

The posterior distribution P(wID,1£) may be a very complicated density. 
The methods described in this chapter have assumed that, in local re­
gions that contain significant probability mass, the posterior can be well 
approximated by a Gaussian found by making a quadratic expansion of 
10gP(wID,1£) around a local maximum. (For brevity we omit here the 
parameters 0: and f3.) 

An interesting idea that has been implemented by Hinton and van Camp 
[37] is to try to improve the quality of this type of approximation by opti­
mizing the entire posterior approximation. We call this ensemble learning. 
Consider a parameterized approximation Q(w; 0) to the true posterior dis­
tribution P(wID, 1£). For example, the parameters 0 for a Gaussian distri­
bution would be its mean and covariance matrix. The idea is that a Gaus­
sian fitted somewhere other than the mode of P(wID,1£) might in some 
sense be a better approximation to the posterior. One possible measure of 
the quality of fit of Q to P is the "free energy": 

J P(wID,1£) 
F(O) = - dwQ(w;O)log Q(w;O) . (6.53) 

It is well known that F has a lower bound of 0 that can be realized only if 
there are parameters 0 such that Q matches P exactly. This measure can be 
motivated by generalizing the MDL "bits back" thought experiment (Sec. 
6.10) with the random sample w drawn from Q instead of from P [37]. 

Now the task is to minimize F(O). This is in general a challenging task. 
However, Hinton and van Camp [37] have shown that exact derivatives of 
F with respect to 0 can be obtained for a neural net with one nonlinear 
hidden layer and a linear output if the Gaussian model Q(w; 0) is restricted 
so as to have 0 correlation among the weights. 

The weakness of ensemble learning by free energy minimization is that, 
if the approximating distribution Q(w; 0) has only a simple form, then 
the free energy objective function favors distributions that are extremely 
conservative, placing no probability mass in regions where P(w) is small. 
For example, if a strongly correlated Gaussian P is modeled by a separable 
Gaussian Q, then the free energy solution sets the curvature of log Q to be 
the same as the diagonal elements of the curvature of log P. This gives an 
approximating distribution that covers far too small a region of w space, 
so that the outcome of ensemble learning would be essentially identical to 
the outcome of traditional optimization of a point estimate. It is therefore 
interesting to try to extend the ensemble learning method to more complex 
models Q. 

A possible extension of Hinton's and van Camp's idea is to include in 0 an 
adaptive linear preprocessing of the inputs. Denote the coefficients of this 
linear mapping from inputs to subinputs by U, and the parameters from 
the subinputs to the hidden units by V; the effective input weights are given 
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by the product VU. A separable Gaussian prior now can be applied to the 
parameters V, so that Hinton's and van Camp's exact derivatives still can 
be evaluated. Inclusion of the additional parameters U in () defines a richer 
family of probability distributions Q(w; 0) over the effective parameters w. 
It will be interesting to see if these distributions are powerful enough to 
yield Gaussian approximations superior to those produced by the evidence 
framework. 
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Penacee: A Neural Net System 
for Recognizing On-Line 
Handwriting 
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with 11 figures 

Synopsis. We report on progress in handwriting recognition and signature 
verification. Our system, which uses pen-trajectory information, is suitable 
for use in pen-based computers. It has a multimodular architecture whose 
central trainable module is a time-delay neural network. Results comparing 
our system and a commercial recognizer are presented. Our best recognizer 
makes three times less errors on hand-printed word recognition than the 
commercial one. 

7.1 Introduction 

This chapter reports on progress in the design of a multimodular system 
that recognizes on-line handwriting and whose central module is a neural 
network. By on-line we mean that the input to the system is the pen 
trajectory, sampled at regular time intervals by a touch-sensitive pad. In 
this chapter, we provide a synthesis of previously published work from our 
group [1, 2, 3, 4, 5, 6, 7] and a perspective on the on-going research. 

There is urgent need for good recognizers to ensure the success of the 

1 AT&T Bell Labs, 955 Craston Road, Berkeley, CA 9470B, USA 
(isabelle@research.att.com). 

2 AT&T Bell Labs, Room 4G-33B, Holmdel, NJ 07733, USA 
(jbromley@research.att.com). 

3 AT&T Bell Labs, presently at Synaptics, 2698 Orchard Parkway, San Jose, 
CA 95134, USA (nada@synaptics.com). 

4 AT&T Bell Labs and ETH-Zurich, CH-B092 Zurich, Switzerland 
(schenkel@isLethz.ch). 

5 AT&T Bell Labs, presently at 12 Mordehai-Hetez St., Petah-Tikua, Israel 
(f67361@barilan.bitnet). 
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Fig. 1.1. Building blocks of the Penacee system. 

first pen-based computers and pen-based personal communicators. In spite 
of the efforts of many companies and universities, state-of-the-art on-line 
handwriting recognition accuracy has not yet reached a level that is accept­
able to users. We tackle this problem from different angles. First, we address 
tasks of intermediate difficulty, but of real practical interest, such as the 
recognition of hand-printed words. Second, we introduce writer adaptation 
to fine tune the recognizer with examples of a particular user style. 

The Penacee system (our Pen panacea . .. ) is composed of several mod­
ules (preprocessor, classifier, segmentor, etc.), as is classically done in pat­
tern recognition [8] (see Fig. 7.1). The originality of using neural networks, 
and perhaps also the main advantage, is that the network itself can be de­
composed into two modules [9]: a neural-network-based feature extractor 
and a classifier. 

We make extensive use of our neural feature extractor, which is a train­
able module capable of producing a very good and compact feature repre­
sentation. Our neural network is a time-delay neural network (or TDNN) 
[10, 11]. It is a convolutional network that has several layers of local fea­
ture extractors. It is the one-dimensional version of the network used by the 
Optical Character Recognition group in our department [12, 13, 14] and is 
suitable for processing time-varying signals, such as the pen-trajectory. 
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In Sec. 7.2, we introduce the various modules of our system, and in Sec. 
7.3 we present the results of applying it to isolated character recognitions, 
word recognition, and signature verification. 

7.2 Description of the Building Blocks 

7.2.1 RECOGNITION PREPROCESSOR 

The preprocessor converts the input to the system to a representation that 
facilitates the recognition process. Preprocessing techniques incorporate hu­
man knowledge about the task at hand, such as known invariances and 
relevant features. In this work, we use a rather crude preprocessing and 
rely mostly on the neural network to enforce invariances and extract fea­
tures. Our preprocessing consists of fairly simple normalizations and the 
extraction of low-level local topological features such as line orientation. 

Because the input data is the pen-trajectory, we face the choice of whe­
ther or not to use the dynamic information. It is possible to remove the 
temporal parametrization of the data and represent patterns as pixel im­
ages. With such a representation, all of the techniques used for OCR (op­
tical character recognition) are readily applicable. In this work, however, 
we encode patterns as a sequence of feature vectors, corresponding to the 
sequence of drawing actions [1, 4]. 

In Fig. 7.2, we give an example of a preprocessed pattern with sequential 
encoding. The preprocessing is decomposed into normalization (centering, 
scaling, deskewing), resampling (to obtain a desired number of regularly 
spaced points along the trajectory), smoothing (to remove jittering), and 
feature extraction. In the resulting representation, each point on the tra­
jectory is associated with a feature vector whose components are a subset 
of x and y coordinates, direction of the trajectory, curvature of the trajec­
tory, speed of the pen, acceleration of the pen, pen-down or -up position 
(touching or above the writing surface). 

Depending on the application, the preprocessing may vary slightly. For 
instance, it is debatable whether the representation should be invariant 
under changes in the speed of the pen. For writer-independent character 
recognition, variations in the speed of the pen are a nuisance. Conversely, 
for signature verification, the exact dynamics of drawing actions are very 
precious for the detection of forgeries. Data-collection devices sample the 
trajectory at regular time intervals (10-12 ms). Some invariance with re­
spect to the speed of the pen is obtained for character recognition appli­
cations by resampling to points regularly spaced in arc length, as opposed 
to regularly spaced in time. For signature verification, the resampling pre­
serves regular time intervals. 
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LOOf 
(a) 

L o o p 

(b) lime 

Fig. 1.2. Recognition preprocessing. (a) The original word. (b) The data as 
presented to the network. The feature vector in this case has eight components 
encoding x and y coordinates normalized and rescaled, pen-up or -down informa­
tion, speed of the pen, two components for direction of the pen-trajectory, and 
two components for its curvature. 

7.2 .2 NEURAL FEATURE EXTRACTOR 

Our networks consist of several layers of feature extraction followed by a 
classification layer. The neural feature extractor in Fig. 7.1 is the network 
up to its classification layer. 

We use a convolutional neural network, the time-delay neural network 
(TDNN). TDNNs first were introduced for speech recognition and are well 
suited to sequential signal processing [10, 11]. 

We briefly sketch here the principles of the TDNN (Fig. 7.3). One layer of 
the network transforms a sequence of feature vectors into another sequence 
of higher order feature vectors in the following way. 

A given neuron detects a particular local topological feature of the pen­
trajectory. Its receptive field is restricted to a limited time window. The 
same neuron is reused along the time axis (Fig. 7.3, the same neuron is 
replicated in the time direction) to detect the presence or absence of the 
same feature at different places along the trajectory. By using several dif­
ferent neurons at each time step, the neural network performs the detection 
of different features (Fig. 7.3, the outputs of different neurons produce a 
new feature vector in the next layer, at a given time step). 

The operations performed by one layer of the network are convolutional 
in essence (Fig. 7.4). Each neuron k in layer l + 1 has an associated convolu­
tion kernel of height m (the number of features in layer l + 1) and of width 
O. The coefficient of the kernel are the neuron weights w~'f, i = 0, ... (0 -1) 
and j = 0, . .. (m - 1). The convolution of the states fj(t) of layer l with 
kernel k is another sequence of states ft+ 1 (t) of layer l + 1 corresponding to 
confidence levels for the presence or absence of a given feature k along the 
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Fig. 7.3. Architecture of the time-delay neural network (TDNN). The connec­
tions between layers obey the following rules (not all neurons are represented): 
(1) neurons are feature detectors with restricted input fields, limited in the time 
direction; (2) in each layer, a set of neurons scans the output of the previous 
layer along the time axis and produces higher level feature vectors; and (3) the 
sequence of feature vectors is subsampled in time at each layer to obtain time 
contraction. For isolated character recognition, the time contraction is such that 
characters, which fit into a fixed-size input window, correspond to one output 
vector, for which the time dimension has been completely eliminated. The fig­
ure also shows that the convolution can be extended in time and so that, for a 
variable-length input, a sequence of output vectors is produced. This is used in 
Sec. 7.3.2 for the recognition of entire words. 

pen-trajectory. State sequences are parametrized by the discrete-time vari­
able t. The confidence levels are squashed by the neuron sigmoid function 
91·]: 

[
6-1 m-l 1 

ft+l(t) = 9 t; ~ w~'f fJ(t - i) (7.1) 

with 
91x] = atanh.Bx, (7.2) 

where tanh denotes the hyperbolic tangent, a = 1/ tanh(2/3), and.B = 2/3. 
The time component of our input representation is gradually eliminated 

by subsampling the convolution at each layer by a factor of two or three. 
To partially compensate for the loss of information, the number of features 
is gradually increased 115]. This is what we call a bi-pyramidal network 
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Fig. 7.4. Operations of one layer of the TDNN. Each layer l produces an inter­
mediate representation of the input pattern as a sequence of feature vectors. We 
denote by fICt) the jth component of that vector at time t. The intermediate 
representation of layer t + 1 is obtained by sweeping several "neuron feature de­
tectors" over the intermediate representation of layer i. Neuron k produces the 
sequence f~+l(t). 

architecture. Bi-pyramidal networks progressively convert time information 
into feature information. 

The weights are adjusted during a supervised training session using error 
backpropagation [16], which performs gradient descent in weight space with 
a mean-squared-error (MSE) loss function (see Sec. 7.2.6) . 

Because of the convolutional structure of our network, the same neuron 
is replicated along the time axis. For the unfolded architecture (Fig. 7.3), 
one usually talks about "weight sharing" among the various replicas of the 
same neuron [171. Weight sharing is enforced during training by averaging 
the weight updates of the various replicas. 

7.2.3 CLASSIFIER 

The classifier is often part of the neural network itself. On top of the feature 
extraction layers, the last fully connected layer performs the final classifi­
cation (Fig. 7.3) . 

The last layer of the TD NN consists of as many neurons as there are 
classes, {char!, char2, . .. charc}. During training, when a character of class 
char x is presented, we impose desired values of -1 to all neurons, except 
to the neuron associated to the char x class, which receives a + 1 desired 
value. Thus, we bring back our C-class problem to C 2-class problems: 
Each neuron is trained to separate one class versus all the other ones. 
After training, the classification is made according to the largest output 
value. The outputs of the neural network may be used to estimate the 
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posterior probabilities P(charxlinput).6 In that case, the classification is 
made according to the maximum a posteriori probability. 

We make the distinction between neural feature extractor and classifier 
for two reasons: 

• The neural feature extractor can be used independently to provide 
a compact representation of the data. In applications such as writer 
adaptation (Sec. 7.3.1) and signature verification (Sec. 7.3.3), pat­
terns are stored for later use in this representation. 

• Convolutional networks are good at extracting features, but there 
may be more suitable classifiers for the task at hand that can be used 
instead of the last layer of the network [9]. For instance, a K-nearest 
neighbor classifier or an optimal margin classifier [18] replaces the 
last layer for writer adaptation in Sec. 7.3.1. 

7.2.4 SEGMENTATION PREPROCESSOR AND 

POSTPROCESSOR 

Our neural network isolated character recognizer is part of a larger system 
that can perform word recognition. The segmentation techniques that we 
use to separate a word into characters are closely related to dynamic time 
warping and hidden Markov models, which are used for speech recogni­
tion [19]. Their resemblance with neural networks has been pointed out by 
several authors [20, 21, 22, 23], but they will not be emphasized here. 

We distinguish several levels of difficulty in the segmentation problem 
(see Fig. 7.5). If characters are entered in boxes, or if they are clearly 
spaced, the segmentation is trivial and can be handled independently of 
the recognition process. But, in the absence of boxes, people usually do 
not space their characters uniformly, which results in many segmentation 
ambiguities. To address this harder task, our strategy is to let the segmen­
tation preprocessor make guesses and provide the recognizer with several 
likely segmentation hypotheses. The final segmentation and recognition de­
cisions then are taken all at once by the segmentation postprocessor, using 
the recognition scores. 

In our nomenclature, the segmentation preprocessor isolates segments of 
pen-trajectory called tentative characters. A stroke is an elementary seg­
ment between a pen-down and the next pen-up. The segmentation pre­
processor may take advantage of such pen-lifts and spaces between strokes 
and/ or minima of the speed of the pen to determine tentative cuts. Alterna-

6Given our choice for the sigmoid function [Eq. (7.2)] and desired values, the 
outputs of the network are between -1.7 and +1.7. They are rescaled between 0 
and 1 to obtain probability estimates. 



262 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting 

~~[g3 (a) 

XZU (b) 

U{r (c) 

LOap (d) 

Fig. 7.5. Writing styles handled by the Penacee segmentors. (a) Boxed charac­
ters. (b) Clearly spaced characters. (c) Ambiguous spacing but consistent pen-lifts 
between characters. (d) Connected characters. 

tively, the segmentation preprocessor simply can regularly sample windows 
of the input signal. 

Tentative characters usually overlap considerably. The segmentation 
postprocessor uses an interpretation groph. The nodes of this graph con­
tain the tentative character recognition scores, and the transitions between 
nodes favor particular character chainings. This avoids reusing the same 
part of a character multiple times and allows the implementation of fre­
quencies of character successions particular to a given language. 

We use the recognition scores provided by the neural network to provide 
estimates of the posterior probabilities of the various character interpre­
tations charx given the input: P(charxlinput). The transition coefficients 
are estimates of P(charylcharx) determined independently of the recogni­
tion process. Using (abusively) the assumption of independence between 
the recognition of the various characters, the segmentation postprocessor 
computes probability estimates of character sequence interpretations as 

P(charx, chary, ... Iinput) = P(charxlinput)· P(charylcharx) 
.P(charylinput) . .. . (7.3) 

The output of the segmentation postprocessor is the best path in the graph, 
corresponding to the most probable word (or character sequence). Our 
implementations will be described in Sec. 7.3.2. 

7.2.5 SIMILARITY MEASURER 

So far, we have assumed that the neural network would be used to estimate 
the posterior probability P(charxlinput). But one may be interested in 
having the network estimate P(inputl '" input2), that is, the estimate of 
the similarity between two patterns. Such a network has found applications 
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to classification problems, using a K-nearest neighbor classifier or a kernel 
classifier [24], and to verification problems such as signature verification [4] 
(Sec. 7.3.3) and fingerprint verification [25]. 

Similarity measures are very problem-dependent and usually must be 
designed by experts. As an alternative, we tailor the similarity measure to 
the task at hand by training a neural network classifier to separate pairs 
of similar patterns and pairs of dissimilar ones. 

For instance, take two identical neural feature extractors netl and net2. 
The first one encodes inputl into outPUtl and the second one input2 into 
output2' Add on top a similarity measure module that computes the dot 
product between outPUtl and output2 to obtain the degree of similarity 
between the two patterns. We named a system with such an architecture a 
siamese neural network [4] (see Fig. 7.2.5). 

During training, similar patterns (e.g., two genuine signatures from the 
same person) are given a large positive desired degree of similarity. Con­
versely, dissimilar patterns (e.g., a signature and its forgery) are associated 
with a negative or 0 desired degree of similarity. The network is trained 
with the backpropagation algorithm by backpropagating errors through the 
similarity measure module (Sec. 7.2.7). The constraint that netl = net2 is 
enforced during training by averaging the weight updates of corresponding 
weights in netl and net2' 

Other similarity measure modules can be used instead of the simple dot 
product, such as a Gaussian similarity measure exp( _d2 /0'2), where d is the 
Euclidean distance between output 1 and output2. One also could imagine 
using an elastic matching module to perform better time alignment. In Sec. 
7.3.3, we use a normalized dot product: cos (outpuh , output2)' 

7.2.6 Loss CALCULATOR 

The loss calculator computes a penalty function or loss function which 
measures the distance of the system from its objective. Combined with an 
appropriate optimization technique such as gradient descent, the loss func­
tion guides the system during training towards our goal. A very commonly 
used loss function is the square loss: 

Lsq = (output - desired) 2 , 

where output is the actual output of the system and desired is its corre­
sponding desired value. For instance, for a classification problem with two 
classes A and B, all elements of class A are assigned a desired value of +1 
and all elements of class B a desired value of -1. After training, if the out­
put of the system is positive, the input pattern is classified as A, otherwise 
as B. 

The goal of learning is to get best generalization performance. For a clas­
sification problem, this means that, after training, the classification error 
rate on examples not used for training (test set) must be low. It is not clear 
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whether minimizing a loss function using only training examples can yield 
good generalization. However, both theoretical studies and experimental 
results [26] show that good generalization can be achieved if the "capac­
ity" of the learning system is matched to the number of training examples. 
If the capacity is too large, the system can easily learn the training exam­
ples, but it usually exhibits poor generalization (overfitting). Conversely, if 
the capacity is too small, the system is not capable of learning the task at 
all (underfitting). 

The capacity of a neural network is related to the number of free pa­
rameters [27]. This is a relatively small number for convolutional networks 
such as the TDNN, compared to fully connected networks and to networks 
with local connections but with no weight sharing [17]. More recent work 
talks rather of an "effective capacity" which incorporates properties of the 
input space, network architecture, and training algorithm [26]. A simple 
way of affecting the capacity during training is to modify the loss function 
by adding, for instance, a weight decay term that pulls the weights to o. 

In our present work, the capacity control is handled by "early stopping." 
Before training, the weights are initialized with small random values such 
that the total input of the neurons lies in the linear part of the sigmoid 
squashing function [Eq. (7.2)]. The initial effective capacity is smaller than 
what the number of tunable parameters suggests: It is equal to the number 
of free parameters of the equivalent linear system. During training, as the 
weights increase, use is made of the nonlinearity of the squashing function 
and the capacity progressively increases until it reaches an optimum which 
is detected by cross-validation. We do cross-validation by computing the 
performance of the system on a small set of patterns that is distinct from 
the training set and the test set. 

Training algorithms usually minimize the average loss over all training 
examples, with respect to the weights of the network. Such is the case for 
the original backpropagation algorithm [16], which minimizes the mean­
square-error (MSE) or average square loss. This technique is widely applied 
and well suited to a large variety of problems. An alternative strategy is to 
minimize the maximum loss over all training patterns ("minimax" training) 
[28]. This technique is guaranteed to capture the tail of the distribution of 
input patterns but is very sensitive to outliers [18]. Better generalization 
than with MSE minimization is obtained with minimax training after care­
ful screening of eventual mislabeled or meaningless patterns that have been 
inserted in the training data [3] (see Sec. 7.3.1). 

7.2.7 GLOBAL OPTIMIZATION TECHNIQUES 

Once the various modules described in the previous sections are assembled 
into a system, the problem arises of optimizing all of the parameters (i.e., 
the weights of the network) with respect to the final objective determined 
by the loss function. In [29], a general framework has been proposed to 
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achieve the global optimization of a multimodular architecture. We present 
here a particular example which illustrates the main ideas. 

We train our neural network with gradient descent, for which the weight 
updates are computed as 

8L 
!:l.W=-f-8w' (7.4) 

where L is a loss function, W is a weight of the network, and f is a small 
positive quantity (the gradient step or learning rate). The backpropagation 
algorithm permits chaining the computation of the partial derivatives from 
the output to the input of the network [16]. 

Consider the case of the "siamese" neural network described in Sec. 
7.2.5. To compute the weight updates and use the chaining rule of back­
propagation, one needs first to compute the partial derivative: 

8L 
(7.5) 

8outPUti' 

where i is either 1 or 2. Assume that we use a cosine similarity measure 
and a squared loss: 

L(inpuh, input2, w) = [cos(outputl, output2) - desired]2 

output 1 • outPUt2 d' d [( ) ]
2 

= II outPUtl IIII output2 II - eszre , 

(7.6) 

(7.7) 

where desired = 1 if the patterns are similar and 0 otherwise. Then, using 
the condensed notation 8 for cos(outputl, output2) , X for outputl' Y for 
outPUt2' and D for desired, we obtain: 

8L 8L 88 
8X = 888X 

1 ( II Y II ) = 2(8 - D) II XliII Y II Y - 81iXlfX , 

(7.8) 

(7.9) 

from which all other partial derivatives with respect to the weights of the 
network can be computed using backpropagation. 

7.3 Applications 

In this section we present solutions to problems in on-line handwriting 
recognition and signature verification that involve various combinations of 
the modules previously described. 

We have designed the Penacee system so that ultimately it will han­
dle unconstrained handwriting of any style. We report first the results we 
have obtained for the writer-independent recognition of digits, uppercase 
and lowercase letters, written in the boxed mode. Then we explain the 
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Fig. 1.6. The architecture of the isolated character recognizer. 

techniques that we have used to handle the recognition of unsegmented 
hand-printed uppercase words (run-on mode) . We report the results of two 
methods of segmentation: INSEG (for INput SEGmentation) and OUTSEG 
(for OUTput SEGmentation). We show that the two methods have comple­
mentary advantages. We propose a combination of INSEG and OUTSEG 
and preliminary results indicating that our final system may be able to 
handle unconstrained handwriting. Finally, we present an application of 
"siamese" neural networks to signature verification. 

7.3.1 ISOLATED CHARACTER RECOGNITION 

The simplest task that we have addressed is that of isolated character 
recognition, which involves the combination of modules shown in Fig. 7.6. 
The specifications of the neural feature extractor (a TDNN up to its second 
to last layer) are summarized in Table 7.1. We report on several experiments 
with the same neural feature extractor but different classification layers. 
We always use one output neuron per character interpretation or class. 
The desired output values for a given interpretation chari are - 1 for all of 
the neurons except the ith, which has a desired output of 1. We train the 
network with backpropagation. 

The experiments are performed with data collected in the cafeteria of 
an AT&T facility. Approximately 250 writers contributed to at least one 
complete set of the 10 digits, the 26 uppercase letters, and the 26 lowercase 
letters. We address the writer-independent task, meaning that different sets 
of writers are used for training and testing. 

In [1], we report results obtained on digits and uppercase letters. A set 
of approximately 12,000 examples is used for training and 2500 examples 
for testing. A TDNN with 36 outputs in its classification layer is trained to 
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Table 7.1. TDNN Feature Extractor for Character Recognition 

Input Subsampling elm elm elm elm 
length steps 1st layer 2nd layer 3rd layer 4th layer 

90 3.3.2 8/7 6 110 4 116 5 I 24 

The subsamplings steps are time subsampling steps from one layer to the neXt. 
The time scale thus is contracted by a factor of 18. The kernels have dimensions 
e by m (Fig. 7.3). The neural feature extractor has 34,660 connections in its 
unfolded version (Fig. 7.3) but only 3106 independent weights, due to "weight 
sharing" (Sec. 7.2.2). 

recognize either digits or uppercase letters. This means that, during train­
ing, no error is backpropagated from the uppercase letter neurons if a digit 
is presented, and vice versa. At utilization time the a priori information 
about whether the character to be recognized is a digit or an uppercase 
letter is needed. For instance, the neuron with maximum activation among 
the digit output neurons is selected if the character to be recognized is 
known to be a digit. We obtain an error rate on the test set of 3.4% error 
(2.3% if tested on digits only and 3.8% if tested on uppercase letters only). 

In [2], we propose a training algorithm (the "emphasizing scheme") that 
enables atypical patterns, such as characters written by left-handed people, 
to be learned. The method is a simple way of improving the information­
theoretic learning efficiency. It consists, during backpropagation training, 
in presenting more often the least predictable patterns (i.e., the ones with 
the largest squared losses). The method is related to minimax learning pro­
cedures (Sec. 7.2.6) such as optimum margin classification [18J and boosting 
techniques [30J. Using this method, the error rate is reduced from 3.4 to 
2.8%. Even more importantly, the variation in error rate for different writ­
ers is substantially decreased. 

In [3J, we present results on lowercase letters. In this study, we propose 
a "super-supervised" learning technique, the purpose of which is to detect 
undesirable outliers (mislabeled or meaningless patterns introduced byac­
cident into the database). During the supervised learning session, which 
utilizes the class labels stored in our database, a human "super-supervisor" 
double checks the labels of the patterns that are hardest to learn and are 
therefore suspicious. We show that the "emphasizing scheme" works best 
when the data are cleaned by a "super-supervisor." A TDNN with the same 
feature extraction layers as specified in Table 7.1, but with only 26 neurons 
in the classification layer (for the lowercase letters), is trained with approx­
imately 9500 lowercase letters and tested with 2000 letters from different 
writers. Our final error rate of 6.9% is considerably better than the initial 
error rate of 11 % error that is obtained with standard backpropagation and 
without cleaning the data. 

In [2, 5J, we address the problem of writer adaptation. No matter how 
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good a writer-independent system becomes, there always will be too many 
variations in writing styles to ensure very high recognition accuracy for all 
writers. It is therefore important to allow a given writer to fine-tune the 
system to his own handwriting. We have developed techniques that allow 
the same neural feature extractor to be kept and retrain only the classifi­
cation module. The simplest method consists in using a nearest-neighbor 
classifier instead of the last layer of the network. A selection of prototypes 
is stored in the representation of the neural feature extractor. Patterns are 
classified according to the class of their nearest prototype. When the sys­
tem fails to recognize a pattern, an additional prototype is generated. New 
classes can be introduced, allowing for customizations of the recognizer by 
adding new sets of symbols and gestures. Performing nearest-neighbor clas­
sification in the representation of the neural feature extractor, as opposed 
to the network input representation, is advantageous for two reasons: few 
patterns are required for adaptation (usually only one or two), thanks to 
the robustness of the representation; and little storage is required, thanks 
to the compactness of the representation. Using an optimal margin classi­
fier instead of the nearest-neighbor classifier, the same accuracy is retained 
while recognition speed is improved and fewer prototypes are needed. This 
enables us to reach very high recognition accuracies for most writers (less 
than 1 % error) with fast adaptation and at the expense of no recognition 
speed degradation. 

7.3.2 HAND-PRINTED WORD RECOGNITION 

In [6, 7], we address the harder task of recognizing hand-printed words that 
are not a priori segmented into letters. This task involves the combination 
of modules shown in Fig. 7.7. We report results obtained with two methods 
of recognition-based segmentation. The methods are designed to work in 
the ''run-on mode," where there is no constraint on the spacing between 
characters. While both methods use a neural network recognition engine 
and a graph-algorithmic postprocessor, their approaches to segmentation 
are quite different. 

The experiments are carried out on data from a large variety of writers 
which were collected in the cafeteria of an AT&T facility. We collected ap­
proximately 9000 one- to five-letter words, which we separated into 8000 
for training and 1000 for testing. Short words (one to three letters) are ran­
dom combinations of all letters, and longer words are legal English words. 
Another set of 600 English words of any length (from an 80,000-word dic­
tionary) also is used for testing. Our best result is 11% word error rate on 
that last set, using lexical checking. 
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Fig. 1.1. The architecture of the hand-printed word recognizers. 

INSEG 

We call our first method INput SEGmentation, or INSEG, because of the 
key role played by the segmentation preprocessor. The INSEG technique is 
inspired by earlier work in optical character recognition [14]. A set of heuris­
tics is used to determine likely segmentation points, or "tentative cuts," 
For the recognition of on-line hand-printed characters, pen-lifts are very 
natural tentative cuts. Our segmentation preprocessor uses both pen-lifts 
and spaces to cut the data stream and define a set of "tentative characters," 
usually a small superset of the valid characters (Fig. 7.8) . 

An interpretation graph is built with the recognition scores of all tenta­
tive characters (Fig. 7.8). The transition probabilities are simply set to the 
inverse of the preceding node fan-out and do not include information about 
the relative position of the tentative characters [31] nor the frequencies of 
letter successions in English [32] . The segmentation postprocessor searches 
the K-best paths in the graph. In the case of the figure, the best path is 
"UFT." But if the word is written by an English-speaking person, we would 
rather select the second-best path "LIFT," which is a valid English word. 
In practice, we use up to 20 best paths and try to match them with the 
closest English words using the "ispell" program [33]. The words thus ob­
tained are reordered using the interpretation graph. The valid English word 
with the highest score is selected. Using as a recognition engine the TDNN 
described in Sec. 7.3.1, we obtain a word error rate on the short-word data 
of 29% without lexicon and 23% with lexicon. 
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L: 0.6 
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Fig. 7.S. Example of an interpretation graph produced by the INSEG system. 
The first two best scores are shown on top of each box. The transition weights 
indicated below the arrows are just the inverse of the preceding node fan-out. 
The best path "UFT" has a score of O.lD. The second-best path "LIFT" has a 
score of only 0.07, but it will be preferred when lexical checking is used. 

We have found that better recognition rates are obtained by optimizing 
the overall system: recognizer and segmentor. This is done by retraining 
the TDNN with both examples of valid characters and counterexamples of 
characters. These counterexamples correspond to mistakes of the segmen­
tation preprocessor, such as incorrect splitting of characters or incorrect 
groupings of strokes. If the correct interpretation is not the best path in 
the interpretation graph, the segmentation postprocessor pursues its search 
until the nth path gives the correct interpretation. All of the incorrect paths 
up to the (n - 1 )th are used as counterexamples to retrain the network. 
With such retraining, much improvement is obtained. The word error rate 
without lexicon drops to 18% and with lexicon to 15%, on the short-word 
test set. 

Our best performances are obtained using retraining and by combining 
two different neural networks with a voting scheme: a TDNN and a two­
dimensional convolutional network [34]. On the short-word test set, we 
reach, without lexicon, a word error rate of 13% and, with lexicon, 10%. 
On the long-word test set, we reach an error rate of 23% without lexicon and 
11 % with lexicon. It should be emphasized that the test sets are not cleaned 
from mislabeled and meaningless patterns that are introduced during data 
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collection. The error rates we obtain are more than three times smaller than 
the error rate obtained by a commercial recognizer tested on the same data. 

OUTSEG 

The INSEG system is well suited for the recognition of characters sep­
arated by pen-lifts. For connected handwriting, we prefer an alternative 
segmentation technique which does not presume any segmentation points 
prior to recognition. We call this other technique OUTput SEGmentation, 
or OUTSEG. 

The segmentation preprocessor presents to the recognizer a window of 
the input signal. The window is shifted in time to show the next tentative 
character. Therefore, the task of the segmentation preprocessor is trivial. 

Scores for the different tentative characters are obtained as an ordered 
sequence of score vectors (Fig. 7.3). Both the location and the interpretation 
of the characters are determined by the segmentation postprocessor which 
therefore handles the segmentation per se. Hence the name OUTSEG. 

How does the segmentation postprocessor proceed? If no character is 
present in the input window, all of the network outputs are below a cer­
tain activation threshold. Conversely, if a character is present in the input 
window, there is a high activation value for the neuron corresponding to 
the correct interpretation. We avoid, however, the very delicate problem 
of tuning thresholds by filtering the sequence of output scores. We use a 
digital filter that implements a model of character duration and of dura­
tion of the spacing between characters. In Fig. 7.9, we show the sequence of 
network outputs and the interpretation path selected by our postprocessor. 
Several high scores are filtered in this path by the duration modeling. 

We first use a TDNN trained on isolated characters only, similar to the 
one described in the previous section. We obtain with that network a very 
large error rate: more than 80% word error, with or without lexicon, on the 
short-word database. 

As in the case of the INSEG method, we have found that it is important 
to retrain the TDNN with entire words. With retraining, the network learns 
both to recognize characters and to detect transitions between characters 
by giving a low score to all outputs when the window is not centered on a 
character. We use for that purpose the position-invariant training technique 
proposed in [35, 36J. We also have tried to optimize the overall system, 
recognizer plus segmentor, by backpropagating errors through the duration 
model, with similar success. After retraining, the word error rate on the 
short-word data reduces to 21 % without lexicon and 17% with lexicon. On 
the long-word data we obtain 49% without lexicon and 21% with lexicon. 

The error rates of OUTSEG are about twice as small as that of the com­
mercial recognizer tested on the same data. They are, however, not quite as 
good as that of INSEG on this task. This is understandable since uppercase 
printed letters are relatively easy to segment with a good heuristic segmen-
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Fig. 7.9. Example of an output from the OUTSEG system. Each row in the 
matrix represents the score of one output unit for a different input window po­
sition in tim1l. Each column represents the scores for all units for one particular 
position of the time window. The darker the boxes, the more confident the unit 
is in its interpretation. The last row in the matrix is 1 minus the sum of all the 
other scores in a given column. It represents the probability that no character 
is detected. The dashed line indicates the best path found by the postprocessor, 
using a duration model of the characters and the character transitions. 

tation preprocessor. In more than 95% of the words in our database, letters 
are separated by spaces and/or pen-lifts. Although we do not have direct 
evidence, the experiments performed in [37J are an indication that, on cur­
sive handwriting, for which good tentative cuts are difficult to determine, 
OUTSEG would work better than INSEG. 

Combination of INSEG and OUTSEG 

We would like our end system to be able to recognize printed characters, 
both cursive script and also mixed styles. Currently existing systems are 
good at recognizing either printed letters or cursive. We propose a way of 
combining INSEG and OUTSEG into a single system that has the good 
features of both systems and permits mixed styles to be handled. We call 
this new method INOUTSEG. 
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To extend INSEG to cursive recognition, one would need to introduce 
more tentative cuts than pen-lifts, perhaps minima of the speed of the 
pen. But, multiplying the number of tentative cuts is unnecessary for the 
recognition of hand-printed characters, and can only result in performance 
degradation. It is also unclear whether tentative cuts other than pen-lifts 
could be found. On the other hand, OUTSEG can spot character locations 
without making use of heuristic tentative cuts, but it makes more mistakes 
than INSEG when characters are nicely separated by pen-lifts. 

Our idea is to rely on the INSEG preprocessor to determine tentative 
cuts in input space that are reported in the OUTSEG output space (see 
Fig. 7.1O). We then detect inconsistencies between the INSEG and OUT­
SEG segmentations. When OUTSEG finds multiple characters between two 
consecutive tentative cuts, additional "virtual cuts" are introduced to sep­
arate them. The list of tentative cuts and virtual cuts thus obtained is 
subsequently used to build an interpretation graph, such as the one de­
scribed in Fig. 7.8. This INOUTSEG graph is filled with the recognition 
scores of INSEG and OUTSEG combined with a voting scheme. 

In the example of Fig. 7.10, the INSEG system uses a neural network 
trained to recognized uppercase and lowercase letters, and the OUTSEG 
system uses a network trained to recognize cursive words. The figure shows 
that OUTSEG cannot recognize the uppercase letter "M" and makes an 
insertion error at the end of the word. On the other hand, INSEG can­
not separate the connected letters "ed." The combined system, however, 
correctly recognizes the word. Our system still is under development, and 
experimental results will be reported elsewhere. 

7.3.3 SIGNATURE VERIFICATION 

The problem of signature verification is quite different from that of char­
acter recognition. For handwriting recognition, the correct interpretation 
must be discovered, not the identity of the writer. For signature verifica­
tion, the correct interpretation (writer name) is given, but what needs to 
be discovered is the identity of the writer (good guy or forger?). 

Most approaches to this problem rely on human expertise to devise dis­
criminatory similarity measures. In our approach, we train a "siamese" 
neural network (see Secs. 7.2.5 and 7.2.7 and Fig. 7.11) to learn a similar­
ity measure from examples. 

In [4], we address the signature verification task with the problem of 
reducing credit card fraud in mind. The credit card holder would give 
several samples of his own signatures at the bank, and then an encrypted 
pattern of his signature would be stored on his credit card. At the retail 
site, his signature would be matched against the pattern stored on his card. 

The experiments are carried out on data collected among the staff at 
AT&T and NCR, and on data collected at Wright State University. A 
total of approximately 3300 signatures was obtained, including genuine 
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Fig. 1.10. Example of combination of input and output segmentation. (a) The 
original word. (b) The data as presented to the OUTSEG network. (c) The se­
quence of output scores obtained by the OUTSEG network. (d) The INSEG 
interpretation graph. (e) The INOUTSEG interpretation graph, including IN­
SEG tentative cuts, OUTSEG virtual cuts, and the scores of both INSEG and 
OUTSEG combined with a voting scheme. In (b) and (c), the tentative cuts se­
lected by INSEG (coinciding with some pen-lifts) are shown as bold vertical lines; 
the virtual cuts provided by OUTSEG are shown as vertical dashed lines. In (d) 
and (e), arrows are not represented; each box is associated with the tentative 
character delineated by two cuts whose numbers are at the bottom of the box; 
in each box, we show only the interpretation associated to the best score whose 
intensity is indicated with the grey shading (the darker, the larger). 
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Fig. 7.11. Architecture of the siamese neural network. 

signatures and forgeries . The amount of effort put into producing forgeries 
varied but reflected rather well the spectrum of real-life data since many 
forgers attempting to use somebody else's credit card produce effortless 
forgeries and may even use their own signature. 

Training of the "siamese" network is performed by presenting pairs of 
signatures. We train the neural feature extractor to produce a representa­
tion of the signatures such that there is a small angle between two genuine 
signatures from the same person, and a large angle between two distinct 
signatures and between a signature and its forgery. The angle is measured 
by the "similarity measurer" (Fig. 7.11) by calculating the cosine between 
the output vectors of the two neural feature extractors (see Sec. 7.2.5). If 
both signatures are produced by the same person (genuine signatures), the 
desired cosine is 1, otherwise it is negative or O. The exact value of the 
desired value does not influence the performance significantly. 

During utilization, the cosine similarity measure is replaced by a Gaus­
sian similarity measure (Sec. 7.2.5) . Credit card holders usually do not 
contribute to the data that are used to train the neural feature extractor. 
They provide only a few examples of their signatures, which are encoded as 
the representations of the outputs of the neural feature extractor. We build 
a Gaussian model of these patterns, whose mean becomes the reference 
prototype for the user's signature and whose covariance matrix is used to 
determine the width and orientation of the Gaussian window. 

The siamese network fits the problem quite nicely. After training, a model 
signature can be encoded in the representation of the neural feature extrac­
tor. It is therefore both compressed significantly and encrypted, which is 
suitable for storage on a credit card magnetic strip. During verification, the 



276 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting 

signature to be checked is processed at the retail place by an identical neu­
ral feature extractor and matched to its model. The model can be updated 
constantly with examples of successfully verified signatures. 

In [4], several network architectures are tried. The networks are trained 
with 7700 signature pairs, 50% being pairs of genuine signatures from the 
same person, 40% genuine forgery pairs, and 10% pairs of different signa­
tures. The networks then are tested on a separate set of signatures from 
different people comprising about 500 genuine signatures and 400 forgeries. 
For each person, a model signature in the neural feature extractor repre­
sentation is built from six signatures. The model is tested with six other 
genuine signatures and forgeries. 

By varying a rejection threshold on the output of the system, one can 
monitor the trade-off between accepting too many forgeries and rejecting 
too many genuine signatures. Our best network permits detecting 80% of 
the forgeries while rejecting only 5% of the genuine signatures. 

7.4 Conclusion 

We presented a neural network approach to solve several problems in on­
line handwriting recognition. Our design choices make consistent use of the 
sequential nature of the data, in both the preprocessing and the neural 
network architecture (a TDNN). The initial success of our writer- indepen­
dent isolated character recognizer motivated us to address tasks of greater 
difficulty. We reported here on applications to signature verification and 
the recognition of hand-printed words with no spacing constraints between 
characters. On this last task, our system outperforms a widely distributed 
commercial recognizer tested on the same data. While we still are improving 
our first system, we already are developing the next generation, which will 
try to recognize mixed styles including hand-printed letters and cursive. 
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Topology Representing 
Network in Robotics 
Kakali Sarkar and Klaus Schulten! 

with 6 figures 

Synopsis. We consider the visually guided control of the grasping move­
ments of a highly hysteretic five- joint pneumatic robot arm. For this 
purpose we apply a modified version of the so-called topology represent­
ing network algorithm, a vector quantization algorithm that also learns 
to represent neighborhood relationships. The notion of neighborhood re­
lationships allowed us to average the behavior of neurons which represent 
similar tasks, both during the training and in generating control signals in 
the mature state. Based on visual information provided by two cameras, 
the robot learns to position and orient its end effector properly for the 
object to be grasped. For simplicity, we consider the grasping of cylindri­
cal objects only. The control is comprised of two stages. In the first stage, 
the end effector approaches the side of the cylinder facing the robot base; 
and in the second stage, the end effector grasps the cylinder. Training of 
the first stage involves a brief episode of supervised learning to prime the 
network. The control is achieved through a visual feedback loop: for both 
stages of the motion the system detects the error to target and applies a 
linear correction. This correction is achieved through a training that yields 
a vector-quantized representation of a zero-order signal of joint pressures 
and a first-order correction through Jacobian tensors which relate the error, 
expressed in terms of camera coordinates, to correct joint pressures. The 
network is trained satisfactorily after about 300 trial movements, with a 
residual average error of 1.35 camera pixels. Besides a demonstration of the 
technical feasibility of control through topology representing networks, this 
chapter provides a tutorial for technical applications of such networks. The 
algorithm behind a topology representing network, its training and employ­
ment for task control, is described in complete detail to provide the reader 
with a comprehensive view of this important class of neural networks in 
the context of a technical application. 

lDepartment of Physics/Beckman Institute, University of Illinois, Urbana, IL 
61801, USA. 
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8.1 Introduction 

In the early days of research in neurocomputing, networks were seen as de­
vices that were capable of computing logic functions [1]. Such a mechanistic 
view of neurocomputing became popular mainly because of the fact that 
computation traditionally was viewed in light of logic gates and switching 
algebra. However, we have gradually come to know the bottlenecks of the 
traditional deterministic computer; we observe that the human brain can 
easily outperform today's supercomputers in tasks where it processes mul­
tidimensional analogue data and probabilistic, noisy information. It is now 
generally believed that an understanding of boolean logic and switching 
algebra may not enhance our perspective about neuronal information pro­
cessing in the brain. The quest for a theoretical framework to quantify the 
underlying computation process has brought computer scientists, physi­
cists, and biologists together. Vigorous research efforts during the last two 
decades have helped to develop a different perspective about neurocomput­
ing. This interdisciplinary effort has resulted in many promising real-world 
applications such as speech processing [2], optimization [3], complex control 
systems [4, 5], and more. 

Grasping of objects is one of the most common tasks frequently per­
formed by human beings. Even though this seems to be easy and often 
spontaneous to most of us, from the control system perspective grasping 
is complicated. The object to be grasped has to be identified in the envi­
ronment by its location and by other features. Then the trajectory of the 
arm movement has to be planned in such a way that it does not collide 
with any obstacle. Recently, many efforts have been made [6-10] to under­
stand the control mechanism of such complex maneuvers and to make use 
of these fundamental control techniques to develop viable artificial neural 
control systems. In this chapter we focus mainly on the control of the ex­
ecution of grasping motions, assuming an extremely simplified solution for 
the recognition of the target and the arm's current posture: we provide a 
set of suitable light-emitting diodes (LEDs) on the arm and the target in 
an otherwise darkened space. 

Nevertheless, the problem of executing motions to grasp a cylinder placed 
in all possible positions and orientations in a robot's workspace is a dif­
ficult one. The motion must involve at least five degrees of freedom and 
be sufficiently precise. The precision must be achieved for an arm that is 
subject to random and hysteretic behavior. In fact, in the present case, the 
controlled arm is driven pneumatically with effectors which are subject to 
strong hysteresis and oscillations as characterized in [11, 12]. The required 
control only can be achieved when the network, besides learning the con­
trol signals for a sufficiently fine set of arm postures, also learns tensors 
which allow the arm to linearly correct deviations from the target due to 
hysteresis and other effects. 

The corresponding control problem, in principle, can be formulated in 
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terms of a table look-up algorithm that provides for each target cylinder a 
table entry which produces the suitable air pressures to move the arm. As 
was already stated, the entries of the table need to be a set of pressures 
to move the five degrees of freedom of the arm (see Section 2) as well as 
a tensor, the Jacobian connecting the deviation from the target, expressed 
as a vector of five coordinates, to the vector of pressures driving the arm 
(see Sec. 3). Obviously, such a table look-up program cannot be arbitrarily 
fine. However, even a coarse grid of, say, 10 points along each coordinate 
for a five-dimensional space leads to a very large number (100,000) of table 
entries. Obviously, an optimal choice which, for a given number of entries, 
produces the smallest error is very desirable. An important ingredient of 
the criterion stated is the probability distribution of arm postures under 
normal working conditions. The neural networks used in our study obey 
such criterion in that they assign their table entries as a result of a training 
in which arm postures are requested with a frequency distribution which 
matches that occuring in normal working conditions. In fact, the algorithm 
allows life-long learning such that the table entries can be continuously 
adjusted to the work experience. 

The problem to optimally assign a finite number of table entries to a con­
tinuous space, often of very high dimension, is called the vector quantization 
problem. The neural network algorithm adopted here provides a solution 
for vector quantization as discussed in [13]. However, there is another im­
portant attribute of the control problem that also must be captured by 
the look-up algorithm in order to be efficient, namely the topology of the 
control space. This implies that the table entries develop threads between 
each other which connect entries assigned to arm postures which are very 
close to each other. These threads serve two purposes, one during training 
and one after training. The threads can be employed when the table en­
tries are generated, i .. e., when the networks are trained. Entries connected 
through threads contain similar information, and, hence, they can share 
the improvements to their entries during the training period. The result 
is a dramatic decrease of the training period since any training episode is 
shared by many table entries. A particularly important aspect of the shar­
ing of information among table entries is that this feature makes the system 
much less sensitive to the initial, usually random, entries in the table. In 
many instances, when table entries are trained separately, convergence to a 
suitable control program depends on the initial table entries, i.e., the radius 
of convergence of the training algorithm is not infinite. However, the shar­
ing of table entry updates increases the radius of convergence enormously, 
as was demonstrated in [14]. 

The threads between entries are also very beneficial after training, when 
the system is used to control the arm. The threads allow one to average the 
control signals (pressures) to the arm over table entries connected through 
a thread. Such an average improves performance at the early stages of 
training and can also increase the accuracy of the control: if N units are 
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Fig. 8.1. Block diagram of the SoftArm robot system [11]. 

pooled, each with an error €, the error after averaging (assuming, for the 
sake of simplicity, that the table entries are coded for exactly the same 
posture) is f/v'N. 

The threads between the table entries reflect the topology, i.e., neighbor­
hood relationships, of the control space. In the present case, the topology 
of the control space is obviously that of ]R5 since all arm postures required 
to grasp a cylinder form a manifold embedded in the five-dimensional Eu­
clidean space. In fact, in the algorithm presented below, the threads be­
tween the table entries are never actually established. Rather, we use the 
Euclidean metric to establish a closeness ranking among table entries and 
use this ranking instead of threads. However, in many cases, a dimension 
or metric is not obvious and needs to be established while a system is 
confronted with training tasks. In an early neural network scheme for con­
trol based on Kohonen networks [15, 16J, such a dimension needed to be 
specified beforehand. Theses schemes preserved the given dimension (topol­
ogy) in that they assigned table entries to the task space while keeping 
the threads, e.g., those representing a two-dimensional grid, intact. Exam­
ples addressing the control of robots in computer simulations are found in 
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[17, 10, 18, 19, 14]. A comprehensive presentation of these networks in a 
variety of applications, ranging from brain maps to robot control, can be 
found in [20]. This textbook also discusses at length the statistical mechan­
ical analysis of the convergence properties of the network and fluctuations 
of the network's table entries. A particularly interesting application of these 
networks to visual brain maps can be found in [21]. 

When we attempted to apply neural network algorithms to control real, 
i.e., not simulated, robot arms, we established that networks with an a 
priori topology, like generalized Kohonen networks, are not optimal. In­
stead, we appended the vector quantization scheme described in [13] with 
Hebbian rules which provided the required threads between table entries. 
The resulting topology representing the network had been introduced in 
[22] and discussed at length in [23]. The network has been applied succes­
fully to control an industrial robot with precise response to ~ontrol signals 
[24,25] and also to a pneumatically driven robot [11], the same as the one 
employed in the present study. 

In this chapter we present an extension of our previous work [11] on the 
control of a pneumatic robot arm by incorporating a control mechanism for 
the grasping of cylinders of arbitrary orientation. In the following section 
we first characterize the control problem describing the arm geometry and 
the ideosyncracies of the pneumatic actuators of the robot arm used. In 
Sec. 3 we present the topology representing network algorithm employed 
for control. The section provides all of the algorithmic steps involved in 
complete detail, but it does not explain the algorithm exhaustively as is 
done in [23]. However, the detailed presentation of the algorithm in the 
present contribution might be considered by many readers a better expla­
nation of topology representing networks than any general exposition. In 
Sec. 4 we demonstrate how the algorithm, after training, performs grasping 
motions. 

8.2 Problem Description 

The robot-camera system is shown schematically in Fig. 8.1. This system 
has been described in detail in [11]. The robot contains a pneumatic arm 
with five joints. At each joint, two or four rubber tubes are connected by 
chains across sprockets. The rubber tubes are supplied with compressed air 
from an air compressor. When differential air pressures are supplied to the 
tubes, differing equilibrium lengths result, which induce a rotation of the 
joint to a new equilibrium point. 

There are five servo drive units for five joints, each of which takes signals 
from the host computer and sends current output to the servo valve unit. 
The servo valve unit then converts this electrical signal to pressure infor­
mation, i.e., it controls the pressures inside the rubber tubes by opening or 
closing the electrical valves. Two cameras observe the location of the end 
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Fig. 8.2. Pressure versus position plot for joint 1. Hysteretic behavior of joint 1, 
of the softarm. The pressure difference in the agonistic and antagonistic tubes of 
joint 1 was first increased and then decreased. 

effector or the cylinder to be grasped and send back the information to the 
host computer, which then finds the image coordinates in pixels with the 
help of two parallel image processors. 

The servo drive units can be used to control the robot arm in two modes, 
a pressure-control mode and a position-control mode [11]. The present work 
has been carried out in the pressure-control mode. The relation between the 
joint pressures and position is highly nonlinear and also exhibits hystere­
sis. When the pressure is increasing, the pressure-position relation follows 
a particular path, but it follows a different path while the pressure is de­
creasing again. Figure 8.2 shows such type of behavior for joint 1. 

The end effector of the robot arm is a two-fingered one and is presented 
schematically in Fig. 8.3. The movement of the end effector is controlled 
by the fourth and fifth joints. Each joint produces a motion which is a 
combination of rotational motions about the axes X X' and YY'. Pure 
rotation about X X' and YY' also can be produced, but each of them is a 
function of both the fourth and fifth joint pressures. 

In the present work, we consider the grasping of cylindrical objects only. 
In order to grasp such an object, several issues need to be addressed. First, 
the point of grasping should be very close to the center of mass of the 
cylinder. If the center of mass is far from the chosen grasping position, the 
generation of undesirable torques makes it difficult to hold the cylinder. 
The angle between the axis of symmetry(ZZ') of the cylinder and that of 
the end effector(XX') is another important factor. The end effector should 
be placed perpendicular to the symmetry axis of the cylinder. In other 
words, axis Z Z' should be perpendicular to the plane containing axes X X' 
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Fig. 8.3. A sketch of the end effector (gripper) and the cylinder to be grasped. 

and YY' . These two aspects have played the role of prime significance in 
all of our grasping algorithms. 

8.3 Topology Representing Network Algorithm 

The visually controlled motions for grasping cylinders placed in the arm's 
workspace are carried out in two stages: In the first stage, the arm's gripper 
is placed in front of the cylinder at a proper orientation as shown in Fig. 
(8.3); in the second stage, the arm moves toward the center of the cylinder 
and actually grasps it by closing the gripper's fingers. The training proce­
dures of each stage will be described separately below. Control of the first 
stage is by far the more difficult problem. 

8.3.1 TRAINING OF FIRST-STAGE MOTION 

The goal of the first stage of the grasping motion is to generate a set of 
pressures in the arm's tubes which place and orient the gripper in front of 
the cylinder in a configuration suitable to carry out the second stage of the 
grasping motion and actually grasp the cylinder. We refer to the suitable 
configuration reached at the end of the first grasping stage as the target 
configuration. This configuration is realized through application of a set of 
vectors to the tubes of the arm which are collected in a pressure vector P . 

The target position for the initial placement of the gripper is determined 
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as follows: As is shown in Fig. 8.3, we fix two lights at the positions p 
and q such that the line joining p and q is coplanar as well as parallel to 
the cylindrical axis abo The images of these lights give the representation 
of the endpoints of another imaginary cylinder of the same size as the 
original, which, however, is placed at a small distance in front of the original 
one. The lights appear in the two cameras at points characterized by the 
coordinates (Ul,U2,U3,U4)T and (U5,U6,U7,Us)T. As a result, the position 
of the target is characterized through an eight-dimensional vector Utarget = 
(Ul,U2,U3,U4,U5,U6,U7,US)T. The set of all vectors Utarget in the robot's 
workspace form the so-called feature space V c !WI. We seek a training 
procedure which, for the first stage of the grasping motion, develops a map 
Utarget E V -+ P(Utarget) E:F which assigns to Utarget the proper pressure 
vector for P, positioning and orienting the gripper in front of the cylinder. 

The robot arm is moved through ten tubes which pairwise act in an 
agonistic-antagonistic manner to rotate the arm's joints. The sum of the 
two pressures in each agonist-antagonist tube pair determines the stiffness 
of the motion. In the present study, the total pressure for each joint was 
kept constant during the operation of the system. As a result, the arm 
was moved through five independent pressures, one for each joint. The 
corresponding pressure vector P is then five-dimensional and the space :F 
of joint pressures is then embedded in !R5 • 

The goal of the training of the N neurons controlling the first stage of 
the grasping motion is to develop first a set of Voronoi cells covering the 
feature space V with centers Wk E V, k = 1,2, ... N, and then to develop 
a map V -+ :F. The latter map is established through local affine maps 
in each of the Voronoi cells, i.e., in the Voronoi cell assigned to neuron k, 
through 

(8.1) 

where Pk and Ak are constants (a vector and a tensor) which are acquired 
through the training. 

As was stated earlier, the neurons actually achieve their control through 
averaging their output P(Utarget). The average involves the neurons that 
have Voronoi cells adjacent to each other in the feature space V. To de­
termine the corresponding average, one first needs to determine a ranking 
among the neurons which describes which neuron's Voronoi cell contains 
the target vector Utarget, which Voronoi cell is second closest, third closest, 
etc. Such ranking is achieved as follows: One determines for each neuron 
k, k = 1,2, ... N, the distance 

Dk(Utarget) = II Utarget - Wk II (8.2) 

and then determines a ranking ka, k lo ••. kN-l such that 

for m < n. 
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One then defines 

k(r, Utarget) = kr 
r(£, Utarget) = m, where km = i. 

(8.3) 
(8.4) 

This ranking can be employed to achieve the desired averaging. We choose 
for this purpose the functional form 

N 

P(Utarget) = 2: a(r(k, Utarget)) 
k=l 

with 

a(r) = e- r / 10 . 

(8.5) 

(8.6) 

The softarm poses a challenging control problem due to drift in the re­
lationship between pressures applied to the arm's joints and the resulting 
arm configuration. This drift manifests itself on various time scales; on a 
very short timescale it is characterized by the hysteretic behavior of the 
arm shown in Fig. 8.2. On longer time scales a drift arises due to tem­
perature sensitivity and dependence on time of usage of the mechanical 
characteristics of the arm's tubes. Finally, over the lifetime of the softarm 
the characteristics of the tubes are subject to wear. The long time changes 
can be overcome by retraining the arm. In fact, the algorithms for training 
and control of the arm are essentially identical, such that retraining can be 
realized during actual usage of the softarm. 

The hysteretic properties of the softarm require that one linearly cor­
rects the arm posture to reduce the error d = IIx - Xtargetll, where x 
characterizes the current arm posture and Xtarget is the desired posture. 
As was specified above, and for the second-stage gripper movement further 
below, the posture is characterized by certain vectors of camera coordinates 
such that d is measured in units of camera pixels. The corrections of arm 
postures seek to reduce the error d below a tolerance 

tol(t) = 0.1 + 100· e-t / 120 pixels. (8.7) 

Here t counts the number of training steps. The tolerance is chosen large 
at the beginning of the training and reduces towards a small final value. 

Obviously, one cannot enforce an overall accuracy of less than a camera 
pixel. In fact, the remaining final average error measures a little less than 
a pixel for each network, and a little over one pixel for the two networks 
controlling stage-one and stage-two movements combined (see Sec. 4). To 
reduce the error d below the tolerance [Eq. (8.7)J usually requires several 
linear correction steps. Accordingly, the control system linearly corrects 
the arm posture repeatedly until the tolerance is met. In the course of 
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the training, when the tolerance is already at a small value, e.g., after 200 
training steps, the system typically requires eight correction moves, whereas 
it requires only about two to three such moves after training is completed. 

The final result of a training procedure is optimal quantities Wk and 
Pk, Ak for all N neurons k. At the beginning of the training, these quan­
tities need to be assigned initial values. In many cases [10, 14], the initial 
values of quantities to be acquired are chosen randomly. However, such 
choices lead to long learning periods that are particularly unfavorable in 
cases where "real-world" systems are trained. In the present case, the robot 
arm requires about 30 s for a single training step, a period that can lead 
to long overall training times. Furthermore, the radius of convergence of 
a training procedure [14] might not be infinite, such that some initial as­
signments, will not lead to convergence. Averaging as in Eq. (8.5) increases 
the radius of convergence [14], but the radius need not necessarily become 
infinite. A finite radius of convergence would require that the initial values 
of Wk and P k , Ak be chosen closer to the correct values. For this reason 
and, in particular, to speed up the overall training period, we acquired ini­
tial values in a supervised learning scheme. The learning was continued, 
after a brief phase, in an unsupervised form. For the sake of a more sys­
tematic exposition of the training schemes chosen, it is more suitable to 
present first the unsupervised learning scheme adopted here and then the 
supervised scheme, even though the schemes were applied in the opposite 
order. 

Unsupervised Learning Scheme 

The unsupervised learning scheme consists of several hundred training 
steps, each of which results in an update of the quantities Wk and Pk, Ak. 
The values of these quantities before the learning step are defined as wk1d 

and paid A old and after the learning step as w new and pnew A new 
k'k k k'k' 

We now outline how any particular step proceeds. The learning steps are 
numbered t = 1,2, ... , and each learning step consists of ten substeps. 

1. A cylinder is placed in a new, usually randomly chosen position in the 
workspace of the arm. To ascertain that the cylinder is actually placed 
in the workspace, one often adopts a "split brain" procedure [24], 
having the robot itself position the cylinder, but then "forgetting" 
the control signals (joint pressures in the present case). The cameras 
detect the cylinder and provide the vector (VI. ... ,vS)T characterizing 
the cylinder position. For the following we define 

(8.8) 

Actually, the position Vtarget used for the stage-one motion does not 
coincide with the cylinder position, but rather is a position between 
the robot base and the cylinder, close to the cylinder as defined above. 
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2. The closeness ranking k(r, Vtarget) of the neurons and its inverse 
r(k, Vtarget) is determined, as described in Eqs. (8.3) and (8.4) above: 
k(O) is the index of the neuron with its wield closest to Vtarget, k(1) 
is the index of the neurOn with its wield second closest to Vtarget, 
etc. Conversely, r(119) is the rank of the neurOn with index 119, i.e., 
r(119) = 5 implies that the particular neuron 119 has its wyii sixth 
closest to Vtarget. 

3. The vectors (weights) wield are updated according to 

wi:ew = wield + 'Yw (r(k, Vtarget) , t) . (Vtarget - wield) . (8.9) 

'Yw is a function that decays exponentially with the number t of the 
learning step as well as with the closeness rank r(k, Vtarget) 

'Yw(r, t) = e· e-r/ue-t />.. 

with e = 0.7, (j = 5, and ), = 100. 

(8.10) 

4. The pressure that is supposed to move the robot arm toward the tar­
get Vtarget then is determined according to the averaging procedure 
[Eq. (8.5)] 

N 

P(Vtarget) = La: [(k, Vtarget]] 
k=l 

(8.11) 

5. The pressure [Eq. (8.11)] is applied to the robot arm's tubes and 
the robot moves its gripper. The resulting gripper configuration is 
detected by the cameras and the vector of camera coordinates viE V 
is supplied. This motion was termed in our previous studies [11] the 
coarse movement of the arm. 

6. The values Pleld then are updated according to 

Pi:ew = Pleld + 'Yp (r(k), t) . [p(Vtarget) - pield - Ak(Vi - Wk)] , 
(8.12) 

where P(Vtarget) is the pressure determined in substep 4 and 

'Yp(r, t) = e' . e-r/ue-t />.. 

with e' = 0.8. 

(8.13) 

7. The system now determines an improved vector of pressures which 
attempt to correct the remaining differences between Vtarget and Vi: 

S 

P fine = P(Vtarget) + L a:(r) [Ak(r) . (u - Vi)] , (8.14) 
r=O 
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where P(Vtarget) is again the pressure determined in substep 4 and 
a(r) is given in Eq. (8.6). 

8. The pressure P line is applied to the arm's tubes and the robot arm 
assumes a new gripper position. This position is detected by the cam­
eras and corresponding camera coordinates v I are supplied. This mo­
tion had been termed fine movement in our previous studies [11]. 

9. The system employs the remaining error between v I and Vtarget to 
update the tensors Ak according to 

A;:ew = Ak1d + 'Yj(r, t) . (LlP - Ak~~)Llv).LlvTIILlvlI-2, (8.15) 

where 

(8.16) 

with foil = 0.01 and where we defined LlP = P line - P(Vtarget), 
P(Vtarget) as again being the pressure vector of substep 4, and Llv = 
vI - Vi' 

10. The system determines the error d = IlvI - Vtargetll between the 
present gripper position and the target position. In the case where d 
exceeds the tolerance [Eq. (8.7)], another correction move is executed 
and, accordingly, the system carries out steps 7-9 again; otherwise, 
the system goes to the next step. In the case where steps 7-9 are 
executed once more, one first redefines Pkew _ Pkld and Akew _ 
Aold k • 

11. The unsupervised learning scheme either terminates when a set num­
ber of steps has been executed or starts another round of substeps, 
beginning with substep 1 above. 

Supervised Learning Scheme 

The supervised learning scheme described now was employed to obtain bet­
ter starting values for the quantities Wk and Pk, Ak, which specify how the 
neurons k, k = 1,2, ... N control the initial stage of the grasping motion. 
The supervised learning scheme defines a sequence of target camera coordi­
nates Vtarget by actually moving the gripper to the respective configuration 
and communicating the respective pressures to the learning scheme. The 
procedure, applied in the first nsup = 50 steps of the learning scheme, is as 
follows: 

1. A random pressure vector P target is chosen. 

2. Ptarget is applied to the tubes of the arm and the arm moves to a 
new position. The gripper configuration is detected by the cameras 
and the corresponding camera coordinates Vtarget are supplied. 
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3. The closeness ranking k(r, Vtarget) , r(k, Vtarget) of the neurons is de­
termined as in the unsupervised scheme. 

4. The vectors (weights) wr/d are updated, as in the unsupervised 
scheme, according to 

new _ old + «k ) t) ( old) Wk - Wk 'Yw r ,Vtarget, • U - Wk , (8.17) 

where 'Yw is as defined in Eqs. (8.3) and (8.4). 

5. The pressure vectors p~ld are updated according to 

p~ew = p~ld + 'Yp (r(k, Vtarget) , t) (8.18) 

x [Ptarget - p~ld - Ak(Vtarget - Wk)] , 

where 'Yp(r, t) is as defined in Eq. (8.9). 

6. The system then determines a pressure vector 

N 

P(Vtarget) = La trek, Vtarget)] • [Pk(r,vturget} 

k=l 

+Ak(r,Vturget} . (Vtarget - Wk(r»] . 

(8.19) 

7. This pressure is applied to the arm's tubes, and, as a result, the arm 
moves its gripper to a new position. 

8. The cameras detect the new gripper position and supply the corre­
sponding camera coordinates Vi. 

9. The system now determines an improved vector of pressures which 
attempt to correct the remaining differences between Vtarget and Vi: 

S 

P fine = P(Vtarget) + 2: a(r) . (Ak(r) • (Vtarget - Vi». (8.20) 
r=O 

10. The pressure P fine is applied to the arm's tubes and the gripper 
moves to a new position. 

11. The cameras detect the new gripper position and supply the corre­
sponding camera coordinates V f. 

12. The system then updates the tensors A~ld according to 

A~ew = A~ld + 'Yj(r(k, Vtarget) , t) (8.21) 

[ - ~ ] x (Ptarget-Pfine(Vtarget) - Ak(r)(vtarget-V/» 

x (Vtarget - vf)Tllvtarget - vfll-2 . 
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Note that both expressions updating p~ld and A~ld, i.e., Eqs. (8.18) 
and (8.21), include Ptarget, i.e., knowledge of the pressure which 
would have guided the arm, except for hysteretic effects, exactly to 
the target gripper position characterized by Vtarget. 

13. The system determines the error d = Ilvl - Vtargetll between the 
present gripper position and the target position. In the case where d 
exceeds the tolerance [Eq. (8.7)], another correction move is executed, 
and, accordingly, the system carries out steps 9-12 again; otherwise, 
the system goes to the next step. In the case where steps 9-12 are 
executed once more, one redefines first p~ew -+ p~ld and A~ew -+ 
Aold 

k • 

14. In the case where nsup training steps have been completed, the system 
terminates; otherwise, it begins another round of substeps beginning 
with substep 1 above. 

8.3.2 TRAINING OF FINAL GRASPING OF THE 

CYLINDER - SECOND STAGE OF MOVEMENT 

After the gripper has been placed and oriented properly in front of the 
cylinder (see Fig. 8.3) in the first stage of the movement, the gripper needs 
to be translated toward the cylinder until the fingers of the gripper enclose 
the cylinder sufficiently, i.e., until the center of the gripper coincides with 
the center of the cylinder. This translation is referred to as the second stage 
of the gripper movement. Since this movement does not require rotation of 
the gripper, only three degrees of freedom are active in the second stage 
of the movement. This considerably simplifies the control problem which 
requires, hence, a lower resolution of the neural network representation such 
that 200 neurons suffice. 

The algorithm employed here for control and training of stage-two move­
ment has been described in [11]; for the sake of completeness and consis­
tency of notation, we review the algorithm below. 

The aim of the algorithm is to guide the center of the gripper g to the 
center ofthe cylinder. The latter is characterized through two sets of camera 
coordinates, (CI' C2) and (C3, C4), corresponding to the image of the gripper 
center in the left and in the right camera, respectively. For the control of 
stage-two movement, the map 

c-+p (8.22) 

is required, where c = (CI' C2, C3, C4) is a four-dimensional vector and p de­
fines the set of pressures to translationally move the gripper. Since the last 
two joints of the five-jointed softarm are involved in gripper rotation, they 
are not required for the second-stage movement and only three pressures 
need to be specified. Accordingly, the map to be determined is ~ -+ !R3 • 
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The embedding spaces !R4 and !R3 define a (Euclidean) metric " ... II that 
will be employed. 

The strategy of the present neural network approach, as outlined in [11J, 
is to represent the relevant three-dimensional manifold n of gripper centers 
C E !R4 through vector quantization involving n neurons, where n = 200. 
The neurons labeled i, i = 1,2, ... n are to be assigned positions Wi E ~, 
which represent the manifold n of possible gripper centers. To each of the 
neurons we also assign a pressure vector Pi E ~ and 3 x 4-tensor ai. The 
latter are to be chosen to establish affine maps 

(8.23) 

which optimally approximate the exact map [Eq. (8.22)J in the Voronoi cell 
of neuron i in the manifold n, i.e., in the space of all gripper centers C with 
IIc - Will :5 IIc - wmll, m = 1,2, ... n. 

In order to determine the pressure that guides the gripper to the cylinder 
center Ctarget in stage two of the movement, one determines, in analogy to 
the case of stage-one movements, the closeness ranking i(r, Ctarget) and, in­
versely, r'(i, Ctarget). As in the case of a stage-one movement, the pressures 
supplied to the robot arm are actually averages of the pressures [Eq. (8.23)J 
contributed by neurons of neighboring Voronoi cells. The corresponding av­
erages for the control of stage-two movements are given by 

n 

P(Ctarget) = L a:(r'(i, Ctarget)) 
1.=1 

where a:(r) is as defined in Eq. (8.6). 

(8.24) 

The final result of the training procedure is optimal quantities Wi and 
Pi, ai for all n neurons i. At the beginning of the training procedure these 
quantities are assigned random values. Stage-two movement control does 
not require supervised learning to improve the initial values and cuts down 
the training period; the reason for this is that the three-dimensional posture 
control of a robot arm with averaging of control signals converges rapidly 
with an infinite convergence radius, as is demonstrated in [14J. 

Learning Scheme 

The unsupervised learning scheme consists of several hundred training 
steps, each of which results in an update of the quantities Wi and Pi, ai. 
The quantities before the learning step are defined as wl'd and pl'd, a1'd , 

and after the learning step wrw and piew , aiew . We now outline how any 
particular step proceeds. The learning steps are numbered t = 1,2, ... , 
and each learning step consists of nine substeps. 

1. A target position Ctarget is chosen randomly to operate the robot in a 
"split brain" fashion: a random set of pressures (Pl,P2,P3) is applied 
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Fig. 8.4. Positioning and orientation error versus number of steps. This figure 
shows the learning curve for the network controlling the first stage of the gripper 
movement. 

to the tubes of the first three joints of the softarm. The arm moves 
to a corresponding position. This position is detected through the 
cameras and communicated to the system in the form of the four­
dimensional vector Ctarget. This procedure ascertains that the chosen 
positions Ctarget actually belong to the workspace of the arm. 

2. The closeness ranking l(r, Ctarget) and its inverse r(l, Ctarget) are es­
tablished. 

3. The values wl1d are updated using the expression 

wrw = wl1d + 'Yw(r(l,Ctarget),t)· (Ctarget - wl1d). (8.25) 

Here 'Yw(r, t) is chosen as 

'Yw(r, t) (8.26) 

where (J2 = 5. 

4. The pressure vector p( Ctarget), which is supposed to move the gripper 
center toward Ctarget, then is determined according to the averaging 
procedure in Eq. (8.24). 

5. This pressure is applied to the tubes of the robot arm and the arm 
moves the gripper. The resulting position of the gripper center is 
detected by the cameras and the vector Ci of camera coordinates is 
supplied. 
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6. The values Pl1d are then updated according to 

p~ew = Plld + I';(r(l, Ctarget) , t) (8.27) 

x [P(Ctarget) - Plld - alld(ci - wild)] , 

where p( Ctarget) is the pressure vector determined in substep 4 and 
where 

1'; (r(l, Ctarget) , t) = e"· e-r/ u2 e-"fi/9 

with e" = 0.8 and 0'2 = 5. 

(8.28) 

7. The system now determines an improved vector of pressures which 
attempt to correct the remaining differences between Ctarget and Ci: 

n 

PJine = P(Ctarget) + La:(r'(l,Ctarget»' a£(r)' (Ctarget - Ci), 
r=l 

(8.29) 
where p( Ctarget) is again the pressure vector determined in substep 4 
and where a:(r) is as defined in Eq. (8.6). 

8. The pressure PJine is applied to the arm's tubes and the arm assumes 
a new gripper position. This position is detected by the cameras and 
the corresponding camera coordinates C J are supplied. 

9. The system employs the remaining error between Ctarget and cJ to 
update the tensors aild : 

a~ew = af.:ld + elll e-r/ u . af.:ld(Ctarget - CJ )~cTII~clI-2 (8.30) 

with elll = 0.01,0' = 5, and ~C = CJ - Ci. 

10. The system determines the error d = IIcJ - Ctargetll between the 
present gripper position and the target position. In the case where d 
exceeds the tolerance [Eq. (8.7)J, another correction move is executed 
and, accordingly, the system carries out steps 7-9 again; otherwise, 
the system goes to the next step. In the case where steps 7-9 are 
repeated, one first redefines p~ew -+ Pl1d and a~ew -+ al ld . 

11. The learning scheme either terminates when a set number of steps 
have been executed or starts another round of substeps, beginning 
with substep 1 above. 

8.4 Experimental Results and Discussion 

8.4.1 ROBOT PERFORMANCE 

Target locations for the training were selected by moving the end effector 
to a position that was chosen by supplying random pressures to the joints. 
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Fig. 8.S. Positioning error of the end effector for the neural network controlling 
the second stage of gripper movement. 

Maximum and minimum pressures for each joint were stated such that 
the robot arm picked target positions within a workspace of size 375 mm 
x 750 mm x 750 mm. 

The camera viewed the resulting position and orientation of two lights 
that were fixed at positions p and q (Fig. 8.3) and sent the corresponding 
Vtarget to the system. 

In each learning step, after the target location Vtarget was chosen, the 
robot arm went to a particular arbitrarily chosen position from where it 
tried to reach the target location v target using one coarse movement and 
several fine movements. 

All of the weights Wk, pressures Pk, and Jacobians Ak initially were 
assigned randomly. The initial nsup = 50 learning steps followed the super­
vised procedure, introduced in Sec. 3, in which the knowledge of the pres­
sures P target corresponding to the target positions v target were provided. 
After the first 50 steps, the robot started to learn in an unsupervised mode, 
i.e., the pressures P target no longer were provided. Each trial, on average, 
took 30 s to complete. Two networks were trained separately in this way. 
One network, consisting of 1000 neurons, was employed for stage-one move­
ments which positioned and oriented the gripper in front of the cylinder. 
For S, introduced in Eqs. (8.14) and (8.20), a value of 400 was chosen. 
The robot learned a set of five pressures Pk and a set of 5 x 8 Jacobian 
matrices. A smaller network of 200 neurons was employed for second-stage 
movements leading to grasping. In the later case, only three joints were 
used, and here the robot learned a set of 3 x 4 Jacobian matrices in an 
unsupervised way, as was already described in [11]. The tolerance level for 
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Fig. 8.6. Grasping error versus number of trials; the figure here shows the com­
bined error for both of the networks. 

error (Utarget - v f) for each learning step was an exponential function of 
time [Eq. {8.7)J. 

As in Eq. (8.7), in the initial stages the tolerance was set to a high level, 
and as the network became mature it became lower and lower. Both of the 
networks took 400 steps to reduce the error for both the positioning and 
orientation below 3 pixels. Figures 8.4 and 8.5 show error levels for both 
of the networks after 1000 learning steps. For a mature network, three fine 
movements were sufficient to reduce the error below the tolerance level. 

8.4.2 COMBINATION OF Two NETWORKS 

FOR GRASPING 

After the training was completed, the mature networks were tested for 
grasping a cylinder. The combined network, trained first by the supervised 
and then by the unsupervised algorithm, was used to place the robot grip­
per in front of the actual cylinder by sending visual inputs from two lights at 
positions p and q (Fig. 8.3). After this initial positioning, the visual inputs 
were changed to the images of the center of line abo The network consisting 
of 200 neurons then became activated and the gripper approached that cen­
ter slowly by small movements. The results for the two networks then were 
combined and are shown in Fig. 8.6. Figures 8.5 and 8.6 demonstrate that 
the network is satisfactorily trained after only about 300 trial movements, 
with a residual average error of 1.35 camera pixels. 
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8.4.3 DISCUSSION 

Control of positioning and grasping movements of robot arms often has 
been addressed in the literature, in particular by researchers in control 
theory and artificial intelligence [26]. The major problem with the control 
theory and the artificial intelligence approaches is that they both depend on 
the domain knowledge and, therefore, require cumbersome efforts to design 
the control system. Moreover, these approaches are not robust when one 
deals with real life, e.g., hysteretic, robots. In this work we have taken a dif­
ferent approach which is based on our understanding of the map-generating 
mechanism in human brains [21]. Our previous effort to control the position­
ing of the end effector of a pneumatic robot [11] was successful but limited 
to a restricted set of target configurations. In the present study we allow 
arbitrary orientations of a target cylinder to be grasped and thereby have 
made the problem of grasping control more difficult to accomplish. Never­
theless, the topology representing network algorithm along with supervised 
tuning accomplished control of grasping after only a modest number (300) 
of training episodes. Presently, we extend this study to network architec­
tures that closely resemble biological motor pathways, in particular those 
that involve cortical as well as cerebellar components. We also employ a 
more sophisticated method for visual recognition of target and arm posture. 
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Overfitting, 184-187 
Overlapping delays, 48 

p 
Parallel dynamics, 21-22 
Pattern capacity, 97 



Pattern capacity (Cont.) 
obtaining, 112n 

Pattern classification, 83 
Pattern completion, 83 
Pattern generation, random, 89-

90 
Pattern types, 81-82 
Pea.no arithmetic, 124 
Penacee system, 255-276 

applications of, 265-276 
Perceptron, 151-152, 166-174 

Gibbs algorithm and, 171-
173 

one-layer, 181 
optimal, 187 

Perfect address pattern, 89 
Perfect input patterns, ensemble 

of,89 
Periodic cortical maps, 59 
Periodic limit cycles, 33-42 
Phase locking, 43-45 
Phase space 

geometry in, 175-178 
of neural networks, 153-154 

Posterior distribution, 157 
Posterior probability distribu­

tion, 222 
Postsynaptic neurons, 5 
Predictive distributions, 241-

242 
Presynaptic neurons, 5 
Priors, implicit, 238-239 
Probabilistic models, neural net-

works as, 222-226 
Projective fields, 64 
Pruning, 233-235 

Q 
Queries, 191-193 
Quiescent cells, 5 

R 
Random pattern generation, 89-

90 

Index 309 

Rapid convergence, 45-48 
Rate coding models, 85 
Receptive fields (RFs), 59 

of cortical cells, 56, 63-
64 

oscillation within, 64 
structure of, 59, 65 
in visual cortex, 55-75 

Recognition preprocessor, 
Penacee system, 257-
258 

Recurrent neural networks, 1 
global analysis of, 1-50 

Refractory period, 5 
Regression, error bars in, 232 
Regression networks, 223-224 
Regularization, 224 
Regularization constants 

multiple, 228-229 
optimization of, 240 
setting, 226-229 

Relative information content, 
31 

Renormalization 
multiplicative, 66n 
subtractive, 66n 

Replica method, 204 
Replica symmetry, 170 
Replica symmetry breaking 

(RSB),194 
Replica. theory, 168-171 
Replica trick, 169 
Representation of information, 81 

efficient, 71-73 
memories and, 81-82 

Representation theorems, 246 
Retinooptic map, 56 
Retrieval errors, 83 
Retrieval process, 83, 84-85 

analysis of, 88-97 
RFs, see Receptive fields 
Robotics, topology representing 

network in, 281-300 
RSB (replica symmetry break­

ing),194 
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S 
Sandpile models, 15 
Sauer's lemma, 154 

proof of, 204-205 
Scalar delay differential equation, 

38 
Segmentation preprocessor and 

postprocessor, Penacee 
system, 261-262 

Self-organized criticality, 15 
Self-organizing feature map 

(SOFM), 69-70, 73 
Self-organizing maps, 73-74 
Semilinear models, 62-68 
Sequential dynamics, 19-21 
Shift operation, 8 
Sieves, 144-146 
Sigmoid input-output relation, 

22-24 
Signal-to-noise calculation, 92-

93 
Signal-to-noise ratios, 92, 111 

for explicit learning rules, 
93-94 

Signal transmission, 8 
Signature verification, Penacee 

system, 273-276 
Similarity measurer, Penacee sys-

tem, 262-263 
Simple learning, 181-184 
Singular patterns, 81 
Site averaging, 90 
Smooth networks, 163-165 
SOFM (self-organizing feature 

map), 69-70, 73 
SoftArm robot system, 284 

combination of two networks 
for grasping, 299 

description, 285-287 
experimental results and dis­

cussion, 297-300 
performance, 297-299 
supervised learning scheme, 

292-294 
topology representing net-

work algorithm, 287-
297 

training of first-stage mo­
tion, 287-294 

training of second-stage mo­
tion, 294-297 

unsupervised learning 
scheme, 290--292 

Soma, 4 
Sparse patterns, 82, 108-109 
Spike, 5 
Spike coding models, 85 
Spike generation, 6 
Spike rate, 85 
Stability, 187 

maximal, 187-191 
Stationary coupling matrices, 129 
Statistical mechanics 

Bayesian approach and, 155-
159 

of generalization, 151-207 
Statistical physics approach to 

learning, 157 
Stimulus-induced oscillations, 43 
Stochastic complexity, 161n 
Storage 

distributed, 87-88 
of extensively many pat-

terns, 97 
Storage process, 83, 86-87 
Subtractive renormalization, 66n 
Symmetrical coincidence rule, 86 
Symmetry breaking, analysis of, 

130--131 
Synapses, 4-5, 83 

Hebbian, 59, 126 
Synaptic couplings, 33, 34 
Synaptic noise, 9 
Synaptic symmetry, 35 

extended, 18 
Synaptic weights, 151-152 
Synchronization of action poten­

tials, 42-48 
Synchronization processes, 42-43 
Synchronous dynamics, 10 



T 
Tasks,127 
TD, see Time-delay networks 
Teacher-student overlap, 182 
Thermodynamic limit, 89, 155 
Threshold setting, 90 
Threshold value, 85 
Time-delay networks (TD), 12 

dynamics of, 36 
Time lags, 8 
Topology representing network in 

robotics, 281-300 
Training energy, 157 
Training situation, 127 
Transfinite induction, 124 
Turing machines, 125 

finite, 127 

U 
Unique inductive inference, 133 
Unsupervised learning, 201-203 

V 
Vapnik-Chervonenkis (VC) di­

mension, 154-155 
effective, 245-246 

Index 311 

Vapnik-Chervonenkis method, 
204 

Variance of noise, 92 
VC (Vapnik-Chervonenkis) di­

mension, 154-155 
effective, 245-246 

Vector quantization problem, 283 
Visual cortex 

layers of, 56 
primary, 56 
receptive fields in, 55-75 

Visual system, schematic of, 56 
Visually-induced activity, 58 
Von der Malsburg model, 60-61 

W 
Weight decay, 224 
Wittgenstein's paradox, 125, 126, 

139-140 
Word recognition, hand-printed, 

Penacee system, 268-
273 

Z 
Zero-average input condition, 96, 

110 
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