E. Domany J.L. van Hemmen
K. Schulten (Eds.)

Models of Neural
Networks 111

Association, Generalization,
and Representation




Physics of Neural Networks

Series Editors:
E. Domany J.L. van Hemmen K. Schulten

Springer-Science+Business Media, LLC

Adyvisory Board:

H. Axelrad

R. Eckmiller

J.A. Hertz

J.J. Hopfield
P.I.M. Johannesma
D. Sherrington
M.A. Virasoro



Physics of Neural Networks

Models of Neural Networks
E. Domany, J.L. van Hemmen, K. Schulten (Eds.)

Models of Neural Networks II: Temporal Aspects of Coding and Information
Processing in Biological Systems
E. Domany, J.L. van Hemmen, K. Schulten (Eds.)

Models of Neural Networks III: Association, Generalization, and Representation
E. Domany, J.L. van Hemmen, K. Schulten (Eds.)

Neural Networks: An Introduction
B. Miiller, J. Reinhart



E. Domany J.L.van Hemmen
K. Schulten (Eds.)

Models of
Neural Networks I11

Association, Generalization, and
Representation

With 67 Figures

€)) Springer



Series and Volume Editors: Professor Dr. J. Leo van Hemmen
Institut fiir Theoretische Physik
Technische Universitdt Miinchen
D-85747 Garching bei Miinchen

Germany
Professor Eytan Domany Professor Klaus Schulten
Department of Electronics Department of Physics
Weizmann Institute of Science and Beckman Institute
76100 Rehovot University of Illinois
Israel Urbana, IL 61801

USA

Library of Congress Cataloging-in-Publication Data
Models of neural networks III / E. Domany, J.L. van Hemmen, K.
Schulten, editors.
p. cm.—(Physics of neural networks)
Includes bibliographical references and index.
ISBN 978-1-4612-6882-6 ISBN 978-1-4612-0723-8 (eBook)
DOI 10.1007/978-1-4612-0723-8
1. Neural networks (Computer science) — Mathematical models.
I. Domany, E. (Eytan). II. Hemmen, J.L. van (Jan
Leonard). III. Schulten, K. (Klaus) IV. Series.
QA76.87.M59 1995
006.3—dc20 95-14288

Printed on acid-free paper.

© 1996 Springer Science+Business Media New York

Originally published by Springer-Verlag New York in 1996

Softcover reprint of the hardcover 1st edition 1996

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Science+Business Media, LLC), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information stora-
ge and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
by anyone.

Production coordinated by Publishing Network and managed by Natalie Johnson; manufac-

turing supervised by Jeffrey Taub.
Typeset by Bytheway Typesetting, Norwich, NY.

987 6 5 43 21

ISBN 978-1-4612-6882-6



Preface

One of the most challenging and fascinating problems of the theory of
neural nets is that of asymptotic behavior, of how a system behaves as time
proceeds. This is of particular relevance to many practical applications.
Here we focus on association, generalization, and representation. We turn
to the last topic first.

The introductory chapter, “Global Analysis of Recurrent Neural Net-
works,” by Andreas Herz presents an in-depth analysis of how to construct
a Lyapunov function for various types of dynamics and neural coding. It
includes a review of the recent work with John Hopfield on integrate-and-
fire neurons with local interactions.

The chapter, “Receptive Fields and Maps in the Visual Cortex: Models
of Ocular Dominance and Orientation Columns” by Ken Miller, explains
how the primary visual cortex may asymptotically gain its specific structure
through a self-organization process based on Hebbian learning. His argu-
ment since has been shown to be rather susceptible to generalization.

Association long has been a key issue in the theory of neural nets. Local
learning rules are quite convenient from the point of view of computer
science, but they have a serious drawback: They do not see global correla-
tions. In order to produce an extensive storage capacity for zero threshold,
the couplings on the average should vanish. Accordingly, there is a deep
truth behind Willshaw’s slogan: “What goes up must come down.” Mean-
while we have a zoo of local learning rules. In their chapter, “Associative
Data Storage and Retrieval in Neural Networks,” Palm and Sommer trans-
form this zoo into a well-organized structure taking advantage of just a
simple signal-to-noise ratio analysis.

Hebb’s epoch-making book The Organization of Behavior appeared in
1949. It proposed one of the most famous local learning rules, viz., the
Hebbian one. It was preceded by the 1943 paper of McCulloch and Pitts,
which is quite notorious because of its formal logic. In “Inferences Modeled
with Neural Networks,” Carmesin takes up this lead and integrates it with
the Hebbian approach, viz., ideas on assemblies and coherence. In so doing
he provides a natural transition from “association” to “generalization.”

Generalization means that, on the basis of certain known data, one
extrapolates the meaning of a new set. There has been quite a bit of progress
in formally understanding the process of generalization, and Opper and
Kinzel’s chapter “Statistical Mechanics of Generalization” summarizes this



vi Preface

progress. It starts from scratch, assuming only some basic knowledge of
statistical mechanics.

Bayes stands for conditional probabilities. For example, what is the
probability of having sunshine on the American East coast tomorrow given
that today’s weather has no clouds? The sentence starting with “given
that . . .” is a condition and the question entails an extrapolation. Adding
one further condition, viz., that it is during the summer, the chance in
question is about one. MacKay presents a careful and detailed exposition of
the beneficial influence of “Bayesian Methods for Backpropagation Net-
works.”

The last two chapters return to representation. Optical character recogni-
tion is well known as a playground of neural network ideas. The chapter
“Penacée: A Neural Net System for Recognizing On-Line Handwriting,” by
Guyon et al., aims at making the underlying concepts also widely known,
To this end, the setup is explained with great care. Their real-world exam-
ples show that an intelligently built but yet relatively simple structure can
give rise to excellent performance.

Robotics has been in the realm of neural networks for a long time; and
that is understandable. After all, we perform grasping movements ourselves
with great ease. That is to say, our motor cortex allows us to do so. Cortical
ideas also have permeated robotics. In their chapter “Topology Represent-
ing Networks in Robotics,” Sarkar and Schulten present a detailed algo-
rithm for the visually guided control of grasping movements of a pneumatic
robot as they are performed by a highly hysteretic five-joint pneumatic
robot arm. In so doing, they unfold a modified version of the manifold-
representing network algorithm, a Kohonen-type approach. Here, too, gov-
erning asymptotic behavior is the algorithm’s goal.

All of the chapters have one element in common: answering the question
of how one can understand an algorithm or procedure theoretically. And
that is what each volume of Models of Neural Networks is after.

The Editors
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Global Analysis of Recurrent
Neural Networks

Andreas V.M. Herz!

with 6 figures

Synopsis. This chapter reviews recurrent neural networks whose retrieval
dynamics have been analyzed on a global level using Lyapunov functions.
Discrete-time and continuous-time descriptions are discussed. Special at-
tention is given to distributed network dynamics, models with signal de-
lays, and systems with integrate-and-fire neurons. The examples demon-
strate that Lyapunov’s approach provides powerful tools for studying the
retrieval of fixed-point memories, the recall of temporal associations, and
the synchronization of action potentials.

1.1 Global Analysis — Why?

Information processing may be defined as the systematic manipulation of
external data through the internal dynamics of some biological system or
artificial device. In general, such a manipulation requires a highly nontrivial
mapping between input data and output states. Important parts of this
task can be accomplished with recurrent neural networks characterized by
massive nonlinear feedback: Triggered by an appropriate external stimulus,
such systems relax toward attractors that encode some a priori knowledge
or previously stored memories.

Within this approach to information processing, understanding associa-
tive computation is equivalent to knowing the complete attractor structure
of a neural network, that is, knowing what kind of input drives the net-
work to which of its possibly time-dependent attractors. Understanding
the computational properties of a recurrent neural network thus requires
at least three levels of analysis: (1) What can be said about the existence
and stability of fixed-point solutions? (2) Are there static attractors only,
or are there also periodic limit cycles and aperiodic attractors, as would be

1Department of Zoology, University of Oxford, Oxford, OX1 3PS, England.



2 1. Global Analysis of Recurrent Neural Networks

expected for generic nonlinear systems? (3) What is the structure of the
basins of attraction?

Questions about the precise time evolution between the initial network
state and the final output define a fourth level of analysis. Though less
important within the framework of attractor neural networks, these ques-
tions are highly relevant for systems that extract information “en route”
without waiting for the arrival at some attractor [1]. At a fifth level of anal-
ysis, one might finally be interested in questions concerning the structural
stability of a given network, that is, its robustness under small changes of
the evolution equations.

With regard to the computational capabilities of a neural network, ques-
tions about the type of attractor and the structure of basins of attraction
are of paramount importance. These questions deal with global properties
of the network dynamics. Accordingly, they cannot be answered using local
techniques only: A linear stability analysis of fixed-point solutions, the first
level of analysis, may reveal helpful knowledge about the network behavior
close to equilibria, but it never can be used to rule out the existence of
additional time-dependent attractors that may dominate large parts of the
network’s state space. Due to computational constraints, numerical simu-
lations can offer limited additional information only.

Highly simplified network models provide a partial solution in that they
often permit the application of global mathematical tools. However, such
formal networks are characterized by bold approximations of biological
structures. In the manner of good caricatures, they may nevertheless cap-
ture features that are also essential for more detailed descriptions.

One of the global mathematical tools is Lyapunov’s “direct” or “second
method” [2]. In the present context, it may be described as follows. Let
the vector z = (x1,...,zxN) denote the state variables of a neural network.
These variables change in time according to some evolution equation, for
example, a set of coupled differential equations (d/dt)z; = fi(z) if time is
modeled as a continuous variable t. A solution will be denoted by z(t). If
there exists an auxiliary scalar state function L(z) that is bounded below
and nonincreasing along all trajectories, then the network has to approach a
solution for which L(t) = L(z(t)) does not vary in time.2 The global dynam-
ics can then be visualized as a downhill march on an “energy landscape”
generated by L. In this picture, every solution approaches the bottom of
the valley in which it was initialized.

%Special care has to be taken with respect to unbounded solutions and con-
tinuous families of solutions with equal L. Note at this point that, in the present
chapter, formal rigor often will be sacrificed for transparency of presentation. A
mathematically rigorous introduction to Lyapunov functions can be found in the
monograph of Rouche, Habets, and Laloy [3]. It also contains — apart from a
large number of interesting theorems and proofs — some fascinating examples
that illuminate possible pitfalls due to imprecise definitions.
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The asymptotic expression for L(t) and the equation (d/dt)L(t) = 0
contain valuable information about the very nature of the attractors —
the first and second levels of analysis. Notice in particular that a solution
that corresponds to a local minimum of the Lyapunov function has to be
asymptotically stable, that is, it attracts every solution sufficiently close to
it.

As an example, consider a gradient system

dr; _  0L(z)

Using the chain rule, the time derivative of L is given by
N N 2
d oL dIL‘,' d.’L‘,;
dt ®) i=18x,-dt ;(dt) (12)

The last expression is negative unless z(t) is a fixed-point solution. It follows
that, if L(z) is bounded below, the system has to relax to an equilibrium.
The most important feature of Lyapunov’s direct method cannot be
overemphasized: The method does not require any knowledge about the
precise time evolution of the network; the mere existence of a bounded func-
tion that is nonincreasing along every solution suffices to characterize the
system’s long-time behavior. As a consequence, one can analyze the long-
time dynamics of a feedback network without actually solving its equations
of motion. Furthermore, most Lyapunov functions studied in this chapter
play a role similar to that of the Hamiltonian of a conservative system:
For certain stochastic extensions of the deterministic time evolution, the
network dynamics approach a Gibbsian equilibrium distribution generated
by the Lyapunov function of the noiseless dynamics. This has allowed the
application of powerful techniques from statistical mechanics and has led to
quantitative results about the performance of recurrent neural networks far
beyond the limits of a local stability analysis. The existence of a Lyapunov
function is thus of great conceptual as well as technical importance.

Lyapunov’s method suffers, however, from one serious flaw: No system-
atic technique is known to decide whether a dynamical system admits a
Lyapunov function or not. Finding Lyapunov functions requires experience,
intuition, and luck. Fortunately, a wealth of knowledge on both practical
and theoretical issues has been accumulated over the years.

The present chapter is intended as an overview of neural network ar-
chitectures and dynamics where Lyapunov’s method has been successfully
employed to study the global network behavior. A general framework for
modeling the dynamics of biological neural networks is developed in Sec.
1.2. This framework allows for a classification of various dynamical schemes
found in the literature and facilitates the formal analysis presented in later
sections.




4 1. Global Analysis of Recurrent Neural Networks

Recurrent networks that relax to fixed-point attractors only have been
used as auto-associative memories for static patterns. Section 1.3 reviews
convergence criteria for a number of prototypical networks: The Hopfield
model [4], the Little model [5], systems with graded-response neurons [6,
7], iterated-map networks [8], and networks with distributed dynamics [9,
10]. A statistical mechanical analysis of networks with block-sequential dy-
namics and results about the convergence to fixed points in networks with
signal delays conclude the section.

Neural networks with signal delays can be trained to learn pattern se-
quences. Such systems are analyzed in Sec. 1.4. It is shown that, with
a discrete-time evolution, these networks can be mapped onto “equiva-
lent networks” with block-sequential updating and no time delays. This
connection allows for a quantitative analysis of the storage of temporal
associations in time-delay networks. Next, the time evolution of a single
neuron with delayed feedback and continuous-time dynamics is discussed.
Two different Lyapunov functions are presented. The first shows that, un-
der certain conditions, all solutions approach special periodic attractors;
the second demonstrates that, under less restrictive conditions, the system
relaxes to oscillating solutions that need not be periodic.

The pulselike nature of neural activity has frequently been modeled using
(coupled) threshold elements that discharge rapidly when they reach a trig-
ger threshold. With uniform positive couplings, some networks composed
of such integrate-and-fire neurons approach globally synchronized solutions
where all neurons fire in unison. With more general coupling schemes, the
systems approach phase-locked solutions where neurons only exhibit lo-
cally synchronized pulse activity. Section 1.5 presents Lyapunov functions
for such a class of integrate-and-fire models. An additional proof shows that
the phase-locked solutions are reached in minimal time.

1.2 A Framework for Neural Dynamics

Starting with a brief description of the anatomy and physiology of single
neurons, this section introduces a general framework for modeling neural
dynamics.

1.2.1 DESCRIPTION OF SINGLE NEURONS

Neurons consist of three distinct structures: dendrites, a cell body, and an
axon. Dendrites are thin nerve fibers that form highly branched structures
called dendritic trees. They extend from the central part of a neuron, called
the cell body or soma, which contains the cell nucleus. The azon, a single
long fiber, projects from the soma and eventually branches into strands
and substrands. Located along the axon and at its endings are synapses
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that connect one (presynaptic) neuron to the dendrites and/or cell bodies
of other (postsynaptic) neurons [11].

Neurons communicate via an exchange of electrochemical signals. At
rest, a cell is held at a negative potential relative to the exterior through
selective ion pumps in the cell membrane. If the potential at the soma ex-
ceeds a firing threshold due to incoming signals, a strong electrochemical
pulse is generated. This excitation is called an action potential or spike. It
is propagated along the axon by an active transport process that results
in a solitonlike pulse of almost constant size and duration [12]. Following
the generation of a spike, the membrane potential quickly drops to a sub-
threshold value. After the event, the neuron has to recover for a short time
of a few milliseconds before it can become active again. This time interval
is called the refractory period.

At synapses, action potentials trigger the release of neurotransmitters,
which are chemical substances that diffuse to the postsynaptic cell where
they bind to receptors. This process leads to changes of the local mem-
brane properties of the postsynaptic neuron, causing either an increase
or decrease of the local potential. In the first case, the synapse is called
an ezcitatory synapse; in the second case, an inhibitory synapse. Through
(diffusive) transport processes along the dendritic tree, an incoming signal
finally arrives at the soma of the postsynaptic neuron where it makes a
usually minute contribution to the membrane potential.

How can one construct a mathematical framework for neural dynamics
that may be used to analyze large networks of interconnected neurons?

Let me begin with the description of neural output activity. A spike
is an all-or-none event and thus may be modeled by a binary variable
as was pointed out by McCulloch and Pitts [13]. It will be denoted by
S; = %1, where i enumerates the neurons. This specific representation
emphasizes the resemblance between McCulloch-Pitts neurons and Ising
spins.? Following the conventional notation, S; = 1 means that cell % is
firing an action potential, and S; = —1 means that the cell is quiescent.

In an alternative formulation, a quiescent cell is denoted by S; = 0. Both
representations are equivalent if the network parameters are transformed
appropriately. In the integrate-and-fire models that are discussed in this
chapter, the duration of action potentials is set to 0 for simplicity. To obtain
a nonvanishing pulse integral, a spike is modeled by a Dirac é-function, so
that, formally speaking, one is dealing with a 0/0c0 representation of action
potentials.

3The Ising model [14] provides an extremely simple and elegant description of
ferromagnets and has become one of the most thoroughly studied models in solid-
state physics. The formal similarity between certain extensions of this model,
namely, spin glasses, and neural networks such as the Hopfield model has stim-
ulated the application of statistical mechanics to neural information processing
(see also Sec. 1.3.6).
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An action potential is generated if the membrane potential u; exceeds a
firing threshold wugnresn. Since the trigger process operates without signifi-
cant time lags, spike generation (in the X1-representation) may be written

Si(t) = sgn(u;(t) — Uthresh),s (1.3)

where sgn(z) denotes the signum function.

In most of the models that will be analyzed in this chapter, the mem-
brane potential «; is not reset after the emission of an action potential. An
important exception are networks with integrate-and-fire neurons whose
precise reset mechanism is discussed in Sec. 1.2.3.

Some cortical areas exhibit pronounced coherent activity of many neu-
rons on the time scale of interspike intervals, that is, 10 — 100 ms [15, 16,
17]. Modeling this phenomenon requires a description of output activity in
terms of single spikes, for example, by using integrate-and-fire neurons.* In
other cases, the exact timing of individual action potentials does not seem
to carry any relevant information. One then may switch to a description in
terms of a coarse-grained variable, the short-time-averaged firing rate V.
Unlike the binary outputs of McCulloch-Pitts neurons, the firing rate is a
continuous variable. The firing rate varies between 0 and a maximal rate
Vimax, which is determined by the refractory period. Within a firing-rate
description, model neurons are called analog neurons or graded-response
Teurons.

In such a real-valued representation of output activity, the threshold
operation (1.3) is replaced by an s-shaped (“sigmoid”) transfer function to
describe the graded response of the firing rate to changes of the membrane

potential,
Vi(t) = gi[ui(t)] (1.4)

with g; : R — [0, Viqax]- The functions g; can be obtained from neuro-
physiological measurements of the response characteristic of a cell under
quasi-stationary conditions.

Once generated by a neuron, say neuron j, an action potential travels as
a sharp pulse along the axon and arrives at a synapse with neuron i after
some time lag 7;;. The delay depends on the distance traveled by the signal
and its propagation speed, and may be as long as 10 — 50 ms. It follows that
the release of neurotransmitter at time ¢ does not depend on the present
presynaptic activity but that it should be modeled by some function whose
argument is the earlier activity S;(t — 7;;). Diffusion across the synaptic
cleft adds a distributed delay that is usually modeled by an integral kernel
with a single hump.

What remains in the modeling process is the formalization of the den-
dritic and somatic signal processing. The force driving the membrane poten-

4 Alternative approaches are discussed in the contribution of Gerstner and van
Hemmen in this volume [18].
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tial u; up or down will be called the local field and denoted by h;. Formally,
the local field can always be written as a power series of the synaptic input
currents. The exact form of the coefficients depends on the microscopic cell
properties.

Dendrites and cell bodies are complex extended objects with intricate
internal dynamics. This implies that, within any accurate microscopic de-
scription, even the dendrites and soma of a single cell have to be repre-
sented by a large number of parameters and dynamical variables [19, 20].5
However, such a detailed approach cannot be pursued to analyze the time
evolution of large networks of highly interconnected neurons as they are
found in the cerebral cortex, where a neuron may be connected with up to
10,000 other cells [21].

The theory of formal neural networks offers a radical solution to this
fundamental problem. Following a long tradition in statistical physics, the
theory is built on the premise that detailed properties of single cells are not
essential for an understanding of the collective behavior of large systems of
interacting neurons: “Beyond a certain level complex function must be a
result of the interaction of large numbers of simple elements, each chosen
from a small variety.” [22]. This point of view invites a long and controver-
sial debate about modeling the brain and, more general, modeling complex
biological systems. Such a discussion is beyond the scope and intention of
the present chapter. Instead, I will cautiously adopt this position as a pow-
erful working hypothesis whose neurobiological foundations require further
investigation.® The advantage is obvious: Under the assumption that the
function of large neural networks does not depend on microscopic details
of single cells, and knowing that, in general, many incoming signals are
necessary to trigger an action potential, it is sufficient to consider just the
first terms of the power series defining the local field h;. For the rest of this
chapter, I will use the simplest approach and take only linear terms into
account. The local field then may be written as

N Tmax
M) =3 / T (D)Vi(t = 7)dr + IF(8). (1.5)
j=10

For two state neurons, the term V;(t — 7) is replaced by S;(t — 7). The
weight J;;(7) describes the influence of the presynaptic activity of neuron
j at time t — 7 on the local field of neuron ¢ at time ¢. Input currents due
to external stimuli are denoted by If*t(t).

The argument applies to axons as well, but due to the emergent simplicity of
axonal signal transport — action potentials are characterized by a dynamically
stabilized, fixed pulse shape — a macroscopic description in terms of all-or-none
events is justified.

SUnexpected support for this viewpoint comes from elaborate computer sim-
ulations of the dynamics of single cerebellar Purkinje cells [23].
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The temporal details of signal transmission are reflected in the func-
tional dependence of J;;(7) on the delay time 7. Axonal signal propagation
corresponds to a discrete time lag; diffusion processes across the synapses
and along the dendrites result in delay distributions with single peaks. Dis-
tributed time lags with multiple peaks may be used to include pathways via
interneurons that are not explicitly represented in the model. A synapse is
excitatory if Ji;(7) > 0 and inhibitory if J;;(7) < 0. Self-couplings J;;(7)
that are strongly negative for small delays may be used to model refractori-
ness [24, 25].7 In network models without synaptic and dendritic delays,
the local field h; is identical to the total synaptic input current to neuron
i, which often is denoted by I; in the neural network literature.

As shown in this section, there are three main variables to describe the
activity of single neurons — the membrane potential u;, the output activity
V; or S;, and the local field h;. These three variables correspond to the three
main parts of a neuron — soma, axon, and dendritic tree. The strongly
nonlinear dependence of V; or S; on u; captures the “decision process” of
a neuron — to fire or not to fire. This decision is based on some evaluation
of the weighted average h; of incoming signals. To close the last gap in the
general framework, one has to specify the dynamical relation between the
membrane potential u; and the local field h;.

If there are no transmission delays, Egs. (1.3)—(1.5) contain only a single
time argument and no time derivatives, that is, they do not describe any
dynamical law. It follows that the relation between u; and h; has to be
formulated as an evolution equation. If one opts for a description where time
is treated as a discrete variable, the evolution equation will be a difference
equation; otherwise, a differential equation. As a first approximation, both
types of dynamical descriptions may be linear since the main source for
nonlinear behavior, namely, spike generation, is already described by Eq.
(1.3) or (1.4).

1.2.2 DIiISCRETE-TIME DYNAMICS

Within a discrete-time approach, time advances in steps of fixed length,
usually taken to be unity. To obtain a consistent description, all signal
delays should be nonnegative integers. Accordingly, the temporal integral
fg"‘"‘ Jij(1)8;(t—7)dr in Eq. (1.5) is replaced by a sum y =% J;:(7)S; (¢t —
7).

In a discrete-time model, the most straightforward dynamic relation be-
tween u; and h; is the shift operation

wit + 1) = hi(t). (1.6)

"In some sense, the same is achieved in integrate-and-fire models where the
membrane potential is explicitly reset after spike generation.



Andreas V.M. Herz 9

At a first glance, this dynamical relation neglects any inertia of the mem-
brane potential caused by a nonzero transmembrane capacitance. Accord-
ing to Eq. (1.6), the membrane potentials are just time-shifted copies of
the local fields. Inertia could be included on the single-neuron level by an
additive term au;(t) on the right-hand side of Eq. (1.6); however, a similar
effect can be obtained through a proper choice of the update rule for the
overall network, as will be discussed at the end of this section.

For two state neurons, Egs. (1.3), (1.5), and (1.6) may be combined to
yield the single-neuron dynamics

Si(t + 1) = sgnfhi(t)), (L.7)
where N .
hi(t) =D Y Ji(r)Si(t — 7) + I (2). (1.8)
j=1T1=0

The term unresh has been absorbed in If** without loss of generality. In
passing, note that, in the exceptional case h;(t) = 0, it is advisable to sup-
plement Eq. (1.7) by the convention S;(t+ 1) = S;(t) for (purely technical)
reasons that will become apparent in Sec. 1.3.1.

For analog neurons, Egs. (1.7) and (1.8) are replaced by

Vi(t +1) = gi[hi(t)] (L.9)
and N -
hi(t) =D D Ji(m)V;(t — ) + IPH(2). (1.10)
j=171=0

The membrane potential u; no longer appears in Eqgs. (1.7)—(1.10) as the
single-neuron description has been reduced from three to two variables —
output activity and local field. Either one might be used as a state variable.

Neurotransmitters are released in small packages by a stochastic mech-
anism that includes spontaneous release at times when no spikes arrive at
a synapse [26, 27]. This phenomenon, known as synaptic noise, is the most
important source of stochasticity in neural signal transmission.

If one takes synaptic noise into account, the local field becomes a fluctu-
ating quantity h; + v;, where v; denotes the stochastic contributions. The
probability of spike generation then is equal to the probability that the lo-
cal field exceeds the firing threshold. For two state neurons, this probability
may be written as

Prob[S;(t + 1) = +1] = f[hi(?t)), (1.11)

where Prob denotes probability and f : R — [0, 1] is a monotone increasing
function.
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A careful analysis of synaptic transmission reveals that, under the as-
sumption of linear dendritic processing, the stochastic variable v; is dis-
tributed according to a Gaussian probability distribution [22, 28]. In that
case, Eq. (1.11) can be approximated by

Prob[S;(t + 1) = +1] = {1 + tanh[Bh:(¢)]}, (1.12)

where T = ~! is a measure of the noise level. In the limit as T — 0,
one recovers the deterministic threshold dynamics (1.7). In the physics
literature, the update rule (1.12) is known as Glauber dynamics [29]. It was
invented as a heat-bath algorithm for the Ising model [14] and has become
an important tool for analyzing the collective properties of many-particle
systems.

Equations (1.7)-(1.10) describe the time evolution of individual neurons.
This leaves a number of options for the updating process at the level of the
overall network [10).

First, there is the question of how many neurons may change their state
at a time. Theoretical investigations of recurrent networks with discrete-
time dynamics have almost exclusively focused on two cases: parallel dy-
namics (PD) and sequential dynamics (SD). In the former case, all neurons
are updated in perfect synchrony, which has led to the name synchronous
dynamics. In the latter case, only one neuron is picked at each time to
evaluate its new state — one-at-a-time updating — while the activities of
all other neurons remain constant. Parallel updating and sequential up-
dating are two extreme realizations of discrete-time dynamics. Intermedi-
ate schemes will be called distributed dynamics (DD) and include block-
sequential iterations where the network is partitioned into fixed clusters of
simultaneously updated neurons.

Next, there is the question of how groups (of one or more neurons) are
selected at each time step. One may have a fixed partition of the network, or
one may choose random samples at each time step. Alternatively, one may
study selective mechanisms such as a mazimum-field or greedy dynamics
[30]. Here, the neuron with the largest local field opposite to its own activity
is updated.®

Network dynamics are said to be fair sampling if, on an intermediate
time scale, no neuron is skipped for the updating process on average. The
terminology emphasizes the similarity with the idea of “fairness” used by
the computer science community [31]. On a conceptual level, fair sampling
assures that all neurons have a chance to explore the part of phase space
accessible to them through their single-neuron dynamics. Most computa-

8The network dynamics of integrate-and-fire neurons also may be viewed as
a selective update process: Only those neurons whose local fields are larger than
the threshold are active for the duration of an action potential. After that time,
both output S; and membrane potential u; are reset to their rest values.
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Fig. 1.1. Schematic representation of discrete-time updating schemes. Horizon-
tal axes represent time, ticks on the vertical axes label the neurons. Delays due
to transmission and computation times are indicated by the finite duration of the
updating “event” for a given neuron. Clocked networks have ticks on the time
axis. (a) One-at-a-time or sequential dynamics (SD); (b) synchronous or parallel
dynamics (PD); (c) distributed dynamics (DD): still clocked, but with arbitrary
update groups at each time step; (d) fully asynchronous dynamics including over-
lapping delays.

tionally useful iteration schemes are of this type. All updating schemes with
a fixed partition or a random selection process are fair sampling. Exceptions
may only occur in pathological situations within selective algorithms.

Finally, there is the question of whether signal delays may or may not
overlap, as is illustrated in Fig. 1.1. The latter case is of utmost importance
for the storage and retrieval of pattern sequences, as will be discussed in
Sec. 1.4.

Summarizing the above discussion, updating rules for networks with dis-
tributed discrete-time dynamics may be categorized according to the fol-
lowing five criteria:

1. Description of output activity: (a) discrete; (b) continuous.
2. Single-neuron dynamics: (a) deterministic; (b) stochastic.
3. Size of group to be updated at each time step:

(a) all neurons — parallel dynamics (PD);

(b) some neurons — distributed dynamics (DD);
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(c) one neuron — sequential dynamics (SD).

4. Selection of the update group at each time step: (a) fixed partition;
(b) random sample; (c) selective choice.

5. Handling of delays: (a) overlapping not allowed; (b) overlapping al-
lowed.

Most discrete-time descriptions appearing in the literature can be classi-
fied by these five criteria. For instance, Caianiello’s model [32] uses McCul-
loch-Pitts neurons (rule 1a) and includes a broad distribution of transmis-
sion delays (rule 5b). All neurons are updated at the same time (rules 3a
and 4a) according to a deterministic threshold operation (rule 2a). The Lit-
tle model [5] differs from Caianiello’s approach in that it describes single
neurons as stochastic elements (rule 2b) with instantaneous interactions
only (rule 5a). In the Hopfield model [4], neurons are updated one at a
time (rule 3c), again without signal delays (rule 5a).

If neurons are picked in a random order, there is a nonzero chance that a
neuron will be skipped during an elementary cycle of the network dynamics.
On the level of macroscopic order parameters, this leads to an effective
inertia comparable to that generated by an additive term awu;(t) in Eq.
(1.6).°

In closing this section, we introduce some helpful notation: Networks with
deterministic parallel dynamics, continuous neurons, and no transmission
delays (rules 1b, 2a, 3a, 4a, and 5a) will be called iterated-map networks
(IM); those with (a broad distribution of) transmission delays and a deter-
ministic parallel dynamics (rules 2a, 3a, 4a, and 5b) will be referred to as
time-delay networks (TD).

1.2.3 CoNTINUOUS-TIME DYNAMICS

The step size in a discrete-time description is usually identified with the
duration of an action potential. This implies on the one hand that such
a description cannot accommodate the time resolution required to study
the synchronization of action potentials.!® On the other hand, the feed-
back delay implicitly built into any discrete-time description may lead to
dynamical artefacts such as spurious oscillations. To avoid both problems,
one may alternatively study networks with continuous-time dynamics.

9For a derivation of the evolution equations of macroscopic order parameters,
see for example, reference [33].
0Decreasing the step size leads to a complication in the mathematical formula-
tion because one is forced to introduce effective delayed interactions if one wants
to assure that action potentials last for multiple elementary time steps.
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Graded-Response Neurons

Membrane potentials of real neurons are subject to leakage currents due
to the finite resistivity of biological membranes. Once charged by a short
input current modeled by the local field h;(t), the membrane potential u;(t)
of cell 7 relaxes to some rest value that is set to O for simplicity.

The physics of charging and leakage is best captured by the linear first-
order differential equation

C%ui(t) — —Rui(t) + ha2). (1.13)

Here, C denotes the input capacitance of a neuron and R is its trans-
membrane resistance. Model neurons whose membrane potential changes
according to the differential equation (1.13) will be called graded-response
neurons (GR).

Inserting Equation (1.5) into (1.13), the time evolution of graded-re-
sponse neurons may be written as

Tmax

() = Ryt 3 Jij (T)V;(t — T)dr + It (t), (1.14)
S(t) = - ui()+;/o S(WVslt = T)dr + 1), (L

where, as in Sec. 1.2.1, the output activity V; depends on the membrane
potential u; through the nonlinear response characteristic (1.4).

Similar to the discrete-time dynamics considered in Sec. 1.2.2, one of the
original three variables to describe neural activity has become superfluous.
In Sec. 1.2.2, the membrane potential u;(t) was expressed through the
(time-shifted) local field h;(t—1); now, the local field h;(t) has been replaced
by the membrane potential u;(¢) and its time derivative 4;(t).

Integrate-and-Fire Neurons

Below the firing threshold, (leaky) integrate-and-fire neurons operate in
the same way as graded-response neurons [Eq. (1.13)]. However, when the
membrane potential of a cell reaches the threshold ugnresh, the cell produces
an action potential and resets its potential to ureset. For convenience, units
can be chosen such that uihresn = 1 and Ugeget = 0.

Assuming vanishing signal delays and action potentials of negligible du-
ration, the local field h;(t) of neuron ¢ then is given by

hi(t) = Z Jii i (®) + I (), (1.15)

where the instantaneous firing rate f;(t) is a sum of Dirac §-functions,

fi) =Y 617, (1.16)
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and the ¢} are the times at which neuron j generates an action poten-
tial. Throughout the remaining sections on integrate-and-fire neurons, the
external input If**(t) is assumed to be constant in time, I*t(t) = I$**.

The general behavior of the system is now as follows. While none of the
neurons is producing an action potential, Eq. (1.13) can be integrated to
yield

wi(t) = [wi(t?) — RIPYe~C—)/RC LRIt gorg >0 (L17)

where to denotes the last firing time. When the potential u; of neuron j
reaches 1 (the threshold), it drops instantaneously to 0. At the same time,
the potential u; of each neuron i to which j makes a synapse is increased
by Jij'

Because the durations of action potentials and synaptic currents have
been set equal to 0, the description given so far contains an ambiguity. To
which value should neuron i be reset if at time ¢ an action potential is
produced by cell j, if the synapse from j to 4 is excitatory, Ji; > 0, and if
u;(t~) > 1 — J;;? In this case, the action potential will raise u; above 1,
and cell 7 should generate its action potential during the flow of synaptic
current produced by the synapse J;;. When synaptic (and dendritic) time
constants of the nerve cells to be modeled are longer than the duration of
action potentials, what should actually happen in the model is that cell j
should fire when its potential reaches ughresh = 1, and the synaptic current
from synapse J;; that arrives after ¢ fires should be integrated to yield a
positive potential (relative to U eset) afterward. Thus, if cell j fires first and
at time ¢, and that event evokes a firing of neuron ¢, then, after both action
potentials have been generated, the two membrane potentials should be

w(t) = Jje (118)

and

wi(tt) = wi(t™) + Jij — 1. (1.19)
The first equation represents the fact that j fired first when u; = 1 was
reset to 0, and when neuron ¢ subsequently generated its action potential,
this changed the potential of j to J;;. The second equation represents the
fact that ¢ fired second, reduced its potential by 1 when it did so, but
received the synaptic current J;; when neuron j fired.

The updating rule can be generalized to a large network of neurons by the
following algorithm. As the potentials all increase with time, a first neuron j
reaches u; = 1. Reset that potential to 0. Then change the potential of each
neuron i by J;;. If, following this procedure, some of the potentials become
greater than 1, pick the neuron with the largest potential, say, neuron k,
and decrease its potential by 1.1! Then change the potential of each neuron

117f several neurons exhibit the same maximum potential, one may use some
fixed, random, or selective update order to pick one of them.
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I by Jik. Continue the procedure until no membrane potential is greater
than 1. Then “resume the flow of time,” and again let each potential u;
increase according to Eq. (1.17).

This deterministic algorithm preserves the essence of the idea that firing
an action potential carries a neuron from Uthresh tO Ureset, and effectively
apportions the synaptic current into a part that is necessary to reach thresh-
old and a part that raises the potential again afterward. Because the firing
of one neuron can set off the instantaneous firing of others, this model can
generate events in which many neurons are active simultaneously.

When synaptic (and dendritic) time constants are shorter than the dura-
tion of an action potential, all contributions from the synaptic current that
arrive during spike generation are lost, and Eq. (1.19) should be replaced by
u;(t*) = 0. Generalizing from these two extreme cases, Eq. (1.19) becomes

w(th) = Aus(t™) + Jiy - 1) (1.20)

with0 <~y <1.

For models with v = 1, the order in which the neurons are updated in
an event in which several neurons fire at once does not matter as long as
Jij > 0. For these cases, any procedure for choosing the updating sequence
of the neurons at or above threshold will yield the same result because
the reset is by a fixed negative amount (here: —1) regardless of whether
immediately prior to reset u; =1 or u; > 1.

If, in addition to choosing v = 1, the limit R — oo is considered, one
is dealing with perfectly integrating cells. For a network of such neurons,
the cumulative effects of action potentials and slow membrane dynamics
commute if J;; > 0. This makes the model formally equivalent to a class of
Abelian avalanche models [34, 35]. Closely related earthquake models and
(discrete-time) “sandpile models” relax to a critical state with fluctuations
on all length scales, a phenomenon known as self-organized criticality [36).

The similarity between the microscopic dynamics of such model systems
and networks of integrate-and-fire neurons has led to speculations about a
possible biological role of the stationary self-organized critical state [37, 38,
39]. However, whereas for earthquakes, avalanches, and sandpiles the main
interest is in the properties of the stationary state, for neural computation
it is the convergence process itself which does the computation and is thus
of particular interest. Furthermore, computational decisions must be taken
rapidly, and in any event the assumption of constant input from other
cortical areas implicit in all models breaks down at longer times [40, 41].

1.2.4 HEBBIAN LEARNING

The previous sections focused on the dynamics of neural activity. Synaptic
efficacies were treated as time-independent parameters. Real synapses, how-
ever, are often modifiable. As was postulated by Hebb [42], their strengths
may change in response to correlated pre- and postsynaptic activity: “When
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an axon of cell A is near enough to excite cell B and repeatedly or persis-
tently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.”

Hebbian plasticity has long been recognized as a key element for asso-
ciative learning [43].12 How should it be implemented in a formal neural
network that might include transmission delays?

Hebbian learning is local in both space and time: Changes in synaptic
efficacies depend only on the activity of the presynaptic neuron and the
evoked postsynaptic response. Within the present framework, presynaptic
activity is described by the axonal output V; or S;. Which neural variable
should be chosen to model the postsynaptic response?

Neurophysiological experiments demonstrate that postsynaptic spiking is
not required to induce long-term potentiation (LTP) of synaptic efficacies
— “a critical amount of postsynaptic depolarization is normally required to
induce LTP in active synapses, but sodium spikes do not play an essential
role in the LTP mechanism” [45]. This result implies that the postsynaptic
response is best described by the local field h; — it represents the dendritic
potential and is not influenced by the detailed dynamics of the cell body
(u;) or the spike-generating mechanism (V; or S;).

Let us now study a discrete-time system where delays arise due to the
finite propagation speed of axonal signals, and focus on a connection with
delay 7 between neurons j and 4. Originally, Hebb’s postulate was formu-
lated for excitatory synapses only, but, for simplicity, it will be applied to
all synapses of the model network.

A presynaptic action potential that arrives at the synapse time ¢ was
generated at time ¢ — 7. Following the above reasoning, J;;(7) therefore
should be altered by an amount that depends on V;(t — 7) and h;(t), most
simply, their product

AJij(T) x hi(t)‘/j(t - T)At. (1.21)

The bilinear expression (1.21) does not cover saturation effects. They could
be modeled by an additional decay term — aJ;;(7)At on the right-hand
side of Eq. (1.21).

The combined equations (1.3)—(1.5) and (1.21) describe a “double dy-
namics,” where both neurons and synapses change in time. In general,
such a system of coupled nonlinear evolution equations cannot be analyzed
using Lyapunov’s direct method, although there are some interesting coun-
terexamples [46]. To simplify the analysis, one usually splits the network
operation into two phases — learning and retrieval. For the learning phase,
one frequently considers a clamped scheme, where neurons evolve according

12Various hypotheses about the microscopic mechanisms of synaptic plasticity
are the subject of an ongoing discussion [44].
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to external inputs only, h;(t) = If**(t). Once the learning sessions are over,
the Ji;(7) are kept fixed.

In the following, we focus on deterministic discrete-time McCulloch-Pitts
neurons in a clamped scheme with If**(¢) = +1. This simplification implies
that §;(t+1) = I$**(t). Starting with a tabula rasa, J;;(7) = 0, one obtains
after P learning sessions, labeled by p and each of duration D,

P D,
Ji(r) =e(mNT Y ST I ) Ity — 1 - 1) = e(r)i(7).  (1.22)

u=1t,=1

The parameters €(7) model morphological characteristics of the axonal de-
lay lines, and N~! is a scaling factor useful for the theoretical analysis.
Note that an input sequence should be offered Tmax time steps before the
learning session starts so that all variables in Eq. (1.22) are well defined.
According to Eq. (1.22), synapses act as microscopic feature detectors dur-
ing the learning sessions: They measure and store correlations of the taught
sequences in both space (¢, ) and time (7). This leads to a resonance phe-
nomenon where connections with delays that approximately match the time
course of the external input receive maximum strength. Note that these
connections are also the ones that would support a stable sequence of the
same duration. Thus, due to a subtle interplay between external stimu-
lus and internal architecture (distribution of 7’s), the Hebb rule (1.22),
which prima facie appears to be instructive in character, exhibits in fact
pronounced selective characteristics [47].

An external stimulus encoded in a network with a broad distribution of
transmission delays enjoys a rather multifaceted representation. Synaptic
couplings with delays that are short compared to the typical time scale
of single patterns within the taught sequence are almost symmetric in the
sense that J;;(7) ~ J;;(7). These synapses encode the individual patterns
of the sequence as unrelated static objects. On the other hand, synapses
with transmission delays of the order of the duration of single patterns of
the sequence are able to detect the transitions between patterns. The corre-
sponding synaptic efficacies are asymmetric and establish various temporal
relations between the patterns, thereby representing the complete sequence
as one dynamic object.

Note that the interplay between neural and synaptic dynamics, and in
particular the role of transmission delays, has been a subject of intensive
research (32, 42, 48, 49]. The full consequences for the learning and retrieval
of temporal associations have, however, been explored only recently.

As a special case of Eq. (1.22), consider the Hebbian learning of static
patterns, If**(t,) = &!', offered during learning sessions of equal duration
D, = D to a network with a uniform delay distribution. For mathematical
convenience, the distribution is taken to be () = D~1. In this case, Eq.
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(1.22) yields synaptic strengths that are independent of the delay T,
P
Jij(r)=Jy = N1 ebet, (1.23)
pn=1

and symmetric,
Jij = Jj,‘. (124)

The synaptic symmetry (1.24) plays a key role in the construction of Lya-
punov functions, as will be shown in the following sections.

Another kind of symmetry arises if all input sequences I£*%(t,,) are cyclic
with equal periods D,, = D. If one defines patterns £, by &f, = I?*(t, = a)
for 0 < a < D, one obtains from Eq. (1.22)

P D-1

1.7 T) IZ Z ia 1a—1 -7 (125)

pu=1 a=

Note that the synaptic strengths are now in general asymmetric. They do,
however, obey the symmetry Ji;(r) = Ji;(D — (2 + 7)). For all networks
whose a priori weights () satisfy e(r) = e(D — (2 + 7)), this leads to an
extended synaptic symmetry [50, 51|,

Jij(t) = Jij(D - (2+ 7)), (1.26)

extending the previous symmetry (1.24) in a natural way to the tempo-
ral domain. This type of synaptic symmetry allows the construction of a
Lyapunov function for time-delay networks, as will be explained in Sec.
14.1.

1.3 Fixed Points

This section focuses on the storage of static patterns in networks with
instantaneous interactions. It will be shown that, under certain conditions
for the model parameters, various network dynamics exhibit the same long-
time behavior: They relax to fixed points only.

Feedback networks with fixed-point attractors can be made potentially
useful devices for associative computation as soon as one knows how to
embed desired activity patterns as attractors of the dynamics. In such cir-
cumstances, an initial state or “stimulus” lying in the basin of attraction of
a stored “memory” will spontaneously evolve toward this attractor. Within
a biological context, the arrival at the fixed point may be interpreted as a
cognitive event, namely, the “recognition of the stimulus.”

The hypothesis that the brain utilizes fixed-point attractors to perform
associative information processing has led to quantitative predictions [52]
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that are in good agreement with neurophysiological measurements [53].
However, even if the hypothesis was refuted in its literal sense, it would
nevertheless continue to provide an important conceptual tool to think
about neural information processing.

1.3.1 SEQUENTIAL DyNAMIcS: HOPFIELD MODEL

Hopfield’s original approach [4] is based on McCulloch-Pitts neurons with
discrete-time dynamics, instantaneous interactions, and constant external
stimuli. Neurons are updated one at a time, either according to a determin-
istic threshold operation (1.7) or probabilistic Glauber dynamics (1.12). In
the original model neurons are chosen in a random sequential manner, but
in simulations the update order is often fixed in advance, corresponding
to a quenched random selection. Within the classification scheme of Sec.
1.2.2, the Hopfield model is thus characterized by rules 1a, 3c, and 5a.

If the single-neuron dynamics are deterministic, the time evolution of the
network is a special realization of Egs. (1.7) and (1.8) and may be written
as

Sk(t + 1) = sgn[hk(t)], (1.27)
where k is the index of the neuron updated at time t and
hi(t) =D JiS;(t) + I (1.28)
J

All other neurons remain unchanged, S;(t + 1) = S;(¢t) for j # k.
What can be said about the global dynamics generated by Egs. (1.27)
and (1.28)7 Consider the quantity

1 N N
Lsp=—3 > JiiSiS; = Y IS, (1.29)

1,,j=1 i=1
The change of Lgp in a single time step, ALsp(t) = Lsp(t + 1) — Lgp(t),
is

N

ALSD(t) = - % Z Jij [Si(t + I)Sj(t + 1) - Si(t)Sj(t)]
1,,j=1
N J
= Y ISi(t+ 1) = Si(t)]. (1.30)

=1

Assume again that neuron k is updated at time t. The difference AS;(t) =
S;(t +1) — S;(t) equals 0 or £2 if j = k and vanishes otherwise. For the
special case where the synaptic efficacies satisfy the symmetry condition
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(1.24), one obtains

N
ASk(t) Tk Sk(t) — ASk(t) | Y Je;S;(t) + I
j=1

=~ T[ASLO] - AS(Hhi) (1.31)

ALgp(t)

According to Eq. (1.27) and the remark following Eq. (1.8), neuron k does
not change its state if hg(t)Sk(t) > 0. If this condition is not fulfilled, the
neuron flips and ASi(t) = 2Sk(t + 1). The change of Lsp then may be
written as

ALsp(t) = —2[Jkk + Sk(t + 1) (2)]
=2[Jkx + R ()] (1.32)

The last line follows from the evolution equation (1.27) and the identity
|a] = a sgn(a). Equation (1.32) proves that Lgp is nonincreasing along
every solution if the self couplings J;; are nonnegative.!® As a finite sum
of finite terms, Lgp is bounded. If J;; > 0 for all neurons, Lgp(t) has to
approach a limit as ¢ — oo. Furthermore, ALgp(t) vanishes only if the
neuron updated at time ¢ does not change its state.l4 This proves that the
Hopfield network relaxes to fixed-point solutions only. According to Eqgs.
(1.27) and (1.28), these equilibria satisfy

Si=sgn | Y JyS; + I for all . (1.33)
J

The results obtained may be summarized as follows:

If the synaptic efficacies J;j satisfy the symmetry condition (1.24), and if
the self- interactions J;; are nonnegative, then the dynamics of the Hopfield
model [Egs. (1.27) and (1.28)] admit the Lyapunov function (1.29) and
converge to fized points (1.33) only.

Let me clarify a potentially confusing point. For neural networks with
McCulloch-Pitts neurons, the state space consists of the corners of an N-
dimensional hypercube {—1,+1}", also known as Hamming space. In this
discrete space, the smallest state change possible is a single-spin flip, S; —
—S;. As a consequence, the system may converge to fixed points that are not
stable with respect to activity changes of single neurons, in the sense that

13 This condition is satisfied in Hopfield’s original model, where all self-couplings
are set to 0.

YFor zero self-coupling Jik, and in the exceptional case hi(t) = 0, ALsp(t)
vanishes for any update rule, even if one chooses Sk(t+ 1) = —Sk(2) if hx(t) = 0.
However, if one sets Si(t + 1) = Sk(t) as mentioned in Sec. 1.2.1, ALsp(t) = 0
implies ASk(t) = 0, as desired.
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a single-spin flip made to a fixed-point solution could actually lower L. For
instance, consider a network where, for some neuron i, the self-interaction
Ji; dominates possible contributions from other neurons, J;; < Z#i | 351
In such a case, the initial value of S; will never be changed, independent
of its sign. The earlier results about network convergence continue to hold;
that is, the system evolves towards fixed-point solutions only, but those are
not necessarily local minima of L in the discrete-space sense.

1.3.2 PARALLEL DyYNAMICS: LITTLE MODEL

The Little model [5] uses the most simple discrete-time dynamics conceiv-
able: It is a network of McCulloch-Pitts neurons, updated in parallel using
instantaneous interactions only (rules la, 3a, 4a, and 5a). Within a deter-
ministic description of single neurons (rule 2a), the time evolution of the
network is given by

Si(t+1) =sgn[hi(t)] forall 4, (1.34)

where
hi(t) =D JiS;(t) + I (1.35)
J
Except for the update order, Egs. (1.34) and (1.35) are identical to Egs.
(1.27) and (1.28). Accordingly, the fixed-point solutions of the Little model
are the same as those of the Hopfield model, given by Eq. (1.33). Are there
additional time-dependent attractors?

For simplicity, only the case I** = 0 will be analyzed in this section.
Nonzero inputs will be treated in Secs. 1.3.4 and 1.3.5. As in Sec. 1.3.1, we
focus on networks with symmetric couplings and study the time evolution
of a suitable auxiliary function:

N N
LPD = - Z |h,| = - th Sgn(hi)- (136)
i=1 i=1

If one evaluates this expression along a solution generated by the network
dynamics (1.34) and (1.35), one obtains

N
Lep(t) = =) h()Si(t+1)
=1

N
= =) J;S()Sit +1). (1.37)

t,j=1

Using the synaptic symmetry in Eq. (1.24), the last line also may be written
as

N
Lpp(t) = =) S;j(t)h;(t +1). (1.38)

j=1
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The difference ALpp(t) = Lpp(t + 1) — Lpp(t) is then

N N
ALpp(t) = =) Ihi(t+ 1)+ Silt)h(t +1)

N
=Y ISt +2) - Skt + 1), (1.39)
i=1

where Eq. (1.34) has been used to obtain the last equation.

Like Lgp, the function Lpp is bounded. Evaluated along any solution of
Egs. (1.34) and (1.35), Lpp is nonincreasing because the right-hand side
of Eq. (1.39) is nonpositive; the product S;(t)hi(t + 1) is +h;(t + 1) and
thus smaller or at most equal to |h;(t + 1)|. Consequently, ALpp(t) has
to approach 0 as t — co. ALpp(t) vanishes only if the system settles into
a state with S;(t + 2) = S;(t) for all 4, that is, a fixed-point solution [Eq.
(1.33)] or a limit cycle of period two. In the latter case, some neurons switch
between firing and quiescence at every time step while all other neurons
remain in one activity state:

Assume that the synaptic couplings Ji; satisfy the symmetry condition
(1.24). Then the dynamics of the Little model [Egs. (1.84) and (1.85)]
admit the Lyapunov function (1.86) and converge to fized points (1.38) or
period-two oscillations.

As will be shown in Sec. 1.3.5, the oscillating solutions can be excluded
under additional assumptions for the synaptic couplings.

1.3.3 ConNTINUOUS TIME: GRADED-RESPONSE NEURONS

This section deals with the continuous-time dynamics of neural networks
composed of analog neurons without signal delays. The network dynamics
in Eq. (1.14) reduce to a set of coupled ordinary differential equations,

N
d -1 ext
Coui=~R7'ui+ ;Jﬁvj + I, (1.40)
where
V,; = gi(u,-). (141)

Since the dynamical variables u; and V; in Eq. (1.40) are taken at equal
times, all temporal arguments have been omitted.

The input—output relation g; will be called sigmoid if it is increasing,
differentiable, and grows in magnitude more slowly than linearly for large
positive or negative arguments. The maximum slope of g; will be referred to
as the gain 7; of neuron i. The nonlinearity is often modeled by a hyperbolic
tangent, g;(u;) = %[1 + tanh(v;u;)]. In the high-gain limit «; — oo, one
obtains a 0/1 representation of neural activity. It can be mapped onto
Ising spins [14] through the identification S; = 2V; — 1.
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Cohen and Grossberg [6] and Hopfield [7] studied the global behavior of
networks with graded- response neurons, sigmoid response functions, and
symmetric synapses. They used Lyapunov functions of the form

N N N
1 ext -1
Lor =5 > JViV =Y IV + Y RTIGH(V), (1.42)

ij=1 i=1 i=1

where the functions G;(V;) are given by

Gi(v) = [ " o @a. (1.43)

The last expression is well defined because sigmoid nonlinearities are
strictly monotone by definition. Since sigmoid functions grow less than
linearly for large absolute arguments, the functions G;(V;) increase faster
than Vi2 as V; — $oo. The function Lgg is therefore bounded below.

Let us compute the time derivative of Lgg along a solution of the network
dynamics. Using the synaptic symmetry in Eq. (1.24), one obtains

N N
d _ vt _p-1, | @Y
a—tLGR(t) =2 ;J,,V, +IP¢ — Ry | —
_ 3 oridudh
e dt dt
N 2
du; \ © dg;
=-) ¢! (—-1) 2 <0. 1.44
?___—; dt du; ( )

The formula proves that the function Lgr is nonincreasing along every
trajectory. The time derivative vanishes only at equilibria, which are given
by

J

Vi=g; I:RZJ,‘J'VJ' + RIthJ ) (1.45)

or at network states, where dg;/du; = 0 for all 4. If, however, the latter
states do not satisfy Eq. (1.45), the system will continue to evolve according
to Egs. (1.40) and (1.41). The final result may be stated as follows:

Suppose that the synaptic efficacies in a network of graded-response neu-
rons [Egs. (1.40) and (1.41)] respect the symmetry condition (1.24) and
that the input—output relations are sigmoid. Then the network dynamics ad-
mit the Lyapunov function (1.42) and relaz to fized-point solutions (1.45)
only.

A comparison of the Lyapunov function Lgg with the Lyapunov function
Lsp provides some hints about how to construct Lyapunov functions for
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systems with sigmoid input—output charactenstlcs The additional term
>, R71G;(V;) dominates the quadratic term —3 Z . Ji; ViVj for large V;
if the g; are sigmoid. Consequently, the function LGR is bounded below even
if the V; are not.!® Furthermore, the term Y, R1G;(V;) is constructed in
such a way that its partial derivative with respect to V; supplies the term
R~1u;, which makes it possible to insert the evolution equation (1.40) into
Eq. (1.44). Similar ideas will be applied in Secs. 1.3.4 and 1.3.5 to analyze
discrete-time networks with sigmoid nonlinearities.

1.3.4 ITERATED-MAP NETWORKS

Feedback networks with deterministic analog elements and synchronous
discrete-time updating have been studied for a long time [32, 48, 49]. For
vanishing signal delays and fixed inputs, the network dynamics, Egs. (1.9)
and (1.10), become

Vi(t +1) = gi[hi(t)]  for all i, (1.46)
where
N
hi(t) =Y JiV;(t) + I (1.47)
j=1

Systems described by Egs. (1.46) and (1.47) have been called iterated-map
networks [8]. Their fixed points coincide with those of graded-response net-
works [Eq. (1.45)] once one sets R = 1.

If the input—output functions g; are threshold functions, g;(u;) = sgn(u;),
one recovers the Little model, Eqs. (1.34) and (1.35). This connection indi-
cates that one may find a Lyapunov function for iterated-map networks by
combining appropriate parts of the Lyapunov function for the Little model
with that for networks of graded-response neurons.

Let us follow the approach of Marcus and Westervelt [8] and study the
time evolution of the function

N
Lia(t) = Z TVt =1) = 3 I [Vi(e) + V(e - 1)
+Z[G (Vi(t)) + Gi(Vi(t - 1)), (1.48)

where G;(V;) is defined as in Eq. (1.43).
Apart from a global time shift, the first term in Eq. (1.48) corresponds
to Lpp, as can be seen from Eq. (1.37); the other terms should be com-

151t should be noted that, if a Lyapunov function is not globally bounded below,
it still might be used for a local analysis.
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pared with the second and third terms in Eq. (1.42). Notice that, un-
like Lpp in Eq. (1.36), the function Ly is written as an explicitly time-
dependent function with temporal arguments ¢ and t — 1. In principle, one
could use the evolution equations (1.46) and (1.47) and replace V;(t) by
gi [E;V___l Jij Vit —1) + If"t] to obtain a description that involves a single
time argument only. However, since we mainly are interested in the evalu-
ation of Lyy along trajectories, the shorter definition in Eq. (1.48) suffices.

Under the assumption of synaptic symmetry in Eq. (1.24), the temporal
difference ALiv(¢) = Lpm(t + 1) — Lim(t) is

AL (t) = = D hi(®)A2Vi(t) + Y J[Gi(Vilt + 1)) = GulVi(t = 1)), (1.49)

where
AVi(t)=Vit+1) - Vi(t-1) (1.50)

is the change of V; over two time steps.

The right-hand side of Eq. (1.49) is 0 if A;V;(t) = 0 for all 4. Let us
analyze the case where A, V;(t) # 0 for at least some i. For sigmoid g;, g;* is
single-valued and increasing. Consequently, G; is strictly convex. Through
a Taylor expansion of G;(V;(t — 1)) around V(¢ + 1), one obtains

Gi(Vi(t+1)) = Gi(Vi(t - 1)) < AoVi()Gi(Vilt + 1)). (1.51)

For an illustration of the inequality, see the left part of Fig. 1.2.
Inserting the identity

Gi(Vi(t+1)) = g7 (Vi(t + 1)) = hi(t) (1.52)
and Eq. (1.51) into Eq. (1.49), one arrives at the expression
AL(t) <0, (1.53)

where the strict inequality holds if A;V;(t) # 0 for at least one neuron.

As was demonstrated in the last section, the functions G;(V;) increase
faster than V;? for large |V;|. This result implies that Ly is bounded below.
As is shown by Eq. (1.53), the function Ly strictly decreases along any
solution of Egs. (1.46) and (1.47) unless A;V;(t) = 0 for all neurons. The
derivation may be summarized in the following way:

Assume that the synaptic efficacies in an iterated-map network [Egs.
(1.46) and (1.47)] are symmetric [Eq. (1.24)] and that the nonlineari-
ties are sigmoid. Then the network dynamics admit the Lyapunov function
(1.48) and relaz to fized-point solutions (1.45) or period-two oscillations.

In closing this section, let us briefly discuss antisymmetric synaptic cou-
plings,

Jij = —Jj,‘. (154)
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Fig. 1.2. Illustration of the inequalities (1.51) and (1.58) for a sigmoid input—
output function g;(Vi). The convex function G;(V;) is defined in Eq. (1.43). The
straight line on the left-hand side and the parabola on the right-hand side are tan-
gent to Gi(Vi). The inequality (1.51) is the statement A < B, and the inequality
(1.58) is the statement C < D.

The derivation of Sec. 1.3.2 for the Little model (with no external input)
shows that, if Eq. (1.54) holds, one obtains

N
ALpp(t) = =) _[Si(t+2) + Si(®)]hi(t +1). (1.55)

i=1

In this case, the network approaches solutions that satisfy S;(t + 2) =
—S;(t), that is, special limit cycles with period four [54].

It is left as an exercise to verify the same result for iterated maps without
external input. Here, an additional condition is required, namely, that the
input—output characteristics have to be odd functions, g;(V;) = —g:(-V;).
The interested reader may also try to construct Lyapunov functions for
more general systems. In particular, he or she could look at two problems:
(1) What kind of time-varying external stimuli can be incorporated into
the Lyapunov function of the Little model if one focuses on antisymmet-
ric couplings? (2) Are there Lyapunov functions for neural networks with
McCulloch-Pitts neurons, antisymmetric couplings, and sequential dynam-
ics with fixed update order?

1.3.5 DISTRIBUTED DYNAMICS

In this section discrete-time updating schemes are considered that gener-
alize beyond the Hopfield and Little models on both the single-neuron and
network levels. Neurons are described by continuous variables with deter-
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ministic single-cell dynamics, that is, they fall into classes 1b and 2a in
the scheme of Sec. 1.2.2. McCulloch-Pitts neurons with stochastic Glauber
dynamics are discussed in Sec. 1.3.6. For the network dynamics, all choices
of rules 3 and 4 are allowed that are fair sampling and do not lead to over-
lapping delays (rule 5a). The network dynamics are thus defined by a set
of coupled nonlinear discrete-time equations:

V1) = g,-(zj?’:IJijvj(t)JrI;xt) ifiisin V), (g0
Vi(t) otherwise.

Here, U(t) denotes the group of neurons updated at time ¢. The distributed
dynamics, Eq. (1.56), reduce to block-sequential algorithms studied by
Goles-Chacc et al. [9] if one considers McCulloch-Pitts neurons and fixed
update groups Uy, k = 0,1,...,K — 1 with U(t) = Uymodulo k)-

There are a number of reasons to study partially parallel network dynam-
ics such as Eq. (1.56). First, one may achieve a better understanding of the
essential ingredients needed to construct feedback networks that possess
fixed-point attractors only. Second, distributed dynamics map naturally on
the architecture of parallel computers or computer networks. Third, the
evolution equations (1.56) extend iterative methods that have been devel-
oped within the computer science community to solve nonlinear systems
of equations [55, 56, 57, 58] to systems with noncontracting functions and
multiple solutions.

What can be said about the long-time behavior of neural networks with
distributed dynamics? As in Secs. 1.3.1 — 1.3.4, let us assume that the
synaptic couplings are symmetric [Eq. (1.24)] and that the input—output
characteristics are sigmoid. Consider again the Lyapunov function of net-
works with graded-response neurons in Eq. (1.42). The function now will be
called Lpp to distinguish its discrete-time evolution from the continuous-
time evolution of Sec. 1.3.3.

The only neurons that may change their state at time t belong to the
update group U(t). Accordingly, AV;(t) = V;(t + 1) — V;(¢) vanishes for
all other neurons. Using the symmetry [see Eq. (1.24)] of the synaptic
couplings, the change ALpp(t) = Lpp(t + 1) — Lpp(?) is given by

N
Bloo(t) = -3 3 Y0 JAVOAGH-Y Y JsViav)

ieU(t) jeU(t) J=14ieU(t)
= Y AV + Y [GiVi(t+1)) - Gi(Vi(t)). (1.57)
ieU(t) i€U(t)

Since the functions g;(V;) are assumed to be sigmoid, the auxiliary func-
tions G;(V;) are again strictly convex. Expanding G;(V;(t)) to second order
around V;(t + 1) and replacing the coefficient of the quadratic term with
the smallest possible value, that is, 7, 1. the following upper bound can be
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established (see also the right part of Fig. 1.2):
Gi(Vi(t+1)) = Gi(Vi(t) < AVi()Gi(Vi(t + 1)) — 3[AVi(t)]* " (1.58)

Equality holds if and only if V;(¢t + 1) = Vi(t). Inserting Eqgs. (1.52) and
(1.58) into Eq. (1.57) gives

1 _
ALpp(t) < -3 .Z .Z (Jij + 677 DAV () AV; (1), (1.59)
ieU(t) jeU(t)

To facilitate further discussion, let us define W(t) as the number of
neurons in the group U(t) and symmetric matrices U(t) of dimension
W (t) x W (t) as submatrices of the connection matrix J, which are given by
the synaptic strengths of those neurons that are updated at time ¢. For the
Hopfield model, Egs. (1.27) and (1.28), where updating is one-at-a-time,
W(t) =1 for all ¢, and U(t) reduces to the self-interaction term J;;, where
i denotes the neuron being updated at time t. For the Little model, Egs.
(1.34) and (1.35), or iterated-map analog networks, Eqs. (1.46) and (1.47),
the matrix is identical to J itself. As is obvious from these limiting cases,
the structure of the set of matrices U(t) encodes the global dynamics.

The maximum neuron gain in the update group U(¢) will be denoted by
v(t) and the minimum eigenvalue of the matrix U(t) by Amin[U(¢)]. Since,
for arbitrary symmetric matrices A and B, Amin[A + B] > Amin[A] +
Amin[B], a sufficient condition for AL(t) < 0 is given by

Amin[U(#)] = —7(t) . (1.60)

If the above condition holds for all ¢, Lpp(t) is strictly decreasing as long
as Vi(t+1) # V;(¢t) for at least some % in the update group U(t). As before,
the function Lpp is bounded below. The network therefore relaxes asymp-
totically to a state where L does not vary in time if all directions in the
space spanned by the neural activities are explored, that is, if the updating
scheme is fair sampling. Since equality in Egs. (1.58) and (1.59) holds only
if V;(t + 1) = V;(¢), all solutions of Eq. (1.56) with time-independent Lpp
are fixed-point solutions [10]. The result may be stated as follows:

Suppose the following three conditions hold: 1) the updating rule is fair
sampling, 2) the neuron transfer functions are sigmoid, and 3) the symmet-
ric connection matriz satisfies Eq. (1.60) for all times. Then the distributed
dynamics (1.56) admit the Lyapunov function (1.42) and converge to fized
points only.

For iterated-map networks, U(t) is constant in time and equals the set of
all neurons. The criterion Amin[J] > —7(t)~! provides a sufficient condition
to exclude two cycles that exist in the general case as shown in Sec. 1.3.4:
Lowering the neuron gain eliminates spurious oscillatory modes.

Neural networks with discrete elements correspond to the limit v; — oo,
where Eq. (1.60) reduces to Amin[U(2)] > 0. This implies in particular that
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there are no two cycles possible in the Little model if the whole connection
matrix is nonnegative definite. The general remark from Sec. 1.3.1 about
the convergence to solutions that are mot minima of Lpp still holds in
the discrete-neuron limit. This atypical behavior is, however, only possible
because the g; are piecewise constant functions in models with discrete
neurons. For the generic case of continuous input—output characteristics,
the network will always settle in a minimum as long as the initial conditions
do not coincide with an unstable fixed-point of Eq. (1.56).

The convergence criterion in Eq. (1.60) is less restrictive for smaller up-
date groups than for larger ones because

)‘min[Ul] Z )\min[U2] if U1 C U2. (161)

Note that Eq. (1.61) implies that the stability criterion for a fully parallel
network, where Ayin[J] > —771, is a sufficient condition for Eq. (1.60) and
thus is sufficient to assure that the system (1.56) will converge to a fixed
point for any fair sampling updating scheme.

Formula (1.61) has direct consequences for possible applications. Con-
sider a high-dimensional optimization task such as the traveling salesman
problem. It may be mapped onto a neural network architecture which then
defines a fixed connection matrix J [59]. The computational time needed
to find a good solution can be reduced easily on a parallel computer by
increasing the size of the update groups. However, the bounds given by
Eq. (1.60) have to be met in order to assure convergence to fixed points,
and will limit the maximal size of the update groups. The goal of large
updating groups will be achieved in an optimal way if one can form up-
date groups of weakly or noninteracting neurons. All submatrices U(t) will
have small off-diagonal elements in that case, and their eigenvalues will
be close or identical to the diagonal elements, that is, the bounds in Eq.
(1.60) are largely independent of the size of the update groups. In princi-
ple, the search for optimal partitions of the above kind is itself a difficult
optimization problem, but many applications exhibit an intrinsic structure
(for example, predominantly short-range interactions) that naturally leads
to good choices for the updating groups.

1.3.6 NETWORK PERFORMANCE

The results obtained thus far demonstrate that the long-time behavior of
neural networks with symmetric synaptic couplings is surprisingly robust
with respect to alterations of model details at both the level of single neu-
rons and the level of the overall network dynamics. All systems studied
relax to fixed-point solutions under appropriate additional conditions on
the synaptic efficacies and the input—output characteristics.

Various prescriptions for the storage of static patterns as fixed-point
attractors have been discussed in the literature [22, 60, 61]. In what fol-
lows, we concentrate on the Hebbian learning rule [Eq. (1.23)]. A statisti-
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cal mechanical analysis of performance measures, such as storage capacity
and retrieval quality, can be carried out most readily for networks with
McCulloch-Pitts neurons and block-sequential dynamics. It also will be as-
sumed that the network can be partitioned into n fixed update blocks of
equal size W such that there are no interactions within a group [10]. As was
emphasized before, such a situation can be arranged for many applications
that map onto diluted or geometrically structured networks. In the limiting
case W = 1, one recovers the Hopfield model.

To simplify the analysis, neurons are labeled by a double index S;,. The
first index, 1 < i < W, refers to the position within an update group, while
the second 1 < a < n labels the update group. The same notation applies
to stored patterns ., where the additional index x,1 < g < p, labels the
patterns. With these conventions, the Hebb rule in Eq. (1.23) becomes

P_ ghek if a#b,

1
ab _ Win-1) u=15ia%55b
T3 { 0 if a=0b. (1.62)

The normalization factor N~! in Eq. (1.23) has been changed to [W(n —
1)]7! to guarantee the correct scaling behavior of Lpp in the thermody-
namic limit N — oo.

Statistical mechanics may be used to analyze the emergent properties of
feedback neural networks once it has been shown that, under a stochastic
update rule, the network relaxes to a Gibbsian equilibrium distribution
generated by the Lyapunov function of the deterministic dynamics [22, 60,
62]. For Glauber dynamics [Eq. (1.12)] and a one-at-a-time or a parallel
updating scheme, such a relation exists as can be shown using the principle
of detailed balance [28].

Although Lpp is identical to Lgp for two-state neurons, a block-sequen-
tial realization of Glauber dynamics need not approach a Gibbsian equi-
librium distribution. However, in the special case of vanishing connection
strength within all update groups [Eq. (1.62)], neurons “do not know”
about the state of other neurons in the same group. Thus there is no for-
mal difference between the block-sequential rule considered here and serial
updating, where neurons change their state in consecutive order: Every set
of W successive updates of the latter dynamics is identical to one time step
in the former case.

In what follows, we focus on the retrieval of unbiased random patterns
where ¢!, = £1 with equal probability and study networks at a finite
storage level & = p/N. The case of large cluster size, W — oo, with the
number n of update groups kept finite will be analyzed; n has to be at
least equal to 2 because, according to Eq. (1.62), all neurons would be
disconnected otherwise. Following the replica-symmetric theory of Amit,
Gutfreund, and Sompolinsky [63], a fixed number s of patterns is singled
out, and it is assumed that the network is in a state highly correlated
with these “condensed” memories. The remaining patterns are described
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collectively by a noise term. Notice that, for coupling matrices of the form
in Eq. (1.62), both the overlaps m and spin-glass parameters ¢ have to be
defined as order parameters on the level of the update groups. For retrieval
solutions, this requirements leads to the Ansatz

w
m, = WY gl Sy =mb,, (1.63)
i=1
and
w
gl =W SE.SG = 6ab[8ps (1 — q) + ] (1.64)
=1

for a k-fold replicated network, 1 < p, o < k. The resulting fixed-point
equations are

m = {{tanh[T~{m + Varz}])) (1.65)
and
q = (tanh®[T~{m + Varz}]), (1.66)
where
2 a(n —1) (1.67)

TO-TA-9P -1+ -gF

Double angular brackets represent an average with respect to both the
condensed patterns and the normalized Gaussian random variable z [10].

Equations (1.65)-(1.67) closely resemble their counterparts for the Hop-
field model [63] and become identical to them in the limit of large n. On a
formal level, the same holds for n = 1, but, as was explained before, this
case does not correspond to a physical situation. For a general number of
update groups there exists a first-order phase transition at T' = 0 between
the retrieval state and a spin-glass phase as « is varied. The critical storage
level is denoted by a. and the corresponding overlap by me.

The relative information content I'r, measured per synapse and relative
to that of the Hopfield model,

I, (block-sequential) n - as(n)

Ir(n) = I(random-sequential) _ (n — 1) - o (Hopfield)’ (1.68)

is a third performance measure. A comparison between various network
architectures in terms of all three measures is given in Table 1.1.

The performance of block-sequential updating schemes is quantitatively
similar to that of the Hopfield model where a, = 0.138 and m, = 0.97 [63]:
The capability to retrieve stored random patterns is slightly lower when
measured in terms of patterns per neuron, as is indicated in the second
column of Table 1.1, and slightly higher when measured in terms of patterns
per synapse, as is shown in the last column. Notice, in particular, that the
information content increases with decreasing network connectivity, that
is, for small n.
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Table 1.1. Numerical solution of the saddle-point equations at T' = 0, Displayed
are the storage capacity ., the retrieval overlap m., and the relative information
content I as functions of the number n of update groups.

n o me Igp
2 0.100 093 1.45
3 0110 095 1.20 (1.69)
4 0116 096 1.12
5 0.120 096 1.09

The results demonstrate that feedback networks can be used to store
large amounts of information: The number of patterns (each of size N)
that can be memorized grows linearly with N, so that the information
stored per synapse remains at a constant value of roughly 0.1 bits per
synapse.'6 Stored patterns can be retrieved from noisy or incomplete data
as long as the storage level remains below the critical level a.. Compared to
sequential or fully synchronous update schemes, partially parallel schemes
offer a potentially large advantage in terms of computational costs when
implemented on a parallel computer allowing for a speedup that may be as
large as the number of processors without sacrificing network stability.

1.3.7 INTERMEZZO: DELAYED GRADED-RESPONSE
NEURONS

The dynamical description of Sec. 1.3.3 neglects any time lags due to finite
propagation velocities of neural signals. As a first step toward the general
formulation (1.14), one may study models where the communication time
between neurons is modeled by one fixed delay 7,

N
C%ui(t) = R w)+ Y Vit -1+ M) (170)
j=1
with

Vi = gi(wi). (1.71)
A mathematical analysis of this model is quite complicated. Because of the
discrete delay, the initial condition for each neuron has to be specified as
a function over a time interval of length 7. Consequently, Eqs. (1.70) and
(1.71) describe an infinite-dimensional dynamical system even in the scalar

case (N = 1), which will be discussed in detail in Sec. 1.4.2.
Obviously, fixed-point solutions of Egs. (1.70) and (1.71) do not depend
on the time lag and are thus identical with those of the original model

'6This number is increased significantly by more elaborate learning rules [64].
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without delays, described by Egs. (1.40) and (1.41). However, equilibria
that are stable without delays may become unstable for large enough time
lag, as can be verified through a local stability analysis [65].

Global results about Egs. (1.70) and (1.71) have been obtained under
conditions that exclude nontrivial fixed-point solutions. A proof based on a
Lyapunov functional shows that in this case there are no limit cycles either
[66].

The lack of stronger global analytical results illustrates the limits of Lya-
punov’s direct method. It is often very hard or impossible to find a Lya-
punov function for a given dynamical system under conditions that admit
interesting applications — muitiple fixed points in the present example. On
the other hand, there are many cases where one can find Lyapunov func-
tions as soon as one enlarges the class of systems studied. In the present
case, one could replace the single discrete lag in Eq. (1.70) by a distributed
delay such as the one used in Eq. (1.14). At a first glance, this seems to
complicate the analysis even further. However, there exist nontrivial delay
distributions for which the dynamics generated by Eq. (1.14) admit global
Lyapunov functionals [67].

The remark applies also to systems with synaptic couplings J;;(7) that
are of the form Ji;e(r), where () satisfies a linear ordinary differen-
tial equation in 7. For instance, if Tmax = o0 and &(7) = exp(—7), one
may rewrite the dynamical equations as a set of 2V ordinary differential
equations. The example demonstrates that, unlike networks with discrete
time lags, networks with distributed delays need not represent infinite-
dimensional dynamical systems. Models with delay distributions that are
“reducible” in this sense have been studied extensively in the applied math-
ematics literature [68]. For a neurobiologically motivated system of two
limit-cycle oscillators with reducible signal delay, a Lyapunov function is
given in reference [69].

1.4 Periodic Limit Cycles and Beyond

Natural stimuli provide information in both space and time. Recurrent neu-
ral networks with delayed feedback can be programmed to recognize and
generate such pattern sequences or “temporal associations” [70, 71, 72,
73, 74, 75, 76].17 Recurrent networks with a broad distribution of signal
delays and a Hebbian learning rule such as Eq. (1.22) are well suited to
learn pattern sequences as well [47, 77, 78, 79, 80, 81]. These systems are
characterized by a high degree of compatibility between the network archi-
tecture, the task of learning spatio-temporal associations, and the learning
algorithm. As in networks with fixed-point attractors, an initial state or

17A detailed discussion can be found in reference [33].
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“stimulus” lying in the basin of attraction of a stored “memory” will spon-
taneously evolve toward this attractor. In the present context, however,
memories are spatio-temporal patterns of neural activity.

This section demonstrates that one can understand the computation of
certain networks with signal delays as a downhill march on an abstract
spatio-temporal energy landscape. The result allows the application of tech-
niques developed in the last sections.

1.4.1 DISCRETE-TIME DYNAMICS

Let us focus on a synchronous discrete-time dynamics with deterministic
McCulloch-Pitts neurons. For vanishing external inputs, the network dy-
namics in Eqgs. (1.7) and (1.8) become

Si(t + 1) = sgn[h;(t)] for all ¢ (1.72)
with N .
hi(t) =3 Y Jii(r)S;(t — 7). (1.73)
j=1T1=0

In the following, it is assumed that the synaptic couplings J;;(7) satisfy the
extended symmetry J;;(7) = Jij(D — (2+7)). As was shown in Sec. 1.2.4,
this symmetry arises if the network is taught cyclic pattern sequences of
equal duration D.

The construction of a Lyapunov function for the retrieval dynamics in
Egs. (1.72) and (1.73) is facilitated by the following consideration: If the
network has learned cyclic associations with common length D, every cor-
rect retrieval solution corresponds to a D-periodic limit cycle. D-periodic
oscillatory solutions of a discrete-time network, however, can always be
interpreted as static states in a fictitious system of size D x N [50, 51].

Let us consider such a “D-plicated” network with D columns and N
rows. The neural activities are denoted by Si,, where 1 < ¢ < N and
0 < a < D. To reproduce the synchronous dynamics of the original system,
neurons S, with a =t (modulo D) are updated at time ¢.

The time evolution of the new network is block-sequential: synchronous
within single columns and sequential with respect to these columns. In
terms of the original variables S;, the new activities S;, are therefore given
by Sis(t) = Si(a + ny) for a < t (modulo D) and S, (t) = Si(a + ny — D)
for a > t (modulo D), where n; is defined through t = n; +t (modulo D).
The update rule reads

sgn [Eﬁl )Irers J%"Sjb(t)] if o = ¢(modulo D),
Sia(t) otherwise.

Sia.(t + 1) = {

(1.74)
The synaptic couplings Ji“j” are defined as

J& = J;; (b - a — 1)(modulo D)). (1.75)
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Notice that the time evolution [Eq. (1.74)] of the equivalent fictitious
system is the same as a block-sequential updating of a network with D x N
McCulloch-Pitts neurons and block size N, as is illustrated in Fig. 1.3. Sec-
tion 1.3.5 shows how to guarantee that such a system relaxes to fixed points
only: through synaptic symmetry together with the condition Amin[U(t)] >
0.

Synaptic symmetry in the fictitious system, ijb = JJ‘-’;‘, is equivalent to
the extended symmetry of Eq. (1.26) for the original couplings Ji;(7). The
second condition, Amin[U(2)] > 0, is equivalent to Amin[J(D —1)] > 0. This
condition can be satisfied by setting Tmax = D — 2.

It is left as an exercise for the interested reader to show that the Lya-
punov function Lpp, formulated for the equivalent fictitious system, may
be rewritten in terms of the original time-delay network as

N D-1
> 3 Ji(n)Sit - a)S; (t - (a+ 7+ 1)(modulo D)).

t,j=1la,7=0
(1.76)
One may once again calculate the difference ALtp(t) = Ltp(t+1)—Ltp(t)
and arrive, as expected, at

1

LTD(t) = —-2-

N
ALtp(t) ==Y _[Si(t+1) = Si(t + 1 - D) hi(t) < 0. (1.77)
=1

The derivation may be summarized as follows:

Suppose that the synaptic efficacies of the time-delay network [Egs. (1.72)
and (1.78)] satisfy the extended symmetry condition (1.26). Then the re-
trieval dynamics are governed by the Lyapunov function (1.76). The net-
work relazes to a fized-point solution or a limit cycle with S;(t) = S;(t—D),
that is, an oscillatory solution with the same period as that of the taught
cycles or a period that is equal to an integer fraction of D.

Due to the equivalence of Egs. (1.72) and (1.73) with a block-sequential
update rule for the fictitious system, one may apply the quantitative anal-
ysis of Sec. 1.3.6 to time-delay networks that store temporal associations.
There is, however, a slight technical difficulty that has to be handled prop-
erly. Storing one D-periodic pattern sequence in the original model corre-
sponds to memorizing D static patterns of size D x N in the equivalent
system, each shifted by one column (modulo D) with respect to the next
pattern. This complication arises because every sequence may be occurring
with its first pattern recalled at some time ¢, or at time t+1, or at time ¢+2,
and so on. In the equivalent D-plicated system, each of these time-shifted
cyclic temporal associations corresponds to a new pattern.

For generic temporal associations, the analysis becomes rather compli-
cated due to nontrivial correlations between shifted copies of the same
pattern. If, however, each pattern of a sequence lasts for one time step
only, all relevant correlations are the same as if one had stored D unrelated
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Fig. 1.3. Schematic drawing of the dynamics of a time-delay network (c and d)
and its equivalent fictitious system with block-sequential time evolution (a and
b). Horizontal axes represent time, vertical axes in (b) and (c) denote the index
of neurons. (a) The pattern “Z” is retrieved in the fictitious network with five
update groups that are represented in (b) by five neurons. (c) Time evolution
of one neuron in a network with signal delays and discrete-time dynamics. The
system recalls the cyclic pattern sequence “BAACH” as shown in (d).
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Table 1.2. Influence of the weight distribution on the collective network proper-
ties. The storage capacity o, the critical overlap m., and the relative information
content Iy are displayed for some choices of e(7) for D = 4.

T = 0 1 2 3 Qe Me I

e(r) 1/3 1/3 1/3 0 0116 096 1.12
efr) = 1/2 0 1/2 0 0100 093 145 (1.78)
e(r) 0 1 0 0 0050 093 145

i

patterns. This implies that the results of Sec. 1.3.6 also cover the storage
of pattern sequences where each pattern lasts for one unit of time.

As an example, take D = 2. With the maximal delay Ty,a, set to D — 2,
Tmax 18 0, and one has recovered the Little model. According to Table 1.1,
0.100N two-cycles of the form ] = ¢!, may be recalled as compared to
0.138N static patterns [82]: a 1.45-fold increase of the information content
per synapse. At the same time, the retrieval overlap drops slightly from
0.97 to 0.93.

The performance of networks with distributed delays and D = 4 is dis-
played in Table 1.2.

As is shown in Table 1.2, the uniform distribution leads to the largest
a. but the smallest Ig. The other two networks have the same value of
IR as the (unique) D = 2 system due to the particular structure of their
eigenvalue spectrum. Furthermore, one obtains Igr = 1.45 independently
of D for all networks with a minimal connectivity where only one synapse
links two neurons.!® Simulation data show slightly higher values of .,
possibly indicating effects of replica symmetry breaking as in the Hopfield
model [63].

In passing, note that each cycle consists of D patterns so that the storage
capacity for single patterns is @, = Da,. During the recognition process,
however, each pattern will trigger the cycle it belongs to and cannot be
retrieved as a static memory.

If static patterns instead of temporal associations are learned, the synap-
tic strengths do not depend on the delay; see also Eq. (1.23). The synaptic
couplings still satisfy the extended symmetry, and, with 7. = D — 2, one
recovers the Lyapunov function for networks with McCulloch-Pitts neurons
and “multiple-time-step parallel dynamics” [83],

D-2
Lurs(t) = —= }: JUZS’ t—a) ) Si(t—b). (1.79)

i,j=1 a=0 b=0

The evolution equations (1.72) and (1.73) may be generalized to analog

18This case is possible if D is an even number.
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systems with periodic external inputs. Using the “cooking recipes” of Secs.
1.3.1-1.3.4, it is possible to construct a Lyapunov function for that case as
well [84].

The learning rule in Eq. (1.26) also may be utilized to store cycles of
correlated real-valued pattern sequences. Numerical studies have been per-
formed for low-dimensional trajectories (small N) with high numbers of
data points (large D). For many examples, good retrieval could be obtained
without any need for highly time-consuming supervised learning schemes.
However, algorithms of the latter kind facilitate the learning of more so-
phisticated real-world tasks. Here, Lyapunov functions are of great help
since they permit the application of mean-field techniques [85] to a wide
class of supervised learning strategies such as spatio-temporal extensions
of the “Boltzmann Machine” concept [86] and contrastive-learning schemes
(87].

In closing this section, let me mention that an analysis of the storage
capacity along Gardner’s approach [88] has been given in reference [89].
Analytical results on highly diluted systems with time lags have also been
obtained [90].

1.4.2 ConTINUOUS-TIME DYNAMICS

The global dynamics of certain networks with graded-response neurons and
delayed interactions may be studied in a manner similar to that of Sec. 1.4.1
[67]. In the following, we focus on the simplest case, a single neuron (or a
homogeneous assembly of neurons) coupled to itself through one inhibitory
feedback loop with delay 7. Equation (1.14) reduces to

cdi’tu(t) — —Ru(t) — glu(t — 7)), (1.80)
where g satisfies the condition
ug(u) >0 foru#0 and g(0)=0. (1.81)

Solutions of this seemingly simple scalar equation include a fixed point
u(t) = 0 and, depending on the graph of g, periodic limit cycles and chaotic
trajectories [91]. Such a diversity of temporal phenomena is possible since,
due to the discrete delay, Eq. (1.80) describes an infinite-dimensional dy-
namical system as was already mentioned in Sec. 1.3.7.

Various aspects of the scalar delay differential equation (1.80) have been
discussed in the mathematics literature. Most articles have concentrated
on periodic solutions, in particular on those that are “slowly oscillating,”
that is, periodic solutions with zeros spaced at distances larger than the
time lag 7. Results about their existence, uniqueness, and local stability
have been obtained by Kaplan and Yorke [92], Nussbaum (93], and Chow
and Walther [94], respectively.
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The global analysis of Eq. (1.80) is simplified significantly if one neglects
the transmembrane current R~1u(t) and if g is an odd sigmoid function.
Without loss of generality, one may set C = 7 =1 and study the evolution
equation

d
g4 = —glu(t ~ 1)} (1.82)
Consider the auxiliary function Lppg(t),
t+1
Lppe(t) = ——/ / u(s)u(s — 7)ds dr
t+1
/ / u(s)u(s — 7)ds dr
t+1 1
+ G(u(s))ds + Z[u(t +1)+ut-1)? (1.83)
t—1

where G(z) is defined as in Eq. (1.43).!° For bounded nonlinearities g,
all solutions of Eq. (1.82) are bounded. They are differentiable for ¢ > 1.
Consequently, Lppg(t) is bounded below for ¢ > 2. It follows that, for
t > 1, the time derivative of Lppg(t) along a solution of Eq. (1.82) is well
defined and given by

d

‘%LDDE( )

(@t +1) +u(t - D][ut) — su(t+1) — Ju(t — 1))

+G(u(t + 1)) - G(u(t - 1))
+3[u(t +1) +ult — D)@t + 1) +at - 1)]
u(®)[u(t+1) + u(t—1)] + G(a(t+1))—G(u(t-1)). (1.84)

Because the input—output characteristic is assumed to be an odd sig-
moid function, g~! is odd, single-valued, and monotone increasing. Con-
sequently, the function G is even and strictly convex. In particular, the
equality G(u(t — 1)) = G(—u(t — 1)) holds. Performing a Taylor expansion
as in Eq. (1.51), one therefore obtains

Gt +1)) =Gt —1)) < [w(t+1)+a(t - 1)]g~ (u(t + 1))
< —[u(t+ 1) +u(t — Du(t). (1.85)

Equality in Eq. (1.85) holds if and only if u(t + 1) = ~u(t — 1). Taking
the evolution equation (1.82) and the strict monotonicity of g into account,
the last equation also may be written u(t) = —u(t — 2).

19 LbpE has been introduced as an explicitly time-dependent function for sim-
plicity and has been written in terms of both u and % for the same reason.
However, the initial function may not be differentiable. This (purely technical)
difficulty can be avoided if 4(s) is replaced by —g(u(s — 1)). Lppe then may be
properly defined as a functional in the space of continuous functions from the
interval -2, 0] to the real numbers [95].
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Fig. 1.4. Time evolution of a single neuron with delayed feedback according
to the evolution equation (1.82). The input—output characteristic is g(u) =
tanh(5u). The state variable u is plotted as a solid line, its derivative % as a dashed
line, and the Lyapunov function Lppg as a dotted line. Notice that Lppg(t) ap-
proaches a constant value as required for a Lyapunov function, whereas u relaxes
toward a periodic oscillatory solution with period four.

Inserting Eq. (1.85) into Eq. (1.84), one finally arrives at

%LDDE(“’) <0 for t> 2, (1.86)

where equality holds if and only if u(t) = —u(t — 2).2% An illustration is
given in Fig. 1.4. According to Eq. (1.86), Lppg(t) is nonincreasing along
every solution for ¢ > 2. The overall result may be summarized in the
following way:

Suppose that the function g is odd, bounded, and sigmoid. Then the evo-
lution equation (1.82) admits the Lyapunov function (1.83). Solutions of
Eq. (1.82) converge either to the trivial fired point u = 0 or to a periodic
limit cycle that satisfies

u(t) = —u(t - 2). (1.87)

Notice that the period P of the limit cycles does not depend on the graph

20The curious reader is invited to compare this result and its derivation with
that for the Little model with antisymmetric couplings in Eq. (1.54).
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of g; according to Eq. (1.87), it is always given by P = 4/(4k + 1), where k
is a nonnegative integer.?! On the other hand, it is well known that, for the
general equation (1.80), the period of a periodic solution is influenced by
the ratio of RC to 7 and the shape of g [96]. This fact implies that the above
methods probably cannot be extended to study delay differential equations
of the type in Eq. (1.80). There is, however, another way to analyze this
equation [97]. To facilitate the discussion, let ¢;,¢ € N with ¢; < t;41 denote
the times of consecutive zero crossings u(t) = 0 of a solution of Eq. (1.80).
One may then prove the following proposition:

Assume that the function g is bounded and satisfies the condition in Eq.
(1.81). For every solution u(t) of Eq. (1.80), the number n(i) of zero cross-
ings in the interval [t; — 7,t;) is a nonincreasing function of i.

This result means that a solution of Eq. (1.80) oscillates more and more
slowly around 0 as time proceeds. For long times it approaches a solution
with constant n = n(i); possibly n = 0. In particular, if the system is
initialized with a solution that has n zero crossings in the interval [—7,0)
it can never reach an oscillation with more than n zero crossings in any one
of the intervals [t; — 7,1;).

Let me briefly sketch the proof. The reader is also referred to Fig. 1.5. If
g is bounded and satisfies the condition (1.81), solutions of Eq. (1.80) exist
for all positive t and are continuous [98]. Assume without loss of generality
that, at time t;, (d/dt) u(t;) > 0. According to Eqgs. (1.80) and (1.81),
this means that u(t; — 7) < 0 because u(t;) = 0 by definition. The same
argument may be used at time t;1, where it implies that u(t;41 —7) >0
because u(tj4+1) = 0 and (d/dt) u(tj41) < 0. Together with the continuity
of u(t), this implies that there is an odd number k(j) > 1 of zero crossings
in the interval [t; — 7,t;41 — 7).

Denote the number of zero crossings in the interval [t; 41 —7,t;) by I(5).22
It follows that n(j) =l + k(j) and n(j +1) = I(j) + 1. Since k(j) > 1, both
relations may be combined to the statement n(j) > n(j + 1), which proves
the proposition.

The number of zero crossings in any interval is nonnegative — the func-
tion n(z) is bounded below. Since it is nonincreasing along every solution
of Eq. (1.80), it is an integer-valued Lyapunov function. Accordingly, solu-
tions of Eq. (1.80) relax to solutions with constant n(i). Notice that those
solutions may be periodic but could — at least in principle — also be ape-

#Further results derived with the help of Lppg can be found in reference [95].
One proof is well suited to highlight the potential of Lyapunov functions — once
they are found: It can be shown that, for large enough g’(0), the global minimum
of Lppg is always achieved on a slowly oscillating solution [otherwise on the
trivial fixed point u(t) = 0]. This immediately implies that those solutions have
to be asymptotically stable (except for global phase shifts), a conclusion that
previously required elaborate analytical techniques.

221t is understood that I(j) = 0 if t;41 — 7 > t;.
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Fig. 1.5. Time evolution of a single graded-response neuron with delayed self-
inhibition modeled by the delay differential equation (1.80). There are zero cross-
ings of the solution u(t) at time t;,¢;41, and at various earlier (and later) times.
In the interval [t; — 7,%;41 — 7), two possible solutions are drawn. They have one
and three zero crossings, respectively.

riodic. This is a surprising result; it highlights the generality of Lyapunov’s
second method in a rather illuminating way.

1.5 Synchronization of Action Potentials

While it frequently may be the case that mean-firing rates are an adequate
description of neural information, there are many instances where the de-
tailed timing and organization of action potentials matter. An important
example is given by the stimulus-dependent synchronization of action po-
tentials [15, 16, 17].

Due to the inherent limitations of descriptions based on discrete-time
dynamics or mean-firing rates, realistic synchronization processes are not
captured by the networks discussed in Secs. 1.3 and 1.4. Synchronization
processes may, however, be studied using networks with integrate-and-fire
neurons, whose time evolution was introduced in Sec. 1.2.3.

Networks of that type often show globally synchronized neurons when
all-to-all couplings are used.?3 Note that, throughout this section, terms

23Doubts about the structural stability of simple integrate-and-fire models have
been raised because some model variants do not exhibit systemwide synchroniza-
tion with all-to-all couplings [99, 100, 101].
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such as “synchronized neurons” always refer to the time of spike gener-
ation. According to this definition, a periodic network state (also called
a phase-locked solution) may or may not be “globally synchronized.” A
global analysis for networks described by Eqs. (1.13), (1.20), and the “ab-
sorbtion rule” u;(t*) = 0 [instead of Eq. (1.18)] has been given in reference
[102]. With excitatory all-to-all couplings of equal strength, nonzero leakage
currents, uniform external inputs, and a reset to O after spike generation
(v = 0), the size of the largest synchronized cluster is a nondecreasing
function of time — a (discrete-valued) Lyapunov function! The proof then
shows that such systems approach a globally synchronized solution where
all neurons fire in unison.

Networks with more general nonuniform interaction admit richer dynami-
cal behavior (25, 103, 104]. Equipped with excitatory finite-range couplings,
one class of networks relaxes to phase-locked clusters of (locally) synchro-
nized neurons [105, 106]. The shapes and relative phases of the clusters
encode information about the initial stimulus. this result is in accordance
with the hypothesis that synchronized cortical neurons are used to bind
stimulus features together [107].

1.5.1 PHASE LOCKING

Global results for locally coupled networks with integrate-and-fire neurons
have been obtained in the limiting case R — oo of perfectly integrating
cells and uniform positive input currents I** = I > 0. In this situation,
external information is encoded in the initial conditions u;(t = 0), not in
the input currents. This choice is reminiscent of the experimental paradigm
of stimulus-induced oscillations [15]. Due to the constant positive input
current I, each model cell fires regularly if there is no further synaptic
input from other cells. Thus, I~! represents the spontaneous firing rate
of an isolated neuron. By rescaling time, the capacitance C and input I
in Eq. (1.13) can be taken as unity. The overall dynamics then may be
summarized by the following update rules:

(i) Initialize the u;(t = 0) in [0, 1] according to the external stimulus.
(ii) If w; > 1, and if neuron 4 is next in the update scheme, then
ui = ug =(u; 1) (1.88)
and
uj — u; = uj + Jji. (1.89)
(iii) Repeat step ii until u; < 1 for all i.
(iv) If the condition of step ii does not apply, then

d

U= 1 for all 1. (1.90)
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Under the condition that all neurons have the same total incoming synap-
tic strength,
ZJij =4, (1.91)
J

and the same total outgoing synaptic synaptic strength,
D Ty =4, (1.92)
i

none may prove that the simple function Liar,

Liar = - ui, (1.93)

that is, the total (negative) membrane potential, plays the role of a Lya-
punov function for the system defined by steps i-iv, as is shown in reference
[106):

Assume that v = 1 and that the synapses satisfy Ji; > 0 and the con-
straints in Egs. (1.91) and (1.92) with A < 1. Then the dynamics generated
by Egs. (1.88)-(1.90) admit the Lyapunov function (1.98) and converge to
cyclic solutions with period Piar = 1— A. On periodic solutions, each neu-
ron fires exactly once in a period.

Notice that synaptic symmetry has not been required! This distinguishes
the present model from the networks discussed in the previous sections.

Depending on the initial conditions, the periodic solutions can contain
events in which one neuron fires alone, and others in which many neurons
fire in synchrony. In networks with excitatory short-range connections only,
regions with small variability of the initial conditions are smoothed out
and represented by locally synchronized clusters of neurons whose firing
times encode the stimulus quality. Regions with high variability, on the
other hand, give rise to spatially uncorrelated firing patterns. Through an
appropriate choice of coupling strengths, more complex computations can
be performed as demonstrated by numerical simulations [106].

In order to prove the proposition, let us first show that no neuron fires
more than once in any interval of length PiaF.

Lemma: Let n;(t,t') denote the number of times neuron i fires in [t,t).
If the conditions of the proposition hold, then n;(t,t + Piar) < 1.

Starting at time ¢, if some neuron fires twice before ¢ + Piar, then some
neuron k must first fire twice, and at time t' < t+ Bar. For that to happen,
the total change in uy from ¢ to ¢’ due to the synaptic currents and the
external input must be greater than 1. Thus one requires that, for neuron
k,

1-4
(t' - t)LTF) + XJ: Jijnj(t,t') > 1. (1.94)
However, by hypothesis (¢’ — t) < Piar, and, since k is the first neuron to
fire twice, the number n;(¢,t’) of firings of each of the other neurons up to
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t' is less than or equal to 1. For J;; nonnegative, the left-hand side of Eq.
(1.94) is less than (1 — A) + A = 1. The contradiction shows that k cannot
have fired twice.

Returning to the proof of the proposition, let us consider the change of
Liar in a time interval of length Piar, AL1AF (t) = Liar (t+PIAF)—L1AF (t)
It is

ALiap(t) = —(1- AN = Jijn;(t, t+ Piar) +Y_ni(t,t+Par). (1.95)
i,j i
The first term comes from the constant input current, the second term from
the effect of the firing of other neurons, and the third term comes from ¢
itself firing. Using the condition (1.91), one finds

ALap(t) = ~(1 - A) [N =) ni(t,t + Par) | - (1.96)

Due to the lemma, n;(t,t + Far) < 1 for all . The change of Liar
in each time interval Piar is thus nonpositive. Since Liar is bounded, the
system performs a downhill march on the energy landscape generated by the
Lyapunov function Liar — if the function is measured after time steps of
length Piap. The difference ALjap(t) vanishes if and only if n; (¢, t+Piar) =
1 for all 4, that is, on periodic solutions where every neuron fires exactly
once in a time interval of length Piar [106].24

To avoid the unfamiliar evaluation of the Lyapunov function Liazf at the
discrete times ¢t + kPjar, k € N, one may alternatively use the functional

0
Liar = / Liar(s)ds. (1.97)
~Piar

Along solutions, Liar is differentiable with (d/dt)Liar(t) = ALiar(t —
Biar) for all t > Piar, so that the previous conclusions are reached again.
For an illustration, see Fig. 1.6.

1.5.2 RAPID CONVERGENCE

The results of the previous section prove that specific networks of integrate-
and-fire neurons approach phase-locked solutions. Numerical simulations of
these and more general networks [102, 106, 108, 109, 110, 111] indicate that
the convergence process takes place in a very short time — see also Fig.
1.6.25 This observation can be substantiated under certain conditions [105,
106}:

24A related proof has been given in reference [35). Notice also that a continuous
set of stable (but not asymptotically stable) periodic solutions is reached.

25In general, clusters of locally synchronized neurons will slowly reorganize
after the initial rapid convergence. The models analyzed in this chapter are an
exception in that they do not show such slow relaxation phenomena.
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Fig. 1.6. Rapid local synchronization of action potentials. Shown are results
from numerical simulations of a planar network with 40 x 40 integrate-and-fire
neurons (R™! = 0, v = 1), periodic boundary conditions, and nearest-neighbor
interactions of strength Jy, = 0.24. Each dot in the upper trace represents the
number of simultaneous action potentials as a function of time. The lower trace
depicts the time evolution of the Lyapunov function Ljar (solid line) and the
Lyapunov functional Liar (dashed line). The inset verifies that, as predicted, the
latter approaches a constant value.
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Assume that the synapses satisfy Ji; > 0 and the condition (1.91) with
A < 1. Then all solutions of Egs. (1.88)-(1.90) converge to cyclic solutions
with period Piar = 1— A. The attractor is reached as soon as every neuron
has fired once. On the periodic solution, each neuron fires exactly once in
a period.

Notice that, although the conditions on v and on the sum of outgoing
synaptic strengths have been dropped, the conclusions are now stronger
than in the previous proposition. However, the proof given is not based
on a Lyapunov function, so the concept of a downhill march on an energy
landscape generated by the Lyapunov function no longer is available. The
lack of a Lyapunov function might also be a drawback when stochastic
extensions are considered in the future.26

Let tmax denote the first time every neuron has fired at least once. Some
cells may have fired repeatedly before tpax, depending on the parameter
values and initial conditions. Let t; denote the last time neuron 4 fires before
tmax; tmin the minimum of all these times ¢;, and k a cell that fires at 2,
for the last time without being triggered by other cells.

By definition, every cell discharges at least once in the interval {tm;n,
tmax)- This implies in particular that every neuron j from which cell k&
receives synaptic input emits one or more action potentials in that interval.
Each spike adds Ji; to ug. The total change of uy in [tmin,tmax] is thus
equal to or greater than A + tyax — tmin. This number has to be smaller
than 1 because, otherwise, neuron k would fire a second time in the interval
[tmin, tmax] in contradiction to the assumption. It follows that tpax — tmin <
Biar.

Going back to Sec. 1.5.1, one notices that the condition on the sum of
outgoing synaptic strengths [Eq. (1.92)], although essential for the proof
of the main proposition, is not required for the proof of the lemma: The
lemma is also valid under the weaker conditions of the present section.
Evaluated at time t = £, — PioF and combined with the previous results,
the lemma implies that every cell fires exactly once in [tmin,tmax] and no
cell fires in (tmax — PIAF, tmin)- Since tmax < 1, the last result proves that,
in finite time ty.x — Piap, a limit cycle is approached in the sense that
u;(t) = u;(t+ Biar) for t > tmax — Piar. The argument also shows that the
attractor is reached as soon as every neuron has fired once.

The proof does not depend on the details of the reset mechanism. This
means that it covers not only the present model with arbitrary 0 < vy <1,

26The sentence reflects the author’s hope that it might be possible to construct
simple stochastic dynamics of integrate-and-fire neurons such that the Lyapunov
function of the noiseless dynamics determines a Gibbs distribution for the stochas-
tic extension. Equilibrium statistical mechanics then could be applied to analyze
the collective phenomena in networks of integrate-and-fire neurons in the same
spirit as has been done for the neural network models discussed in Secs. 1.3 and
1.4. Regrettably, such evolution equations have not been found yet.
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but also all schemes where a neuron i firing at time ¢ is relaxed to some
value between 0 and u;(¢~) — 1. Perhaps surprisingly, this allows stochastic
updatings during the transient phase.

In all model variants except from the limiting case ¥ = 1, cyclic solutions
with period Piar and one spike per cycle cannot occur if a neuron is driven
above threshold. In events with multiple neurons firing “at the same time,”
the potentials have to be fine-tuned such that, if neuron i is triggered by
neuron j, u;(t~) = 1—Jj;. This implies that, although every firing sequence
of the model with ¥ = 1 can be realized in these models, the volume of all
attractors is greatly reduced when measured in the space of the dynamical
variables u;.

1.6 Conclusions

The examples presented in this chapter demonstrate that Lyapunov’s direct
method has widespread applications within the theory of recurrent neural
networks. With respect to the list of levels of analysis sketched in the
Introduction, it has been shown that Lyapunov’s method is most helpful
on the second level, which deals with questions about the type of attractors
possible in a neural network.

Combined with powerful techniques from statistical mechanics, Lyapun-
ov’s approach allows not only for a qualitative understanding of the global
dynamics, but also for quantitative results about the collective network
behavior. As was shown in Secs. 1.3, 1.4, and 1.5, Lyapunov’s method
applies to the retrieval of static patterns in networks with instantaneous
interactions, to the recall of spatio-temporal associations in networks with
signal delays, and to synchronization processes in networks of integrate-
and-fire neurons.

There remain numerous interesting questions about the global dynam-
ics of feedback neural networks. These include questions concerning the
convergence of network models with discrete-time dynamics, symmetric
couplings, and overlapping delays [see Fig. 1.1(d)]. Numerical simulations
suggest that such systems relax to fixed-point solutions [112], but the ana-
lytic results from the computer science literature [55, 56, 57, 58] only cover
the case where a single pattern is stored in the network.

With regard to networks with transmission delays, it would be interesting
to know more about the global dynamics generated by Egs. (1.70) and
(1.71) under conditions that admit multiple fixed-point attractors. With a
similar interest in mind, one could try to perform a statistical mechanical
analysis of the system (1.72), (1.73) with delay-independent symmetric
couplings [Eq. (1.23)] to study the influence of signal delays on the collective
properties of networks that store static patterns.

In the proofs concerning integrate-and-fire neurons, synaptic strengths
were assumed to be excitatory. There is, however, strong numerical evidence
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that inhibition does not change the overall results [106]. If the synaptic
couplings continue to satisfy the condition (1.91) with A < 1, and if the
network parameters are chosen such that there are no runaway solutions
and no solutions with neurons that are permanently below threshold, then
all simulations of the dynamics generated by Eqs. (1.88)-(1.90) approach
periodic solutions of period Piar = 1 — A. For leaky integrate-and-fire
models (finite R), the same is true, but the period is given by the period
Priar of the globally synchronized solution in such a system:

Puiar = RC[In(RI — A) — In(RI - 1)). (1.98)

This observation gives hope that further understanding of integrate-and-
fire models is possible, although the mathematical situation is more com-
plicated than in the cases discussed in Sec. 1.5. A convergence proof based
on Lyapunov functions such as Eq. (1.93) is possible because every peri-
odic solution of the model has the same period. This is not the case for
models for finite R, as is shown by the following counterexample. Consider
a spatio-temporal “checkerboard” pattern, where the “black” sites fire at
even multiples of A/2 and the “white” sites at odd multiples of A/2. A
self-consistent calculation of the firing pattern leads to an implicit equation
for A:

Ae~B/2RC | T [1 - e"A/RC] =1. (1.99)

Excepting from the limiting case R — o0, A differs from the period of the
globally synchronized solution. A stability analysis verifies that the checker-
board pattern is unstable, but its mere existence indicates that it will be
difficult to find Lyapunov functions for leaky integrate-and-fire models.

More generally, one may ask which conditions in the proofs of Secs. 1.3,
1.4, and 1.5 can be violated without changing the desired emergent net-
work behavior. These questions deal with the structural stability of neural
networks, the fifth level of analysis, and have to be answered if one wants to
evaluate the biological relevance of specific networks. In order to keep the
chapter within reasonable bounds, this topic has not been discussed here. A
particularly important issue, the convergence of “conventional” recurrent
neural networks (of the type studied in Sec. 1.3) without synaptic symme-
try, has been studied extensively in the literature [113, 114]. In passing,
let me note that one may always generate specific asymmetric networks
through appropriate transformations of both the coupling matrix and dy-
namical variables of systems with symmetric interactions.

There are a number of other topics related to the main theme of this
chapter that could not be included. Let me briefly mention two of these
issues.

First, one may design dynamical systems such that they perform a down-
hill march on an energy landscape that encodes some optimization task [59].
Various biologically motivated examples can be found in the computer vi-
sion literature [115, 116].
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Second, one may construct feedback networks that possess desired at-
tractors but no spurious stable states [117, 118]. The construction of such
artificial associative memories is greatly facilitated if one deliberately lifts
modeling restrictions that otherwise would be naturally imposed by bio-
logical constraints.

Let me close with a general comment: “Associative computation” means
that many different inputs are mapped onto few output states. The time
evolution of a dynamical system that performs such a computation is char-
acterized by a contraction in its state space, that is, it is dissipative.2” This
observation suggests that many dynamical systems that have been used
as models for associative computation may admit Lyapunov functions. As
was emphasized in Sec. 1.3.7, minor modifications of the models may be
needed to satisfy technical requirements.

In view of the many Lyapunov functions already found, I would like to
conclude with a remark from the monograph of Rouche, Habets, and Laloy
[3]: “Lyapunov’s second method has the undeserved reputation of being
mainly of theoretical interest, because auxiliary functions are so difficult to
construct. We feel this is the opinion of those people who have not really
tried ...”
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?"The threshold operation of a two-state neuron might be interpreted as a
special realization of this contraction process.
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Receptive Fields and Maps in
the Visual Cortex: Models of
Ocular Dominance and
Orientation Columns*

Kenneth D. Miller!

with 4 figures

Synopsis. The formation of ocular dominance and orientation columns in
the mammalian visual cortex is briefly reviewed. Correlation-based models
for their development are then discussed, beginning with the models of Von
der Malsburg. For the case of semilinear models, model behavior is well un-
derstood: correlations determine receptive field structure, intracortical in-
teractions determine projective field structure, and the “knitting together”
of the two determines the cortical map. This provides a basis for simple but
powerful models of ocular dominance and orientation column formation:
ocular dominance columns form through a correlation-based competition
between left-eye and right-eye inputs, while orientation columns can form
through a competition between ON-center and OFF-center inputs. These
models account well for receptive field structure but are not completely
adequate to account for the details of cortical map structure. Alternative
approaches to map structure, including the self-organizing feature map of
Kohonen, are discussed. Finally, theories of the computational function of
correlation-based and self-organizing rules are discussed.

2.1 Introduction

The brain is a learning machine. An animal’s experience shapes the neu-
ral activity of its brain; this activity in turn modifies the brain, so that

*An earlier and briefer version of this chapter appeared in The Handbook
of Neural Networks (M.A. Arbib, Ed.), The MIT Press, 1995, under the title
“Models of Ocular Dominance and Orientation Columns.” Reused by permission.

! Departments of Physiology and Otolaryngology, W.M. Keck Center for Inte-
grative Neuroscience, and Sloan Center for Theoretical Neurobiology, University
of California, San Francisco, CA 94143-0444, USA.
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Right eye Visual Cortex

Left eye

Fig. 2.1. Schematic of the mature visual system. Retinal ganglion cells from
the two eyes project to separate layers of the lateral geniculate nucleus (LGN).
Neurons from these two layers project to separate patches or stripes within layer
4 of the visual cortex (V1). Binocular regions (receiving input from both eyes) are
depicted at the borders between the eye-specific patches. The cortex is depicted in
cross-section, so that layers 1-3 are above and layers 5-6 below the LGN-recipient
layer 4. Reprinted by permission from [42]. © 1989 by the AAAS.

the animal learns from its experience. This self-organization, the brain’s
reshaping of itself through its own activity (reviewed in [7, 14, 39, 51]), has
long fascinated neuroscientists and modelers.

The classic example of activity-dependent neural development is the for-
mation of ocular dominance columns in the cat or monkey primary visual
cortex (reviewed in [44]). The cerebral cortex is the uniquely mammalian
part of the brain. It is thought to form the complex, associative represen-
tations that characterize mammalian and human intelligence. The primary
visual cortex (V1) is the first cortical area to receive visual information. It
receives signals from the lateral geniculate nucleus of the thalamus (LGN),
which in turn receives input from the retinas of the two eyes (Fig. 2.1).

To describe ocular dominance columns, several terms must be defined.
First, the receptive field of a cortical cell refers to the area on the retinas in
which appropriate light stimulation evokes a response in the cell, and also
to the pattern of light stimulation that evokes such a response. Second,
a column is defined as follows. V1 extends many millimeters in each of
two, “horizontal” dimensions. Receptive field positions vary continuously
along these dimensions, forming a retinotopic map, a continuous map of the
visual world. In the third, “vertical” dimension, the cortex is about 2 mm in
depth and consists of six layers. Receptive field positions do not significantly
vary through this depth. Such organization, in which cortical properties are
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R
1 mm

Fig. 2.2. Ocular dominance columns from cat V1. A horizontal cut through the
layer 4 of V1 is shown. Terminals serving a single eye are labeled white. Dark
regions at the edges are out of the plane containing LGN terminals. Region shown
is 5.3 x 7.9 mm. Photograph generously supplied by Dr. Y. Hata.

invariant through the vertical depth of cortex but vary horizontally, is called
columnar organization and is a basic feature of the cerebral cortex.

Third, ocular dominance must be defined. Cells in the LGN are monoc-
ular, responding exclusively to stimulation of a single eye (Fig. 2.1). LGN
cells project to layer 4 of V1, where they terminate in alternating stripes
or patches of terminals representing a single eye (Figs. 2.1 and 2.2). Most
or, in some species, all layer-4 V1 cells are monocular. Cells in other layers
of V1 respond best to the eye that dominates layer-4 responses at that
horizontal location. Thus, V1 cells can be characterized by their ocular
dominance, or eye preference. The stripes or patches of cortex that are
dominated throughout the cortical depth by a single eye are known as
ocular dominance columns.

The segregated pattern of termination of the LGN inputs to V1 arises
early in development. Initially, LGN inputs project to layer 4 of V1 in an
overlapping manner, without apparent distinction by eye represented. The
terminal arbors of individual LGN inputs extend horizontally in layer 4
for distances as large as 2 mm (for comparison, a typical spacing between
cortical cells is perhaps 20 pm). Subsequently, beginning either prenatally
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or shortly after birth, depending on the species, the inputs representing
each eye become horizontally confined to the alternating, approximately
1/2-mm wide ocular dominance patches.

This segregation results from an activity-dependent competition between
the geniculate terminals serving the two eyes (see discussion in [44]). The
signal indicating that different terminals represent the same eye appears to
be the correlations in their neural activities [54]. These correlations exist
due both to spontaneous activity, which is locally correlated within each
retina (36, 37, 38, 64], and to visually-induced activity, which correlates
the activities of retinotopically nearby neurons within each eye and, to a
lesser extent, between the eyes [26]. The segregation process is competitive.
If one eye is caused to have less -activity than the other during a critical
period in which the columns are forming, the more active eye takes over
most of the cortical territory [25, 52, 60]; but the eye with reduced activity
suffers no loss of projection strength in retinotopic regions in which it lacks
competition from the other eye [15, 16]. In summary, ocular dominance
column formation is a simple system in which correlated patterns of neural
activity sculpt the patterns of neural connectivity.

Orientation columns are another striking feature of visual cortical orga-
nization. Most V1 cells are orientation-selective, responding selectively to
light/dark edges over a narrow range of orientations. The preferred orienta-
tion of cortical cells varies regularly and periodically across the horizontal
dimension of the cortex and is invariant in the vertical dimension. The
maturation of orientation selectivity is activity-dependent (e.g., [6, 11]).
However, it has not yet been possible to test whether the initial develop-
ment of orientation selectivity is activity-dependent. This is because some
orientation selectivity already exists at the earliest developmental times at
which visual cortical responses can be recorded (1, 4, 6, 20, 61}, and it has
not been possible to block visual system activity immediately before this
time. Nonetheless, it has long been a popular notion that the initial devel-
opment of orientation selectivity, like that of ocular dominance, may occur
through a process of activity-dependent synaptic competition.

The inputs from LGN to V1 serving each eye are of two types: ON-center
and OFF-center. Both kinds of cells have circularly symmetric, orientation-
insensitive receptive fields and respond to contrast rather than uniform
luminance. ON-center cells respond to light against a dark background, or
to light onset; OFF-center cells respond to dark against a light background,
or to light offset. In the cat, the orientation-selective V1 cells in layer 4 are
simple cells: cells with receptive fields consisting of alternating oriented
subregions that receive exclusively ON-center or exclusively OFF-center
input (Fig. 2.3). As shall be discussed, one theory for the development of
orientation selectivity is that, like ocular dominance, it develops through
a competition between two input populations: in this case, a competition
between the ON-center and the OFF-center inputs [41].



Kenneth D. Miller 59

Fig. 2.3. Two examples of simple cell receptive fields (RFs). Regions of the
visual field from which a simple cell receives ON-center (white) or OFF-center
(dark) input are shown. Note: Ocular dominance columns (Fig. 2.2) represent an
alternation, across the cortex, in the type of input (left- or right-eye) received by
different cortical cells; while a simple-cell RF (this figure) represents an alterna-
tion across visual space in the type of input (ON- or OFF-center) received by a
single cortical cell.

2.2 Correlation-Based Models

To understand ocular dominance and orientation column formation, two
processes must be understood: (1) the development of receptive field struc-
ture: under what conditions do receptive fields become monocular (driv-
able only by a single eye) or orientation-selective? (2) the development of
periodic cortical maps of receptive field properties: what leads ocular dom-
inance or preferred orientation to vary periodically across the horizontal
dimensions of the cortex, and what determines the periodic length scales of
these maps? Typically, the problem is simplified by consideration of a two-
dimensional model cortex, ignoring the third dimension in which properties
such as ocular dominance and orientation are invariant.

One approach to addressing these problems is to begin with a hypothe-
sized mechanism of synaptic plasticity, and to study the outcome of cortical
development under such a mechanism. Most commonly, theorists have con-
sidered a Hebbian synapse: a synapse whose strength is increased when pre-
and postsynaptic firings are correlated, and possibly decreased when they
are anticorrelated. Other mechanisms, such as activity-dependent release
and uptake of a diffusible modification factor, can lead to similar dynamics
[42], in which synaptic plasticity depends on the correlations among the
activities of the competing inputs. Models based on such mechanisms are
referred to as correlation-based models [39].
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2.2.1 THE VON DER MALSBURG MODEL oOF V1
DEVELOPMENT

Von der Malsburg (57, 59 first formulated a correlation-based model for the
development of visual cortical receptive fields and maps. His model had two
basic elements. First, synapses of LGN inputs onto cortical neurons were
modified by a Hebbian rule that is competitive, so that some synapses were
strengthened only at the expense of others. He enforced the competition
by holding constant the total strength of the synapses converging on each
cortical cell (conservation rule). Second, the cortical cells tended to be
activated in clusters, due to intrinsic cortical connectivity, e.g., short-range
horizontal excitatory connections and longer range horizontal inhibitory
connections.

The conservation rule leads to competition among the inputs to a single
target cell. Inputs that tend to be coactivated — that is, that have cor-
related activities — are mutually reinforcing, working together to activate
the postsynaptic cells and thus to strengthen their own synapses. Differ-
ent patterns that are mutually un- or anticorrelated compete, since the
strengthening of some synapses means the weakening of others. Cortical
cells eventually develop receptive fields that are responsive to a correlated
pattern of inputs.

The clustered cortical activity patterns lead to competition between the
different groups of cortical cells. Each input pattern comes to be associated
with a cortical cluster of activity. Overlapping cortical clusters contain
many coactivated cortical cells, and thus become responsive to overlap-
ping, correlated input patterns. Adjacent, nonoverlapping clusters contain
many anticorrelated cortical cells, and thus become responsive to un- or
anticorrelated input patterns. Thus, over distances on the scale of an ac-
tivity cluster, cortical cells will have similar response properties; while, on
the scale of the distance between nonoverlapping clusters, cortical cells will
prefer un- or anticorrelated input patterns. This combination of local con-
tinuity and larger scale heterogeneity leads to continuous, periodic cortical
maps of receptive field properties.

In computer simulations, this model was applied to the development of
orientation columns [57] and ocular dominance columns [59]. For orien-
tation columns, inputs were activated in oriented patterns of all possible
orientations. Individual cortical cells then developed selective responses,
preferring one such oriented pattern, with nearby cortical cells preferring
nearby orientations. For ocular dominance columns, inputs were activated
in monocular patterns consisting of a localized set of inputs from a single
eye. Individual cortical cells came to be driven exclusively by a single eye,
and clusters of cortical cells came to be driven by the same eye. The final
cortical pattern consisted of alternating stripes of cortical cells preferring
a single eye, with the width of a stripe approximately set by the diameter
of an intrinsic cluster of cortical activity.
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In summary, a competitive Hebbian rule leads individual receptive fields
to become selective for a correlated pattern of inputs. Combined with the
idea that the cortex is activated in intrinsic clusters, this suggests an origin
for cortical maps: coactivated cells in a cortical cluster tend to become
selective for similar, coactivated patterns of inputs. These basic ideas are
used in most subsequent models.

2.2.2 MATHEMATICAL FORMULATION

A typical correlation-based model is mathematically formulated as follows
[57, 27, 40, 42]. Let z,y, ... represent retinotopic positions in V1, and let
a, B,... represent retinotopic positions in the LGN. Let S#(z, ) be the
synaptic strength of the connection from a to z of the LGN projection
of type u, where p may signify left-eye, right-eye, ON-center, OFF-center,
etc. Let B(z,y) represent the synaptic strength and sign of connection
from the cortical cell at y to that at z. For simplicity, B(z,y) is assumed
to take different signs for a fixed y as x varies, but, alternatively, sepa-
rate excitatory-projecting and inhibitory-projecting cortical neurons may
be used. Let a(z) and a*(a) represent the activity of a cortical or LGN
cell, respectively.

The activity a(z) of a cortical neuron is assumed to depend on a linear
combination of its inputs:

a(e) = fi (z SH(z, a)a(a) + ZB<z,y)a(y>) G R)

Here, f; is some monotonic function such as a sigmoid or linear threshold.
A Hebbian rule for the change in feedforward synapses can be expressed
as

ASH(z,0) = A*(z,a) f2 [a()] fa [a*(a)] - (2.2)

Here, A(z, c) is an arbor function that expresses the number of synapses of
each type from o to z; a minimal form is A(z, a) =1 if there is a connection
from « to x, and Az, ) =0 otherwise. A typical form for the functions f,
and f3 is f(a) =(a — (a)), where {a) indicates an average of a over input
patterns. This yields a covariance rule: synaptic change depends on the
covariance of postsynaptic and presynaptic activity.

Next, the Hebbian rule must be made competitive. This can be accom-
plished by conserving the total synaptic strength over the postsynaptic cell
[57], which in turn may be done either subtractively or multiplicatively
[43]. The corresponding equations are

4 5k(z,a) = ASH(z,a) — e(z)A(z, a) (Subtractive) (2.3)

4 Sk(z,a) = AS*(z,a) — y(z)S*(z,a)  (Multiplicative), (2.4)
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where

E"»a AS® (.’L‘, a) En,a AS"(J;, a)
YoraA(z,0) Y ora S5z, @)

Either form of constraint ensures that 3, ,(d/dt)S*(z,a)=0. Alternative
methods have been developed to force Hebbian rules to be competitive [43].

Finally, synaptic weights may be limited to a finite range, smin A(z, @) <
SH(z,0) < SmaxA(z, ). Typically, Smin = 0 and spmax is some positive
constant.

e(x)= and v(z)=

2.2.3 SEMILINEAR MODELS

In semilinear models, the f’s in Egs. (2.1) and (2.2) are chosen to be linear.
Then, after substituting for a(z) from Eq. (2.1) and averaging over input
patterns (assuming that all inputs have identical mean activity, and that
changes in synaptic weights are negligibly small over the averaging time),
Eq. (2.2) becomes

ASH(z,0) = M(z,0) | Y I(z - y) [C*(a - B) — k2] S*(y,8) + k1
¥,8,K
(2.5)

Here, I(z — y) is an element of the intracortical interaction matrix
=(1-B)'=1+B+B?+---,

where the matrix B is defined in Eq. (2.1). This summarizes intracorti-
cal synaptic influences including contributions via 0,1, 2, ... synapses. The
covariance matrix

C* (e = B) = ((a*(a) — a) (a*(B) - a))

expresses the covariation of input activities. The factors A, k1, and ko are
constants. Translation invariance has been assumed in both cortex and
LGN.

When there are two competing input populations, Eq. (2.5) can be simpli-
fied further by transforming to sum and difference variables: §° = S! + 52,
SP = §!' — $?. Assuming equivalence of the two populations (so that
C! = (%2, C'? = C%), Eq. (2.5) becomes

ASS(z,a) = M(z,a) {Zl(x —y) [C3(a ~ B) — 2ka] S5(y, B) + 2k:
.8
(2.6)

ASP(z,a) = \(z,0) Y I(z — y)CP(a - B)SP(y, B). (2.7)
.8



Kenneth D. Miller 63

Here, C° = CY 4+ C12, CP = C! — C!2, Subtractive renormalization
[Eq. (2.3)] alters only Eq. (2.6) for S, by subtraction of 2¢(z)A(z — «),
while leaving Eq. (2.7) for SP unaltered. Multiplicative renormalization
[Eq. (2.4)] alters both Egs. (2.6) and (2.7), by subtraction of v(z)S%(z, a)
and v(x)SP(z, @), respectively.

2.2.4 How SEMILINEAR MODELS BEHAVE

Linear equations like (2.6) and (2.7) can be understood by finding the
eigenvectors or “modes” of the operators on the right side of the equations.
The eigenvectors are the synaptic weight patterns that grow independently
and exponentially, each at its own rate. The fastest growing eigenvectors
typically dominate development and determine basic features of the final
pattern, although the final pattern ultimately is stabilized by nonlinearities
such as the limits on the range of synaptic weights or the nonlinearity
involved in multiplicative renormalization [Eq. (2.4)].

We will focus on the behavior of Eq. (2.7) for SP (for analysis of Eq.
(2.6), see [34, 35]). SP describes the difference in the strength of two com-
peting input populations. Thus, it is the key variable describing the de-
velopment of ocular dominance segregation, or development under an ON-
center/OFF-center competition. In many circumstances, Eq. (2.7) can be
derived directly from Egs. (2.1) and (2.2) by linearization about S? = 0
[40] without need to assume a semilinear model. The condition S? = 0 cor-
responds to an initial condition in which the projections of the two input
types are approximately equal. Thus, study of Eq. (2.7) can lend insight
into early pattern formation in more general, nonlinear correlation-based
models.

Equation (2.7) can be solved simply in the case of full connectivity from
the LGN to the cortex, when A(z,a) = 1 for all z and a. Then modes
of SP(z,a) of the form e¥**¢?™ grow exponentially and independently,
with rates proportional to I(k)CP(l), where I and CP denote the Fourier
transforms of I and CP, respectively (for a description of the modes as real
rather than complex functions, see [44]). The wavenumber k determines
the wavelength 27 /|k| of an oscillation of S? across cortical cells, while
the wavenumber ! determines the wavelength 27/|l| of an oscillation of SP
across geniculate cells. The fastest growing modes, which will dominate
early development, are determined by the k and ! that maximize I(k) and
cP (1), respectively. The peak of a function’s Fourier transform corresponds
to the cosine wave that best matches the function, and thus represents the
“principal oscillation” in the function.

To understand these modes (Fig. 2.4), consider first the set of inputs
received by a single cortical cell, that is, the shape of the mode for a fixed
cortical position z. This can be regarded as the receptive field of the corti-
cal cell. Each receptive field oscillates with wavenumber [. This oscillation
of SP =5 ~ 52 is an oscillation between receptive field subregions domi-
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nated by S! inputs and subregions dominated by S2 inputs. Thus, in ocular
dominance competition, monocular cells (cells whose entire receptive fields
are dominated by a single eye) are formed only by modes with [ = 0 (no
oscillation). Monocular cells thus dominate development if the peak of the
Fourier transform of the CP governing left/right competition is at I = 0.
Now, instead, consider an ON/OFF competition: S and S? represent ON-
and OFF-center inputs from a single eye. Then the receptive fields of modes
with nonzero [ resemble simple cells: they receive predominantly ON-center
and predominantly OFF-center inputs from successive, alternating subre-
gions of the visual world. Thus, simple cells can form if the CP governing
ON/OFF competition has its peak at a nonzero .

Now consider the arborizations or projective fields projecting from a sin-
gle geniculate point, that is, the shape of the mode for a fixed geniculate
position a. These oscillate with wavenumber k. In ocular dominance compe-
tition, this means that left- and right-eye cells from a project to alternating
patches of the cortex. When monocular cells form (I = 0), these alternat-
ing patches of the cortex are the ocular dominance columns: alternating
patches of the cortex receiving exclusively left-eye or exclusively right-eye
input, respectively. Thus, the width of ocular dominance columns — the
wavelength of alternation between right-eye— and left-eye—dominated cor-
tical cells — is determined by the peak of the Fourier transform of the
intracortical interaction function I. In ON/OFF competition, with [ # 0,
the identity of the cortical cells receiving the ON-center or OFF-center part
of the projection varies as o varies, so individual cortical cells receive both
ON- and OFF-center inputs, but from distinct subregions of the receptive
field.

In summary, there is an oscillation within receptive fields, with wavenum-
ber ! determined by the peak of C?; and an oscillation within arbors, with
wavenumber k determined by the peak of I (Fig. 2.4). These two oscil-
lations are “knit together” to determine the overall pattern of synaptic
connectivity. The receptive field oscillation, which matches the receptive
field to the correlations, quantitatively describes von der Malsburg’s find-
ing that individual receptive fields become selective for a correlated pattern
of inputs. Similarly, the arbor oscillation matches projective fields to the
intracortical interactions, and thus to the patterns of cortical activity clus-
ters. This quantitatively describes the relationship between activity clusters
and maps. Note that the factor e*** can be regarded as inducing a phase
shift, for varying z, in the structure of receptive fields. Thus, cortical cells
that are nearby on the scale of the arbor oscillation have similar receptive
fields, while cells 1/2 wavelength apart have opposite receptive fields.

An alternative viewpoint on the same pattern is obtained by rewriting
the modes as ei(k+)ze=il{z=a) The argument [(z — a) represents the os-
cillation with wavenumber [ within the receptive field, now expressed in
coordinates relative to the center of the receptive field rather than in an
absolute position across the geniculate. The argument (k + l)z represents
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Fig. 2.4. Schematic of the outcome of semilinear correlation-based development.
Top: The correlation function (CP) determines the structure of receptive fields
(RFs). White RF subregions indicate positive values of SP: dark subregions,
negative values. When CP does not oscillate, individual cortical cells receive only
a single type of input, as in ocular dominance segregation. If CP oscillates, there is
a corresponding oscillation in the type of input received by the individual cortical
cells, as in simple-cell RFs. Alternative RF structures could form, as in the center-
surround structure shown; but oriented simple-cell-like outcomes predominate
for reasonable parameters [41]. Simple cells then develop with various numbers
of subregions and various spatial phases; only a single example, of a cell with two
subregions and odd spatial symmetry, is pictured. Bottom: The intracortical
interactions (I) similarly determine the structure of projective fields. Here, solid
lines indicate positive values of S2, while dotted lines indicate negative values.
Adapted from [43].
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a shift, for varying z, in the phase of the receptive field relative to the
receptive field center. For the case of ocular dominance, with [ = 0, this is
just the shift, with wavenumber k, between left-eye dominance and right-
eye dominance of the cortical cells. For ON/OFF competition with ! # 0,
this represents a periodic shifting, with movement across the cortex, as to
which subregions of the receptive field are dominated by ON-center inputs
and which subregions are dominated by OFF-center inputs. Thus, we can
view the results as an oscillation within receptive fields, with wavenumber
1, combined with a shift with cortical position in the spatial phase of recep-
tive fields, this shift occurring with wavenumber & + [, the vector sum of
the projective field or arbor oscillation and the receptive field oscillation.

The competitive, renormalizing terms [Egs. (2.3) and (2.4)] do not sub-
stantially alter these pictures, except that multiplicative renormalization
can suppress ocular dominance development in some circumstances [43].2
These results hold also for localized connectivity (finite arbors), and thus
generally characterize the behavior of semilinear models [39, 44]. The major
difference in the case of localized connectivity is that, if £ or [ corresponds
to a wavelength larger than the diameter of connectivity from or to a single
cell, then it is equivalent to k = 0 or [ = 0, respectively. A good approxi-
mation to the leading eigenvectors in the case of finite connectivity is given
simply by A(z — a)e**®¢i!®, where k and [ are determined as above by the
peaks of I(k) and CP(l) (unpublished results).

2.2.5 UNDERSTANDING OCULAR DOMINANCE AND
ORIENTATION COLUMNS WITH SEMILINEAR
MODELS

This understanding of semilinear models leads to simple models for the de-
velopment of both ocular dominance columns [42] and orientation columns
[41] as follows (Fig. 2.4).

Monocular cells develop through a competition of left- and right-eye
inputs in a regime in which CP(l) is peaked at | = 0. The wavelength of
ocular dominance column alternation then is determined by the peak of
I(k).

2Subtractive renormalization [Eq. (2.3)] has no effect on the development of
8P, Multiplicative renormalization [Eq. (2.4)] lowers the growth rates of all modes
of both SP and S° by the factor 4(x), which depends only on S5. The result is
that, in order for S° to grow at all, its modes must have larger unconstrained
growth rates than those of S5; that is, the peak of the Fourier transform of CP
must be larger than that of CS. In practice, this condition is met only if there are
anticorrelations between S* and §?, that is, if C? is significantly negative. When
this condition is met, then the modes that dominate S° are just as described
above; they are not altered by the constraint term in Eq. (2.4). These and other
effects of renormalizing terms are discussed in detail in [43].



Kenneth D. Miller 67

Orientation-selective simple cells develop through a competition of ON-
center and OFF-center inputs in a regime in which CP(l) is peaked at
[ # 0. The mean wavelength of alternation of ON-center and OFF-center
subregions in the simple cells’ receptive fields is determined by the peak of
CP(l). This wavelength corresponds to a cell’s preferred spatial frequency
under stimulation by sinusoidal luminance gratings. In individual modes,
all cortical cells have the same preferred orientation, but their spatial phase
varies periodically with cortical position. The mixing of such modes of all
orientations leads to a periodic variation of preferred orientation across
cortex. The period with which preferred orientations change across cortex
is more complex to determine [41].

This model of ocular dominance column formation is similar to that of
von der Malsburg [59]. The latter model assumed anticorrelation between
the two eyes; this was required due to the use of multiplicative renormaliza-
tion [Eq. (2.4)]. With subtractive renormalization [Eq. (2.4)], ocular domi-
nance column formation can occur even with partial correlation of the two
eyes [43). The model can be compared to experiment, particularly through
the prediction of the relation between intracortical connectivity and ocular
dominance column width.

The model of orientation-selective cell development is quite different
from that of von der Malsburg [57]. Von der Malsburg postulated that
oriented input patterns lead to the development of orientation-selective
cells. The ON/OFF model instead postulates that ON/OFF competition
results in oriented receptive fields in the absence of oriented input patterns;
the circular symmetry of the input patterns is spontaneously broken. This
symmetry-breaking potential of Hebbian development was first discovered
by Linsker [28]. In all of these models, the continuity and periodic alter-
nation of preferred orientation is due to the intracortical connectivity. The
ON/OFF model can be compared to experiment most simply by the mea-
surement of CP, to determine whether it has the predicted oscillation.

2.2.6 RELATED SEMILINEAR MODELS

Linsker [27, 28, 29] proposed a model that was highly influential in two
respects. First, he pointed out the potential of Hebbian rules to sponta-
neously break symmetry, yielding orientation-selective cells given approxi-
mately circularly symmetric input patterns. Second, he demonstrated that
Hebbian rules could lead to segregation within receptive fields, so that a cell
came to receive purely excitatory or purely inhibitory input in alternating
subregions of the receptive field. This model was thoroughly analyzed in
[34, 35].

Linsker used a semilinear model with a single input type that could
have positive or negative synaptic strengths (Smin = —Smax). He largely
restricted study to the case of a single postsynaptic cell. Because the equa-
tion for a single input type and a single postsynaptic cell [Eq. (2.5), with
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I(z — y) = 6(z — y)] is circularly symmetric,® its eigenfunctions also are
eigenfunctions of the rotation operator. Thus, the eigenfunctions can be
written in polar coordinates (r, 8) as cos(nf) f;(r) and sin(n6) fn;(r), where
fnj(r) is a radial function and n and j are integers indexing the eigenfunc-
tions. In quantum mechanics, atomic orbitals are named Nx, where N is
a number representing one plus the total number of angular and radial
nodes, and x is a letter denoting the number of angular nodes (s,p,d,f,g,...
corresponding to n=0,1,2,3,4,... angular nodes). Thus, 1s is a function with
zero nodes, 2s has one node that is radial, 2p has one node that is angu-
lar, 3p has two nodes (one radial, one angular), etc. This naming scheme
can be applied to any rotationally symmetric system, and in particular can
be applied to the eigenfunctions of Linsker’s system [34, 35], a fact which
physicists have found amusing. The nature of these eigenfunctions, their
dependence on parameters, and their role in determining the outcomes
Linsker observed in simulations are described in [34, 35].

For our present purposes, the essential results of this analysis are as
follows. Two factors underlay Linsker’s results. One factor was that oscil-
lations in a correlation function can induce oscillations in a receptive field,
as was described above. The other factor was a constraint in the model
fixing the percentage of positive or negative synapses received by a cell;
this forced an alternation of positive and negative subregions even when
the correlation function did not oscillate. These two causes were not disen-
tangled in Linsker’s simulations, but only the first appears likely to be of
biological relevance.

Tanaka [45, 56] has independently formulated models of ocular domi-
nance and orientation columns that are similar to those described in Sec.
2.2.5. The major difference is that he works in a regime in which each cor-
tical cell comes to receive only a single LGN input. Tanaka defines cortical
receptive fields as the convolution of the input arrangement with the in-
tracortical interaction function. This means that a cortical cell’s receptive
field is due to its single input from the LGN plus its input from all other
cortical cells within reach of the intracortical interaction function. Thus,
orientation selectivity in this model arises from the breaking of circular
symmetry in the pattern of inputs to different cortical cells, rather than to
individual cortical cells.

2.3 The Problem of Map Structure

The above models account well for the basic features of the primary visual
cortex. However, many details of real cortical maps are not replicated by

3The assumption is made that the arbor and correlation functions depend
only on distance.
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these models [9, 12, 63]. One reason may be the simplicity of the model
of the cortex: the real cortex is three-dimensional rather than two; it has
cell-specific connectivity rather than connectivity that depends only on dis-
tance; and it has plastic rather than fixed intracortical connections. Another
reason is that the details of the map structure inherently involve nonlinear-
ities, by which the fastest growing modes interact and compete; whereas
the semilinear framework only focuses on early pattern formation, in which
the fastest growing modes emerge and mix randomly without interacting.

Some simple models that focus on map development rather than re-
ceptive field development strikingly match the map structures observed
in monkeys [9]. One such model [46] uses the self-organizing feature map
(SOFM) of Kohonen [24, 48], in which only a single cluster of cortical cells
is activated in response to a given input pattern. This is an abstraction of
the idea that the cortex responds in localized activity clusters. The single
activated cluster is centered on the cell whose weight vector best matches
the direction of the input activation vector. Hebbian learning then takes
place on the activated cells, bringing their weight vector closer to the input
activation vector. The size of an activity cluster is gradually decreased as
the mapping develops; this is akin to annealing, helping to ensure a final
mapping that is optimal on both coarse and fine scales.

Except for the restriction to a single activity cluster and the gradual
decrease in cluster size, the SOFM is much like the correlation-based mod-
els. However, an abstract representation of the input is generally used. In
correlation-based models, the input space may have thousands of dimen-
sions, one for each input cell. In the SOFM model of the visual cortex,
the input space instead has five dimensions: two represent retinotopic posi-
tion, and one represents each of ocular dominance, orientation selectivity,
and preferred orientation. Each cortical cell receives five “synapses,” cor-
responding to these five “inputs.” Assumptions are made as to the relative
“size” of, or variance of the input ensemble along, each dimension. There
is no obvious biological interpretation for this comparison between dimen-
sions. Under the assumptions that the ocular dominance and orientation
dimensions are “short” compared to the retinotopic dimensions, and that
only one input point is activated at a time, Hebbian learning can lead to
maps of orientation and ocular dominance that are, in detail, remarkably
like those seen in macaque monkeys [9, 46].

The SOFM, and other models based on the “elastic net” algorithm {8, 13],
lead to locally continuous mappings in which a constant distance across the
cortex corresponds to a roughly constant distance in the reduced “input
space.” This means that, when one input feature is changing rapidly across
the cortex, the others are changing slowly. Thus, the models predict that
orientation changes rapidly where ocular dominance changes slowly, and
vice versa. It may be this feature that is key to replicating the details
of macaque orientation and ocular dominance maps. A model that forces
such a relationship to develop between ocular dominance and orientation,
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while assuring periodic representations of each, also gives a good match to
primate visual maps [55].

The SOFM also replicates aspects of the retinotopic maps seen in higher
areas of the cat visual cortex [62]. For these studies, the input and output
spaces are each taken to be two-dimensional, representing retinotopic posi-
tions. The input space is taken to be a half-circle, representing a hemiretina,
and the shape of the output space is varied. When this shape is long and
narrow, as in cat cortical areas 18 and 19, the retinotopic map developed by
the SOFM has a characteristic pattern of discontinuities closely resembling
those observed experimentally in those areas [62]. The SOFM achieves maps
in which nearby points in the output space correspond to nearby points in
the input space, while each area of the input space receives approximately
equal representation provided each is equally activated ([48]; see further
discussion of the SOFM below). The success of the SOFM models of retino-
topic maps suggests that these are constraints that should be satisfied by
any model of cortical maps. One would like to determine more precisely
the constraints on a retinotopic mapping, embodied by the SOFM, that
are sufficient to replicate these results.

It recently has been reported that input correlations can alter the spacing
of ocular dominance columns in the cat visual cortex by perhaps 20-30%
[32]. A smaller ocular dominance column spacing develops when the activi-
ties of the two eyes are correlated by normal vision than when the two eyes’
activities are decorrelated (decorrelation is achieved by inducing divergent
strabismus, which causes the two eyes to see different parts of the visual
world). This effect was anticipated theoretically by Goodhill [12], who ar-
gued essentially that correlation of the activities of the two eyes brings
them “closer together,” and so the two eyes should be brought closer to-
gether in their cortical representation by a reduction of the column size.
This effect also could have been anticipated by the SOFM models of oc-
ular dominance, because decorrelation corresponds to an increase in the
variance of ocular dominance and thus an increase in the “size” of the oc-
ular dominance dimension, which results in increased column size [48]. In
semilinear models, in contrast, the column width does not appear to be
significantly affected by between-eye correlations. Rather, as the degree of
between-eye correlation is increased, more binocular cells form at the col-
umn borders, until at some critical level of correlation ocular dominance
segregation no longer occurs (unpublished results). That is, the two eyes are
brought “closer together” through alteration of the receptive fields rather
than through alteration of the map. One can anticipate several biological
mechanisms that might be added to instead yield a reduction in the column
size, such as nonlinearities that discourage formation of binocular cells, or
nonlinearities in cortical activation that cause the size of activity clusters
to depend on the correlations of the inputs.

Finally, it recently has been noted that cat orientation maps are signifi-
cantly smoother than could be achieved by simple linear considerations [63].
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The analysis in [63] suggests that these maps could result, mathematically,
from a local “diffusion” of preferred orientations. It will be interesting to
develop a biologically interpretable model of such a process.

2.4 The Computational Significance of
Correlation-Based Rules

2.4.1 EFFICIENT REPRESENTATION OF INFORMATION

A simple correlation-based rule for a single postsynaptic cell can, if prop-
erly designed, lead to the development of a receptive field that corresponds
to the principal component of the input data (that is, to the principal
eigenvector of the covariance matrix of the inputs to the cell) [30, 43, 47].
This receptive field in turn maximizes the variance of the postsynaptic
cell’s activity, given the ensemble of input patterns. It has been argued
that correlation-based rules thus maximize the information carried in the
postsynaptic cell’s activity about the input patterns [30]. Intuitively, by
varying as much as possible in its response to different inputs, the post-
synaptic cell draws the greatest possible distinction between the different
input patterns.

More generally, a number of closely related (and in many circumstances
identical) computational functions have been proposed for brain areas near
the sensory periphery. These include maximization of information about
the inputs [30}, minimization of redundancy or correlation in the activities
of output cells [3], statistical independence of the output activities [3], or
encoding of the input information as compactly as possible (for example,
requiring as little dynamic range as possible per neuron) [2]. These func-
tions all involve representing the input information in an efficient way, in
the sense of information theory. These measures of efficiency take into ac-
count the statistics of the input ensemble but disregard the “semantics,”
the meaning or survival value to the animal, of the inputs.

The interpretation that the function of a correlation-based rule is to
yield such an efficient representation is inviting, but it carries two ma-
jor problems. First, the principal component representation achieved by
correlation-based rules is optimally efficient only for a Gaussian distribu-
tion of input patterns, or, in other words, it reflects only the second-order
or two-point statistics (the covariance) of the input data. It is possible
that a great deal of information may reside in higher order statistics, but
a correlation-based rule as conceived above will ignore this information.
Intrator has suggested that a variant of standard Hebbian rules can in-
stead maximize a third-order statistic of the output activity, and argues
that this may be a better statistic for distinguishing among the elements
of real-world ensembles [22, 23]. While one statistic or the other may be
best for characterizing a given set of data, both approaches can suffer from
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the limitation that they are maximizing one particular statistic rather than
maximizing some measure of efficiency.

Second, this interpretation applies only to a single, isolated postsynaptic
cell. Multiple cells viewing the same input ensemble will extract the same
information from it under a given correlation-based rule. This does not
add new information about the input, but only redundantly repeats the
same information. Thus, although a single cell may have a receptive field
that maximizes the information it could carry about the input ensemble,
a group of such cells generally will not improve much on the performance
of a single cell and will not carry the maximal possible information about
the input ensemble.*

One way out of this dilemma is to introduce couplings between the post-
synaptic cells that force them to learn independent parts of the input
ensemble. Unfortunately, excitatory couplings tend to produce correlated
cells, while inhibitory couplings produce anticorrelated cells. The ostensi-
ble goal, however, is to produce uncorrelated cells, cells whose activities
carry independent information about the input ensemble. Thus, biological
couplings will not work. A theoretical way out involves using connections
between the postsynaptic cells that are modified by anti-Hebbian rules: If
two cells have correlated activities, the connection between them becomes
more negative; if two cells have anticorrelated activity, the connection be-
tween them becomes more positive. The result is that the cells become
uncorrelated. Many authors have independently proposed rules that in-
volve such anti-Hebbian learning on lateral connections (e.g., (10, 31, 49])
or related ideas [50]. However, no biological sign of anti-Hebbian synaptic
modification thus far has been observed.

An alternative way out of this dilemna stems from the observation that
biological receptive fields are localized. Thus, nearby cells see overlapping
but not identical sets of inputs. Consider two extreme cases. First, when
each input cell is connected to a single output cell, receptive fields are com-
pletely localized. In the limit of low noise, the output layer replicates the
activity of the input layer, so all information is preserved. However, when
noise is significant, some information is lost by this identity mapping, and
alternative connectivity schemes may yield greater information about the
inputs. Second, when there is global connectivity, so that all input cells are
connected to all output cells, receptive fields are completely delocalized.
Under a correlation-based rule, each output cell learns the same recep-
tive field. Then, in the low-noise limit, most information is being thrown

4For simplicity, in this discussion we will ignore noise. Depending on the
signal-to-noise ratio, one will wish to strike a particular balance between variety
(carrying more independent components of the input ensemble) and redundancy
(e.g., see (2, 30]). However, except in the extreme case of high noise, where com-
plete redundancy is called for, multiple components always will be needed to
maximize the information, given multiple output cells.
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away — only one dimension of the input pattern is being distinguished.
However, suppose that this dimension is the most informative dimension
about the input ensemble. Then, in the high-noise limit, this redundant
representation of the most information-rich dimension will maximize the
information carried about the input ensemble.

Thus, given a correlation-based learning rule, a completely localized rep-
resentation can maximize information in the low-noise limit, while a com-
pletely delocalized representation can maximize information in the high-
noise limit. Intermediate levels of localization should be appropriate for
intermediate signal-to-noise ratios (this has recently been demonstrated
quantitatively [21]). It seems likely that biology, rather than designing an
anti-Hebbian learning rule, has used its own correlation-based rules and
has made use of its natural tendency to form partially localized receptive
fields in order to ensure efficiency of representation.

2.4.2 SELF-ORGANIZING MAPS AND
ASSOCIATIVE MEMORIES

The above ideas about efficiency consider only the summed information
in the responses of the postsynaptic cells, without regard for location
or connectivity. Alternative ideas about the computational significance of
correlation-based rules focus on the spatial arrangement of postsynaptic
response features and the connectivity between the postsynaptic cells.

One such set of ideas stem from the study of the self-organizing feature
map (SOFM) of Kohonen (24, 48] and of related dimension-reducing map-
pings [8]. As was previously described, the SOFM corresponds to a Hebbian
rule with a nonlinear lateral intracortical interaction, such that each input
pattern leads to a single, localized cluster of cortical activity. The SOFM
and related algorithms lead to a mapping that matches the topology and
geometry of the output space to that of the input space, despite a possible
dimensional and/or shape mismatch between the two (8, 24, 48]. That is,
nearby points in the output space correspond via the mapping to nearby
points in the input space, and input patterns that occur more often develop
a larger representation than those that occur less often.

A number of possible functions have been assigned to such mappings.
One is the minimization of wiring length, assuming that cortical points
representing “nearby” input patterns need to be connected to one another
[8]. Another is to represent the input data in a compressed form while
minimizing reconstruction error (33, 48]. A specific form of the latter idea
is as follows. Suppose that there is noise in the output layer that is distance-
dependent, so that the probability of a response being centered at a given
output point falls off with its distance from the point that is “correct” for
that input. Suppose also that there is a metric on the input space, and
that the error in mistaking one input pattern for another is assigned as the
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distance between the two patterns. Then the SOFM can be interpreted,
approximately, as achieving the input—output mapping that minimizes the
average error in reconstructing the input pattern from the output responses
[33].

The major problem in applying these ideas to biology is the difficulty
in assigning biological meaning to the topology and geometry of the non-
retinotopic dimensions of the input space. Given an ensemble of visual
input patterns on the retina, for example, how large is the corresponding
ocular dominance or orientation dimension relative to the retinotopic di-
mensions? Without a clear prescription for answering this question, it is
difficult to make biological predictions from these ideas. Nonetheless, the
computational functions of self-organizing maps, their close connection to
correlation-based models, and their ability to replicate many features of
cortical maps are intriguing.

Another well-known set of ideas concerns the role of correlation-based
rules in establishing an associative memory. Suppose one wishes to learn a
set of N input-output pairs, (u®, v®), where u® and v* are the ath input
and output vectors, respectively. Let v® = Mu® for some synaptic matrix
M. If the input patterns are orthonormal, u® - u® = §,5, then the input—
output association is achieved by setting M = Y~ _v®(u®)T (e.g., [24]). This
relation will be learned by a Hebbian rule, (d/dt)M;; = —M;; /N + viu;,
provided there is a “teacher” to clamp the output to v* whenever u? is
presented. A fully connected network with activity states v similarly will
develop the activity states, or “memories,” v?%, as stable attracting states
if the connection matrix between the cells is determined by the Hebbian
prescription M = > v3(v®)T (e.g., [18, 19]). Again, to learn a specific
set of memories, a “teacher” is required to clamp the network into the
appropriate activity states during learning. Given simple nonlinearities in
neuronal activation, the stored memories need not be orthogonal to one
another, provided the memories are randomly chosen (uncorrelated) and
their number is sufficiently small relative to the number of cells (e.g., [17]).
It is of biological interest to explore how associative properties can develop
through correlation-based rules in the absence of a teacher as well as in the
presence of correlated input patterns (for which, see [17]).

2.5 Open Questions

This brief review can only point to a small sample of the rich literature on
this topic. Among the many open questions in the field are: How can bio-
logically interpretable models replicate the details of cortical maps? Might
orientation selectivity arise from early oriented wave patterns of retinal ac-
tivity [38, 64] or other mechanisms, rather than through ON/OFF competi-
tion? Might the initial development of orientation selectivity occur through
the patterning of intracortical connections, rather than through the pat-



Kenneth D. Miller 75

terning of LGN connections to the cortex?® How might intracortical plas-
ticity affect receptive field and map development [53]? How might input
correlations affect column size {12]7 How will development be altered by
the incorporation of more realistic cortical connectivity, and more realistic,
nonlinear learning rules? For example, might input correlations help de-
termine the self-organization of plastic intracortical connections or the size
of nonlinearly determined cortical activity clusters, each of which in turn
would shape the pattern of input synapses including column size? How can
we characterize the computational function of the correlation-based rules
used biologically? These and other questions are likely to be answered in
the coming years.
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occur sufficiently early that their order remains unclear.
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Associative Data Storage and
Retrieval in Neural Networks

Giinther Palm! and Friedrich T. Sommer?

with 9 figures

Synopsis. Associative storage and retrieval of binary random patterns in
various neural net models with one-step threshold-detection retrieval and
local learning rules are the subject of this chapter. For different heteroas-
sociation and autoassociation memory tasks specified by the properties of
the pattern sets to be stored and upper bounds on the retrieval errors, we
compare the performance of various models of finite as well as asymptoti-
cally infinite sizes. In infinite models, we consider the case of asymptotically
sparse patterns, where the mean activity in a pattern vanishes, and study
two asymptotic fidelity requirements: constant error probabilities and van-
ishing error probabilities. A signal-to-noise ratio analysis is carried out for
one retrieval step where the calculations are comparatively straightforward
and easy. As performance measures we propose and evaluate information
capacities in bits/synapse which also take into account the important prop-
erty of fault tolerance. For autoassociation we compare one-step and fixed-
point retrieval that is analyzed in the literature by methods of statistical
mechanics.

3.1 Introduction and Overview

With growing experimental insight into the anatomy of the nervous sys-
tem as well as the first electrophysiological recordings of nerve cells in the
first half of this century, a new theoretical field was opened, namely, the
modeling of the experimental findings at one or a few nerve cells, leading
to very detailed models of biological neurons [1]. But, different from most
biological phenomena, where the macroscopic function can be understood
by revealing the cellular mechanism, the function of the nervous system as
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a whole turned out to be constituted by the collective behavior of a very
large number of nerve cells, and the activity of a large fraction of cells, a
whole activity pattern, had to be considered instead.

The modeling had to drop the biological faithfulness at two points: on
the cellular level, the models had to be simplified such that a large number
of nerve cells could be described; and on the macroscopic level, the function
had to be reduced to simple activity pattern processing like pattern com-
pletion, pattern recognition, or pattern classification, allowing a theoretical
description and quantification.

McCulloch and Pitts [2] argued that, due to the all-or-none character
of nervous activity, the neurophysiological findings can be reproduced in
models with simple two-state neurons, in particular, in associative memory
models which exhibit binary activity patterns.

In the 1950s and 1960s small feedforward neural nets were suggested
for simple control tasks, among them the associative memory (3], [4] and
the simple perceptron [5]. All of these models employ one-step retrieval,
which means that in one parallel update step the initial or input pattern is
transformed to the output pattern. Such models which contain no feedback
loops will be the main subject of this chapter.

Little, who introduced the Ising-spin analogy of the neural states® [6],
opened the door to analyzing the feedback retrieval process in neural nets
with methods of statistical mechanics. The analysis that was developed
during the 1970s [7] for lattices of coupled spins with randomly distributed
interactions to describe spin glasses could be applied successfully to fized-
point retrieval in an associative memory [8].4 In fixed-point retrieval, the
retrieval process is iterated until a stable state is reached. This method has
been described in several recent books, e.g., van Hemmen and Kiihn [9],
Amit [10], and Hertz, Krogh, and Palmer [11].

This chapter takes as its starting point a larger class of simple processing
tasks: the association between members of binary pattern sets. Depending
on the properties of the randomly generated pattern sets, we will charac-
terize different memory tasks (Sec. 3.1) and concentrate on the question of
how a neural model has to be designed to yield optimal performance.

We consider feedforward neural associative memory models with one-step
retrieval (Sec. 3.2). To keep our model as variable as possible, Ising-spin
symmetry of the neural states is not assumed, and arbitrary local learning

3The two states of a binary neuron are identified with up and down states
of a spin particle in the Ising model; the synaptic couplings correspond to the
spin—spin interactions.

4Pattern completion with fixed-point retrieval in a neural net can be treated
like relaxation in a solid, once the storage process has determined the dynamics.
The macroscopic observables of the system (corresponding to specific heat, con-
ductivity, or magnetization in solids) are then the overlaps to stored patterns or,
equivalently, the recall errors.
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rules are admitted to form the synaptic connections. One-step retrieval can
be analyzed by elementary probability theory, and it is compatible with a
larger class of memory tasks, not only pattern completion. On the other
hand, as we will discuss, in cases of pattern completion, a feedback re-
trieval model is preferable. Section 3.3 contains the detailed signal-to-noise
ratio analysis, where we have included most of the calculations because the
intention of this work is to provide not only results, but also the methods.

Another important question concerns the judgement of the perfor-
mance of different memory models. Unfortunately, in the literature, many
different measures are used. Instead of staying with the mean retriev-
al errors obtained from the analysis, we apply elementary information
theory to the memory process, leading us to the definition of information
capacities, which allow us to compare models with different memory tasks
(Sec. 3.4).

In Sec. 3.5 we evaluate these performance measures for the various mod-
els. The last section resumes the previous sections and points out the re-
lations to the literature. It compares one-step and fixed-point retrieval,
taking advantage of the works based on methods of statistical mechanics.
The results of the different approaches, which seem to be quite incoherent
at first sight, turn out to be not only comparable but also consistent.

3.1.1 MEMORY AND REPRESENTATION

A memory process often can be considered as a mapping from one set of
events into another set of events; as a trivial example, one may think of the
problem as how to establish a phone line to a friend. To solve the problem,
one has to map the friend’s name to his phone number. For the construction
of a memory device like a phonebook, which helps you with this problem,
one first has to map or to code the events “the friend’s name” and “his
phone number” into symbols, in this case strings of letters and numbers,
which can be written and read by a user. This mapping will be called the
representation of the events. The memory device has to store these pairs
of strings in some way. It can solve the problem if the representation maps
the events into unique data strings. Thus, a given set of patterns specifies
the memory task that a memory device has to solve.

Without loss of generality, we focus on binary patterns as data strings.
A binary pattern is a string containing only two types of elements, for
instance, “B” and “W” (for black and white pixels). We restrict ourselves
to such pattern sets where every member has approximately the same ratio
p between the number of “B” and “W” digits. We call a pattern distributed
if both fractions of pixels have more than one member. Throughout this
chapter we distinguish between three different patterns types:

1. A singular pattern with m digits has only a single “B” digit and m —1
“W” digits. A singular pattern is, by definition, not distributed.
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2. A sparse pattern is distributed, but the ratio p between the number of
“B” and “W” digits satisfies p < 0.5. In the infinite model m — oo,
we will consider the sparse limit p — 0 with mp — oo, which leads
to nontrivial distributed patterns.

3. In a nonsparse pattern, the fraction p between the number of “B” and
“W” digits has to be away from 0. In the infinite model, p = const
as m — oo.

3.1.2 RETRIEVAL FROM THE MEMORY

The memory device has to store a set of patterns in such a way that a
desired pattern can be selectively recalled at the output port. In memory
retrieval a desired output pattern is selected by applying a pattern at the
input port of the device. We denote the set of output patterns as the
content patterns S€. An input pattern that selects a content pattern is
called its address pattern, or simply its address. The set of address patterns
is denoted by S4. Thus, in the retrieval, the memory device has to map
from an address pattern to its corresponding content pattern. This map is
defined by the set of pairs consisting of address and content patterns:

{(ml,yl)a ) (xM)yM) : ¥ € SA,yk € SC} .

3.1.3 FAULT TOLERANCE IN ADDRESSING

Between two patterns z and £, the number of different bits h(z,£) de-
fines a natural distance relation called the Hamming distance. Via this dis-
tance a whole set of input patterns may specify one desired content pattern
uniquely: all patterns £ with the property h(%, ) < h(%, z*) for all z* # z
and z,z* € SA. We call a memory retrieval fault-tolerant if it allows input
noise in the sense that many input patterns which have a unique closest
address are mapped on the content pattern belonging to this address.

For a set of singular address patterns, normally no £ ¢ S# has a unique
closest address and, therefore, fault tolerant retrieval is impossible. Thus,
fault-tolerant retrieval can only be expected if the address patterns are

distributed.

3.1.4 VARIOUS MEMORY TASKS

We call heteroassociation the general memory task where the set of address
patterns S# and the set of content patterns SC can be chosen arbitrarily.
The following special cases of heteroassociation will be considered:

o If the address patterns are singular patterns, the memory task is
called the look-up-table task. Then the singular pixel of an address
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pattern points into a table of content patterns like the usual access
in a look-up table.

¢ For singular content patterns, we identify each bit of the content pat-
tern with a class in the set of address patterns. This memory task
can be interpreted as pattern classification, which separates the set
of address patterns in disjunct classes. This task (with one-bit con-
tent patterns) has been executed by the classical simple perceptron
models; see [5].

o Autoassociation is the case of heteroassociation where the address
and content patterns are identical; therefore, it also may be denoted
as content addressability. Only for fault-tolerant retrieval does the
autoassociation task make sense; then, the memory performs pattern
completion from a distorted version #* as an input pattern to the
error-free content pattern z*; see also Forrest and Wallace in [9].

3.1.5 RETRIEVAL ERRORS

A memory that allows errors in the addressing perhaps also will recall
erroneously the wrong content pattern or put at least some errors in the
output.

In the retrieval of binary patterns there may occur two types of flip errors
in a digit of the output pattern §*: a “W” of the content pattern y* may be
turned into a “B”, and a “B” in the content pattern y* may be turned into
a “W”. Of course, with increasing addressing noise these errors also will
increase. But again via the distance relation it is possible that a memory
output containing errors in some digits still will specify the event coded
by the original content pattern. A given memory task together with the
sets S4 and SC will fix the maximal mean errors that can be tolerated in
the retrieval. These upper bounds, which have to be satisfied by the error
probabilities, will be called the fidelity requirement.

3.2 Neural Associative Memory Models

The typical ingredients of an artificial neural network model are a large
number of similar processor units called neurons, which obtain signals
through adjustable connections from a large number of input fibers and/or
other neurons. In this model the adjustable connections, the synapses, con-
nect an input port to each neuron (see Fig. 3.1).

The two different types of calculations in the model, the processing of
the neural input signal in the retrieval, on the one hand, and the synaptic
adjustment according to the data in the storage phase, on the other, are
separated in time in this model; we distinguish the storage process and the
retrieval process.
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Fig. 3.1. Schematic view of a neural associative memory: i — retrieval input
fibers, o — retrieval output fibers (axons), m — modifiable synaptic connection
between neuron and input fiber. The horizontal lines are wires that propagate
the input signals to the synapses. Each column represents one neuron. The larger
upper section where the synaptic connections access corresponds to the dendritic
tree, and the lower section the cell body. The arrow pointing below from the cell
body corresponds to the axon.
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To perform the calculations the pixel types “B” and “W” in the input
patterns have to be translated into signals that can propagate through
the network. Two different values, 1 and a € [—1,0], will be assigned to
the pixel types “B” and “W”, respectively. Each pattern is identified with
an n-vector z € {a,1}", and we will use synonymously the expressions
pattern and {a, 1}-vector. Of course, we are free to exchange “W” and “B”
in the assignment; the flip transformation F applied to all components in
the data will not change the memory problem. Here, F(z; = W) := B
and F(z; = B) := W. Therefore, we can always assign the value 1 to the
smaller pixel fraction so that

p=#{i:z;=1}/(n—#{i: 2z; =1}) <0.5.

Such models already have been proposed and analyzed many years ago,
e.g., Uttley [12], Steinbuch [3], Rosenblatt [5], Longuett-Higgins et al. {13],
Amari [14], Gardner-Medwin [15], and Kohonen [16].

3.2.1 RETRIEVAL PROCESS

In the retrieval phase an address pattern is applied to the input port of
the memory. The input signals are propagated via a synaptic connection
strength matrix M;; to all neurons. In one-step retrieval every neuron j
actualizes its state, the azonal activity §j;, according to this input, and the
vector § is the retrieval output pattern.

Each neuron has to form the dendritic potential d;, the sum over all its
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incoming activities,

dj =) Mijz;, (3.1)

i
and then to determine the new activity value in the neural update equation
¥; = f(d; - ©). (3.2)

The output signal of a biological neuron is a train of short electric pulses,
the neural spikes. It is the spike rate and not the amplitude or the duration
of a spike that grows with increasing dendritic potential. These properties
have been modeled in the so-called spike coding models; cf [17, 18, 19, 20].
Here we focus on rate coding models, where the neural transferfunction
f(z) describes only the spike rate. In almost all of these models, f(z) is a
monotonously increasing function and © is the threshold value, which can
be adjusted globally for all neurons in each retrieval step.

Models with linear transfer functions, as, for instance, those proposed
in Kohonen [16] or Anderson (21, 22, lead for large networks to quasi-
continuous~valued output patterns.

Binary output patterns are obtained if the neural transfer function is
a two-valued stepfunction: f(z) = 1 for z > 0, f(z) = a otherwise. The
neural state §j; = 1 is called firing or active, §; = 0 silent or passive. The
retrieval error probabilities for on errors and off errors, respectively, are
expressed by the conditioned probabilities

ey := Prob [g]f = aIy;-c =1], eq := Prob [ﬂ;’ = lly;c =a]. (3.3)

Such models have been treated in Willshaw et al. [4], Palm [23], and Nadal
and Toulouse [24]. In one-step retrieval the output pattern is evaluated
from the input pattern after one synchronious parallel calculation of all
neurons.

Step-shaped neural transfer functions also have been used in the spin-
glass literature on autoassociation, e.g., in (25, 8, 26, 27]. These works con-
sider an iterative retrieval procedure where, via a feedback loop, the signal
flow through the system is iterated until a stationary state, a fixed point,
is reached. Such fized-point retrieval has been considered for two different
ways of performing the iteration. In models with parallel update, the com-
plete one-step retrieval process is iterated in the manner that the output
is fed back as new input; see, for instance, [6, 15, 28, 29, 30, 31]. In models
with sequential random update, only one neuron, randomly selected, is up-
dated [Eq. (3.2)] in one iteration step, leading to the new input, which only
deviates in one component from the preceding one; see again [25, 8, 26, 27].
The improvement due to iterated retrieval for the pattern completion task
obtained in simulations can be observed in Fig. 3.9.
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3.2.2 STORAGE PROCESS

In this process, which is also called the learning process, the synaptic ma-
trix, or the storage medium, is formed from the set of patterns to be stored.

During the storage process, each pair (z!,3') of patterns to be learned is
applied at the in- and output ports of the memory. This provides pre- and
postsynaptic values for every synapse M;;.

Learning Rules

For a given pair (z,y) of pre- and postsynaptic activity values, the local
synaptic rule R(z,y) determines explicitly the amount of synaptic connec-
tivity change. For binary patterns, there are only four different constella-
tions possible for pre- and postsynaptic activities, viz., (a,a), (1;a), (a,1),
and (1,1). Thus, a synaptic rule is determined by four numbers:

R= (7‘1,7‘2,7‘3,7‘4). (34)

The following two famous local learning rules will be focused on in the
subsequent analysis:

e The Hebb rule, or asymmetrical coincidence rule, H := (0,0,0,1)
increases the synaptic matrix element for coinciding pre- and post-
synaptic firings only. In his neurophysiological postulate Hebb [32]
proposed this type of synaptic modification between pairs of firing
nervous cells.

e The agreement rule, or Hopfield rule or symmetrical coincidence rule,
A = (1,-1,-1,1) increases the synaptic matrix element for agreeing
pre- and postsynaptic states and decreases the synaptic weight for
disagreeing states. This rule was used in the original Hopfield model
[25].

The above rules are both product rules: R(z,y) = zy. For a = 0 we obtain
the Hebb rule, and for a = —1 the agreement rule, and, sometimes, for
instance in [33], both are considered as Hebbian learning. We retained the
distinction because in the original formulation of his postulate Hebb clearly
talks of the influence of synchronously firing neurons on their interconnect-
ing synapses. The psychologist Hebb claimed this postulate to be inspired
by physiological and psychological findings, while the symmetry between
firing and silence in the agreement rule is biologically very implausible.

Storage Procedures

We consider one-step learning, which means that, after one single presen-
tation of every pair, the formation of the synaptic matriz is finished. Two
different types of storage procedures will be examined:
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e The incremental storing procedure, where the synaptic matrix is given
by

M
M= (My;) =D R(zF, ). (3.5)

k=1

o The binary storage procedure, where the synaptic matrix M is ob-
tained from M by another highly nonlinear operation:

Mij = sgn(Mij) (3.6)
with sgn(0) := 0.

Storage procedures can be strictly local (as in most of the papers cited
here) or nonlocal (as, for example, in Personnaz et al. {34, 35]). Depending
on the sign of the average connectivity change, they can be productive,
destructive, or balancing for the total network connectivity (cf. {36, 37]).
Local storage procedures can make use of two (probably the majority),
three (supervised learning with additional teacher signal, e.g., Barto et al.
[38]), or more terms to compute a synaptic change (compare Palm [36]
again). In this chapter we concentrate on storage procedures employing
strictly local two-term learning rules.

The most common synaptic arrangement in biological neural nets as in
the cerebral cortex (and the hippocampus) is the simple dyadic synapse. It
connects just two neurons: the presynaptic and the postsynaptic; therefore,
there are just two natural, locally available activity signals: the presynaptic
and the postsynaptic.

3.2.3 DISTRIBUTED STORAGE

One reason for the big comeback of systems with neural architecture in
the last decade is the fact that, in computer science, distributed process-
ing turned out more and more to be an indispensable goal. How do the
simple memory models introduced in this section display the properties of
distributed storage?

For heteroassociation, local rules store second-order correlations between
address and content pattern activities; for instance, with the Hebb rule,
each pair of active neurons (zf,y%) affects one synapse M;;.

The storage is called distributed if the storage of one single pattern pair
causes nonlocal changes in the storage medium. More than one element
of the synaptic matrix is affected if at least one pattern in the pair is
nonsingular, that is, if either set of address or content patterns contains
nonsingular patterns.

Here we define distributed storage in a stricter sense: we require that
many matrix elements carry information about more than one pattern pair.
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In this sense distributed information storage for arbitrary local rules is pro-
vided only if both pattern sets, address and content patterns, contain non-
singular and overlapping patterns. Then, the storage of several pattern pairs
will affect the same synapses, so that each entry in the synaptic connectiv-
ity matrix M may contain the superposition of several memory traces; i.e.,
for most index pairs (i, §) the sum Y, R(z¥, yf) should have more than one
nonzero contribution. Like in holography, an accessible content segment (a
pattern pair) is written widely spread in the storage medium and different
content segments will overlap.

In the case of autoassociation, local rules store the second-order auto-
correlation of the pattern activity; with the Hebb rule, each pair of active
neurons in a learning pattern causes a change in one synapse. Distributed
storage requires the patterns to be nonsingular and overlapping.

3.3 Analysis of the Retrieval Process

The aim of the present section is the analysis of one-step retrieval in the
associative memory after learning, i.e., after the storage process has formed
the memory matrix for a given memory task (S4,5€). In Sec. 3.1.5 and
by Eq. (3.3) we have introduced the quantities of interest in the analysis of
this feedforward system, viz., the mean retrieval error probabilities in an
output pattern for a given input pattern.

We already mentioned in the introduction that different spatial scales
can be distinguished in the treatment of neural nets, the microscopic scale
of synapses and model neurons, and the macroscopic scale of the collective
behavior of all neurons. What we presume about the model is on the mi-
croscopic scale (neuron model, learning rules, etc.); what we would like to
know from a theory is on the macroscopic scale, the collective behavior of
the whole set of neurons (retrieval errors). In physics it is quite usual to
deal with separable scales, for instance, in thermodynamics the molecular
versus the macroscopic scale. Physical mean-field theories that originally
have been developed for spin glasses® yield asymptotic results for the re-
trieval errors® in the limit of infinite system size: m,n — oo, which often

5Spin glasses are magnetic solids with two different competing fractions of spin
couplings. One fraction favors parallel and the other antiparallel spin alignment,
which causes irregular (glasslike) stable spin configurations. The mean-field the-
ory provides values for the mean magnetization as macroscopic order parameters.

5The order parameters of a mean-field theory treating neural networks are the
M overlaps {m;,l = 1,..., M}, where each overlap m; counts the number of com-
mon pixels between the retrieval output and the content pattern y'. If we apply
a (distorted) address pattern Z* as an input pattern, particularly, one overlap is
important for the retrieval quality, namely, the overlap my corresponding to the
input pattern. The theory provides a mean value < my >, averaged over a large
number of retrieval events, which is equivalent to the retrieval error probabilities
in Sec. 3.5.
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is called the thermodynamic limit of fixed-point retrieval in the associative
memory after learning.

We will consider memory tasks with different mean ratios p between
the elements 1 and a in the pattern sets in the finite model and in the
thermodynamic limit, i.e., m — o0o. Curiously, memory tasks with sparse
patterns, as defined in Sec. 3.1.1., will turn out to yield optimal asymptotic
performance.

3.3.1 RANDOM PATTERN GENERATION

To apply probability theory for the estimation of mean retrieval error prob-
abilities, we have to assume the following properties of the memory data
and of the distortion of the input patterns.

Content and Address Patterns

In the memory tasks we assume the simplest model of the data to be stored,
namely, sets of randomly generated patterns. The value of each of the n
digits in a pattern ¥ € S is chosen independently with the probability
p := Prob[z¥ = 1]. A set of randomly generated patterns is fixed by three
parameters: the probability p, the dimensionality of a pattern n, and the
number of patterns M. We will use the following notation for address and
content patterns: S4 := S(p,m, M), S€ := S(g,n, M). For heteroassocia-
tion, the sets S* and S€ will be generated mutually independently.

Input Patterns

The signal detection problem will be treated in three different cases of
addressing:

1. A perfect address pattern as an input pattern z¥, with ny := #{i :
z¥ = 1} being the number of 1 components.

2. An ensemble of perfect input patterns, where now the number of ones
in the input pattern n; also becomes a random variable. It is a bino-
mially distributed variable and, for large m, the fraction n;/m will
be close to its expectation value p because of the strong law of large
numbers (39]. In the analysis, the average input activity u of the en-
semble will become an important quantity which, for large m, equals

g = [n1+ (m-mn1)al/m=p+(1-pa. 3.7

3. An ensemble of noisy input patterns S4, which is generated by a
second random generation process from the set of address patterns
S#4 used for learning. Here we concentrate on noisy input patterns,
where £* € $4 is a “part” of an address pattern z* in the following
sense: Prob [£¥ = 0|z% = 0] = 1 and Prob [2¥ = 1|zF = 1] =: p'. As
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for the faultless ensemble, we describe the input activity for large m
by the average input activity of the address ensemble

p=pp' + (1 -ppa. (3.8)

In the analysis that follows we will use the prime to indicate the
results for the noisy input ensemble.

3.3.2 SITE AVERAGING AND THRESHOLD SETTING

Depending on its dendritic potential [Eq. (3.1)] and the threshold value ©,
each neuron j “decides” in the update process [Eq. (3.2)] whether it should
be active or silent. This can be regarded as a signal detection problem on
the random variable d; that every neuron has to solve.

To find the probabilities for on and off errors in Eq. [3.3] we have to
consider the neurons separated in two fractions: the on-neurons, which
should be active in the original content pattern y*, and the off-neurons,
which should not be active. In our model, the threshold of each neuron is set
to the same value depending only on the total activity of the input pattern.
Therefore, it is sufficient to analyze the averaged dendritic potentials in
each of the fractions. We will use the notation d! =< d; >jefjyk=1) and
d* =< d; >¢ {jivk=a}' With the assumptions of the last subsection these
averaged quantities can be treated as random variables.

Of course, the synapses — randomly generated in the storage process
— are “quenched” in the retrieval so that dendritic potentials at different
on-sites or off-sites will behave differently. This suggests a memory model
where the threshold is adjusted separately for each neuron, which has been
treated in [49] and will be discussed in Sec. 3.6.3.

3.3.3 BINARY STORAGE PROCEDURE

For binary storage, the dendritic potential at neuron j is d; = Y TEM,;,
where the values of the binary Hebb matrix M are distributed on {0,1}.
The probability that a matrix element is 0 can be easily calculated:

po := Prob[M;; = 0] = (1 — pg)™. (3.9)
We discuss the three cases of addressing in Sec. 3.3.1 separately.

1. Given z* as an input pattern, the expectation E(d* —d?®) = n;(1—po)
is independent of the value a but the variance 0%(d;) is minimal
for a = 0. So, optimally we choose a = 0. Then we obtain for the
dendritic potential at an on-neuron d* = n;. Thus we maximally can
put © = n; to obtain e; = 0.
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The second error probability is determined from the dendritic po-
tential at an off neuron:

=Prob[d* > 6] =Prob | [] My=1f=
i€{izzf=1}

~ (1—pp)™

(3.10)

2. If we average over an ensemble of perfect patterns, where we adjust
the threshold individually for each input to © = n,, then the thresh-
old also becomes a random variable. Now consider the fixed threshold
setting © = Fn; for all input patterns. For this threshold choice we
simply have to insert the expectation of n; into Eq. (3.10):

eq = (1 —po)™P. (3.11)

This fixed threshold setting leads to e; (E©) > 0 because of patterns
with n; < En; and to e,(E©) < Ee,(0) because of the concavity of
the function e,(©). We will use Eq. (3.11) as approximation for the
retrieval error e, with the individual threshold adjustment.

3. Finally, for noisy addressing we obtain for the same fixed threshold
setting © = p'E(n;)
ey = (eq)? . (3.12)

Strictly speaking, the above calculation requires independence of
the entries M;;. Although this is not the case, it is shown Appendix
3.1 that at least for sparse address patterns with m2/3p — 0 the
entries Mij become asymptotically independent for large m.

3.3.4 INCREMENTAL STORAGE PROCEDURE

In incremental storage, the contribution of each pattern pair is simply
summed up in the synaptic weights; and we can divide the dendritic po-
tential into two parts: the signal part s, which is the partial sum coming
from the storage of the pattern pair (z*,y*), and the noise part N, the
remaining partial sum that contains no information about y" From Eqs.
(3.1) and (3.5) we obtain

d]' = N+s:= Zka‘l] = szkR(xny]
Z szR(x,, i)+ Zz"R(z ).

The dendritic potential and its signal part have to be regarded separately
at an on-neuron (y¥ = 1) and at an off-neuron (y;c =a):

81 = ZZE?R(IL‘?, l)v $a = foR(:L‘f, a)'
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We now assume that, for the noise parts, E(Ny) = E(N,) holds and that
it is the wvariance of the noise o(N), which determines the mean facility
to solve the neural detection problem. Inspired by engineering methods
we introduce the signal-to-noise ratio as a threshold setting independent
retrieval quality measure:

r = FE(s1 — 8,)/0(N). (3.13)

The motivation to do so is quite intuitive: the threshold detection problem
can be solved for many neurons for the same value © if E(s; — s,) is large
and o(N) is low.

The fidelity requirement that e, and e; should be small is equivalent to
the corresponding requirement that the signal-to-noise ratio r should be
large. How the retrieval errors are balanced between the two possible types
of retrieval errors is governed by the threshold setting. If both retrieval error
probabilities have to be below 0.5, the threshold has to satisfy Ed® < © <
Ed!', Ed® being the expectation of the dendritic potential at an off-site.
Thus we put © = Ed® + 90(N)r = Ed* — (1 — 9)o(N)r with 9 € [0.1].

For large m the noise term N can be considered as sum of a large number
of independent random variables and the central limit theorem holds. Then
we can estimate the error probabilities using a normal distribution and get

e1 = Probld' — © < 0] ~ G[~-E(d' — 8)/o(N)] = G[-(1-9)r] (3.14)
es = Prob[d® — 6 > 0] ~ G[-Vr] (3.15)

with the normal or Gaussian distribution G[z] := (1/v2m) [%_ e~ 2dg.

To obtain explicit values for the error probabilities we now have to ana-
lyze the signal and noise term in Eq. (3.13) for the different ensembles of
input patterns and different learning rules (Sec. 3.2).

For input ensembles we are interested in the mean retrieval errors where,
for every input, the threshold has been set in the optimal way according
to the number of active input digits n;. We insert the signal-to noise ra-
tio averaged over an input ensemble into Eq. (3.14) and consider a fixed
threshold setting that is equal for all input patterns. For binary storage,
we take this result as an approximation for the individual threshold adjust-
ment, which is equivalent to an exchange of the expectations of the pattern
average and the input average in the calculation.

Signal-to-Noise Calculation
Again we discern the three cases of addressing described in Sec. 3.3.1.

1. For the faultless address z* as input the signal is sharply determined
as
81 — 8q = ny(ry —r3) — (M —ny)a(rs — r1).
The noise decouples into a sum of (M — 1) independent contribu-
tions corresponding to the storage of the pattern pairs (z!,y') with
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1 # k. For every pair the input z* generates a sum of n; random vari-
ables R(z,y) and of (m — n;) random variables aR(z,y) at a neuron
j. The variable R(z,y) = R(z!,y}) is the four-valued discrete ran-
dom variable [Eq. (3.4)] with the distribution (1 —p)(1 —gq),p(1 —q),
(1 - p)g, pg.

With E(R) and 0?(R) denoting expectation and variance of R(z,y),
a simple [but for 02(N) tedious] calculation yields

E(N) = (M - 1)[n1 + (m — n1)a]E(R) (3.16)
a?(N) = (M - 1){Q10*(R) + Q2Cov[R; Ry}, (3.17)
where we have used the abrevations
Q1 = ny + (m—ny)a?
Q2 := ni(n1 —1) +2an;(m —ny) + a*(m —ny)(m —ny — 1)
Cov[R:Rn] = (1 - q)[p(re —73) + (1 = p)(r2 — 1))

The covariance term Cov[R;R4] := Cov[R(z}, y})R(z},y})] measures
the dependency between two contributions in the ith and hth places
of the column j on the synaptic matrix.

2. If we average over the ensemble of perfect input patterns, we can
use again for large m the approximations ni/m ~ (n; — 1)/m =~
(n1+1)/m ~pand (M —1)/m ~ M/m and obtain

E(s1 — 85) = mfp(ra —rs) — (1 = p)a(re —m1)]  (3.18)
E(N) = (M - 1)muE(R)
In Eq. (3.17) we have to insert
Q1 =mlp+ (1 -p)a?, Qz = m2pl. (3.19)

3. Finally, we consider the ensemble of noisy address patterns. In this
case,

E(s} — s5) = m[p(p’ + (1 - p')a)(rs —r3) = (1 = p)afrz —1)]. (3.20)
In the description of the noise we only to replace p by pp’ and u by
¢’ in (3.18) and (3.19).
Signal-to-Noise Ratios for Explicit Learning Rules

Regarding Eqgs. (3.17) and (3.18), we observe that the signal-to-noise ratio
is the same for the rules R and bR + ¢, where ¢ is an arbitrary number and
b is a positive number. Two rules that differ only in this way will be called
essentially identical. Thus we may denote any rule R as

R= (0,1"2,1‘3,7‘4). (321)
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The following formulas are written more concisely if we introduce instead
of r9,r3, r4 the mutually dependent parameters

Yi=Tyg— T3 — T2, K:=T2+9D, n:=r3+17q.
In this notation, the variance of the rule becomes

*(R): = E(R?) - (E(R))*

= n%p(1 - p) + k%q(1 — q) + ¥*p(1 - p)g(1 — q).

it

In the description of the input ensemble we transform from the parameters
p,a to the quantities p, s, see Eq. (3.7).

The signal-to-noise ratio averaged over perfect address patterns (2) is
then obtained from Eq. (3.13) as

2 _ (s + (1 = p)p)?
= ) - PP (R) + e — g %)

Averaged over noisy address patterns (c) we obtain equivalently

2 _ [k + (1= wpp']?
T = O W = T = )l (B) + ma(l — iR (325

with the definition for u’ taken from Eq. (3.8).

Optimal Learning Rule

The expression (3.22) invites optimization of the signal-to-noise ratio in
terms of the three parameters <, k, and 7 so as to yield the optimal learning

rule Ry.

The parameter 1 appears only in ¢2(R) in the denominator. We first
minimize 02(R) with n = 0 and obtain

2 (Ln_) [us + (1 = wpy]?
M/ q(1 - g){[p+ (u—p)?/(1 - p)][s? + v2p(1 — p)] + mp2x?}’

(3.24)

The (large) factor m in the second term of the denominator in Eq. (3.24)
makes this term dominating unless at least one of the other factors x or u

vanishes.
At first sight we have two distinct cases that differ with respect to the
average activity p of the input patterns:

1. Either u stays away from 0, and then it is optimal to choose k = 0
(case 1);
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2. or p — 0 fast enough to make the second term negligible in the sum
of the denominator in Eq. (3.24) (case 2). However, if we insert u =0
in Eq. (3.24), again « = 0 turns out to be the optimal choice.

Thus, both cases leave us with x = 0 and 5 = 0 and yield the covariance
rule as general optimal rule:

Ro = (pq, —p(1 — ¢), —q(1 — p), 1 = p)(1 — q)). (3.25)

The condition u = 0 will occur several times in the sequel, and will
be referred to as the condition of zero-average input activity. In partic-
ular, for p = 0.5 it implies @ = —1, and for p — 0 this implies a — 0.
This condition, which is equivalent to a = —p/(1—p) or to p = —a/(1-a),
fixes the optimal combination between input activity and the model para-
meter a.

For arbitrary p and a in the input patterns, and for arbitrary pu, the
optimal signal-to noise ratio is evaluated by inserting Ry into Eq. (3.24),

_ (1—-u)p
o= /M) A=

Transforming back from pu to a, we obtain

p(1 —p)(1 - a)?
+(1-pla?lg(l-gq) (8.27)

Insertion of the zero-average input condition u = 0 into Eq. (3.26) yields
the optimal signal-to-noise ratio,

g = (m/M)[p

2 m
Ty~ ———. 3.28
°7 Mq(1-9) (3:28)
Optimizing the signal-to-noise ratio for noisy addresses 3, Eq. (3.23) leads
to the same optimal rule [Eq. (3.25)]. Then the signal-to-noise ratio value
for perfect addressing is reduced from the noise in the input patterns. For
the optimal rule Ry with u = 0, it is given by

2 (1- Z’)Pl2 2
s e Ay 3.29
To p/ _ zpp/ + pro ( )

For learning rules with x # 0, which have a nonzero covariance term
only, = 0 can suppress the m? term in the variance of the noise. There-
fore, kK # 0 and p # 0 lead to vanishing r as m — oo. A little algebra
shows that learning rules with u # 0 and finite v also yield a vanishing
r. In conclusion, all suboptimal rules need x = 0 to achieve a nonvanish-
ing r.
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Table 3.1. Squared signal-to-noise ratios r%(m, M, p, q) for u = 0.

Optimal Rule Ry | Hebb Rule H Agreement Rule C

P2 = m m(1 — p) 8mp(1 — p)
Mq(1~gq) Mq(1-pq) | Mlp(1-gq)+(1~p)q

Hebb and Agreement Rule

If we compare the Hebb rule and the agreement rule to the optimal learn-
ing rule Ry, we realize that, in general, both rules are suboptimal. But
nevertheless, for p = ¢ = 0.5 the optimal rule becomes equal to the agree-
ment rule, Ry = (0.25, —0.25, —0.25,0.25), and for p,q — 0 the Hebb rule
is approximated by the optimal rule, Ry — H.

By Eq. (3.22) one can compute the signal-to-noise ratio for these rules,
the results of which for u = 0 may be found in Table 3.1.

As expected, the Hebb rule becomes essentially identical to Ry for p,q —
0. In the a = 0 model, where the parameter a is not adjusted to guarantee
p = 0, we need a stricter sparseness in the address patterns, mp? — 0, to
provide p — 0 fast enough to preserve the essential identity between H
and Rjg.

By comparing the r2-values corresponding to the different rules in Table
3.1, we will derive the performance analysis of the Hebb and agreement
rules (see Secs. 3.5.2 and 3.5.4) from the analysis of Ry carried out in this
section.

Summary

With incremental storage procedures the signal-to-noise ratio analysis of
one-step threshold-detection retrieval led to the following results:

e If a rule R yields the signal-to-noise ratio r, then any rule bR + ¢,
with b positive, yields the same signal-to-noise ratio. We call these
rules essentially identical.

e For any rule R, the best combination of the parameters p and a is
given by the zero-average input condition p =p+ (1 — p)a = 0.

e The maximal signal-to-noise ratio ry is always achieved for the covari-
ance rule Ry [Eq. (3.25)). For increasing p, the value ry continuously
decreases and reaches ro =0 at = 1.

e Every rule essentially different from Ry has a 0 asymptotic signal-to-
noise ratio, if the condition p = 0 is violated.
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¢ The Hebb rule becomes essentially identical to Ry for memory tasks
with ¢ — 0 and p — 0, i.e., for sparse address and content patterns.

e The agreement rule is equal to Ry for p = ¢ = 0.5.

o Storage of extensively many patterns, i.e., M/m > 0 as m — oo: In
this case, Ry and H achieve asymptotically vanishing errors (r — c0)
for memory tasks with sparse content patterns: ¢ — 0 as m — oo.
The agreement rule A only achieves r = const as m — oo.

3.4 Information Theory of the Memory Process

How can the performance of an associative memory model be measured? In
our notation, a given memory task specifies the parameters p,q, M, p/, e,,
e1. From the signal-to noise ratio analysis we can determine for randomly
generated patterns the maximal number of pattern pairs M* for which
the required error bounds eg, e; are still satisfied. Then the first idea is to
compare the M* to the number of neurons used in the memory model. This
quotient of patterns per neuron a = M*/n is used in many works, but this
measure disregards the parameter ¢ used in the random generation of the
content patterns as well as the whole process of addressing.

In the following we use the description of elementary information theory
to find performance measures for the memory task and compare them with
the size of the storage medium, viz., the number of synaptic connections
n X m.

3.4.1 MEAN INFORMATION CONTENT OF DATA

Every combination of a memory problem and a coding algorithm will lead to
a set of content patterns that exhibit in general very complicated statistical
correlations.

For a set of randomly generated patterns S, which we have used to carry
out the signal-to-noise ratio analysis, each digit was chosen independently.
The mean information contained in one digit of a pattern is then simply
given by the Shannon information [40] for the two alternatives with the
probabilities p and 1 — p,

i(p) := —plogy p — (1 - p) logy(1 - p),
and the mean information content in the set of randomly generated content
patterns S€ is I(S€) = Mni(g), where q is the ratio between 1- and a-
components in each content pattern. The pattern capacity compares the
mean information content of the content patterns with the actual size m xn
of the storage medium and is defined as

P(m,n) := mAz/aIx{I(Sc)}/nm = M*i(q)/m. (3.30)
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T(S¢, 8°)

"y ..)
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mem. matrix sing ret. output

Fig. 8.2. Output capacity: Information channel of storage and retrieval; (mem.
= memory, ret. = retrieval).

Here, M* equals the maximum number of stored patterns under a given
retrieval quality criterion. The definition (3.30) is an adequate measure of
how much information can be put in the memory, but not at all of how
much can be eztracted during the retrieval. A performance measure should
also consider the information loss due to the retrieval errors.

3.4.2 ASSOCIATION CAPACITY

The memory can be regarded as a noisy information channel consisting
of two components (see Fig. 3.2): The channel input is the set of content
patterns S € and the channel output is the set of recalled content patterns
S€ afflicted with the retrieval errors. The two components correspond to
the storage process, where the sets S4 and S are transformed into the
synaptic matrix and to the retrieval process where the matrix is transformed
into a set of memory output patterns SC. The retrieval error probabilities
specify the deviation of SC from S€ and thus the channel capacity.

The capacity of an information channel is defined as the transinformation
that is contained in the output of the channel about the channel’s input.
The transinformation between S¢ and S€ can be written as

T(8€,8€) = I(8€) - I(S°|5°), (3.31)

where the conditional information I(SC|S€) is subtracted from the infor-
mation content in S€. It describes the information necessary to restore the
set of perfect content patterns SC from the set S€. For random generation
of the data we obtain

- M -
1(8°13) fnm = —I(413%) (3:32)
with the contribution of one digit

I(yk | 5 = Prob[j¥ = 1]i(Probly* = 0| ¥ = 1))
+ Prob[F = 0}i(Prob[yf = 1] g =0))

= [g(1-e1) + (1 - q)ea)i (q(l - gffzia- q)ea>
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Fig. 3.3. Completion capacity: Information balance for autoassociation. (mem.
= memory, ret. = retrieval).

+ lger+ (1 - @)1 - ea)i <qe1 Ta ﬁe;) Ao ea)) .(3.39)

Now we define the association capacity as the maximal channel capacity
per synapse:

A(m,n) = mA%xT(S'C,Sc)/mn = P(m,n) — —AT-/{L—*I(yf 1§5).  (3.34)

The capacity of one component of the channel is an upper bound for the
capacity of the whole channel: The capacity of the first box in Fig. 3.2
will be called storage capacity (discussed in [41]). The maximal memory
capacity that can be achieved for a fixed retrieval procedure (i.e., fixing
only the last box in Fig. 3.2) will be called the retrieval capacity.

3.4.3 INCLUDING THE ADDRESSING PROCESS

The defined association capacity is a quality measure of the retrieved con-
tent patterns, but the retrieval quality depends on the properties of the
input patterns and on the addressing process. Of course, maximal associa-
tion capacity is obtained for faultless addressing; and with growing address-
ing faults (decreasing probability p') the association capacity A decreases
because the number of patterns has to be reduced to satisfy the same re-
trieval error bounds. To include judgement of addressing fault tolerance for
heteroassociation, we have to observe the dependency A(p).

For autoassociation where S4 = S€, we will consider the information
balance between the information already put into the memories input and
the association capacity (see Fig. 3.3).

This difference gives the amount of information that is really gained dur-
ing the retrieval process. We define the completion capacity for autoassocia-
tion as the maximal difference of the transinformation about S¢ contained



100 3. Associative Data Storage and Retrieval in Neural Networks

in the output patterns and contained in the noisy input patterns §4,
O(n) = mgx {T(SC | §C) - T(SC | SC)} /n?. (3.35)

From Eq. (3.31) we obtain

C(n)

]

max {I(sC | §¢) - 1(5€ | SC)} /n?
Sc

max M |9F) — 16t |30]} /n (3:36)

In Eq. (3.36) we have to insert again the maximum number of stored pat-
terns M* and the conditioned information to correct the retrieval errors;
cf. Eq. (3.33). In addition, the one-digit contribution of the conditioned
information necessary to restore the faultless address patterns S4 from the
noisy input patterns S# is required. It is given by

ko aky _ (p(1-p)
Iy | 9;) = (1 -pp)i (1—_W : (3.37)
Note that, for randomly generated content patterns, i.e., with complete
independence of all of the pattern components y¥, one usually reaches the
optimal transinformation rates and thus the formal capacity.

3.4.4 ASYMPTOTIC MEMORY CAPACITIES

In Sec. 3.3 we analyzed the model in the thermodynamic limit, the limit
of diverging memory size. For asymptotic values of the capacities in this
limit we not only will examine memory tasks where the fidelity require-
ment remains constant; we also will examine the following asymptotic fi-
delity requirements on the retrieval which distinguish asymptotically differ-
ent ranges of the behavior of the quantities e, and e; with respect tog — 0
as m,n — oo:

e The high-fidelity or hi-fi requirement: e; — 0 and e, /g — 0. Note
that for ¢ — 0 the hi-fi requirement demands for both error types
the same behavior of the ratio between the number of erroneous and
correct digits in the output: d, ~ d; — 0 with the error ratios defined
by d, :=e,/q and d; :=€1/(1 - q).

e The low-fidelity or lo-fi requirement: e; and e, stay constant (but
small) for n — oo.

With one of these asymptotic retrieval quality criteria the asymptotic ca-
pacities P, A, and C are defined as the limits for n,m — oo and n — oo,
respectively.



Giinther Palm and Friedrich T. Sommer 101
3.5 Model Performance

3.5.1 BINARY STORAGE
Output Capacity

In this memory model the probability pg = Prob(M;; = 0) is decreased if
the number of stored patterns is increased. Since obviously no information
can be drawn from a memory matrix with uniform matrix elements, we
will exclude the cases pg = 1 and pg = 0 in the following.

For faultless addressing, the maximal number M* of patterns that can
be stored for a given limit on the error probabilities can be calculated by
Eqgs. (3.9) and (3.10):

— 1/mp
* ln[po] — ln[l (ea) ]. (3-38)
In[1 - pq] In[1 — pq]
From Eq. (3.34) we obtain for e; = 0 and e := e, < ¢ the association
capacity

A(m,n) >~ (M*/m){i(q) - (1 - g)elog,e(1 - g)/q]}. (3.39)

In Fig. 3.4 we have plotted a) a = M*/m from Eq. (3.38), and b) the
association capacity from Eq. (3.39) against p for ¢ = p and the constant
error ratio d = e, /p = 0.01 for three finite memory sizes. Figure 3.5 shows
simulation results for the error ratio d with the parameters as in Fig. 3.4.
For p-values near the information optima in Fig. 3.4b, the experimental
value deyp is close to the value d used in Fig. 3.4a. For lower and higher p-
values, there are deviations between theory and experiment; see the caption
for Fig. 3.5.

Nonvanishing asymptotic association capacity requires M*/m > 0 as
m — o00. In Eq. (3.38) this can be obtained either for py — 0, which we
have already excluded, or for pg — 0. In this case, we obtain

¥ o, 1nlpo]
M* = — %, (3.40)

The hi-fi requirement leads with Eq. (3.11) to the following condition on p
and ¢:

e./q = exp(mpln[l — po] — In[g]) — 0. (3.41)
In the case ¢ — 0, the requirement (3.41) is satisfied if we put
_, —In[q]
p=u—-i (3.42)

with the positive number u > —(In[l — po])~!. Inserting Eq. (3.42) into
(3.40), we obtain the inequality
1 In1 —
ax < InlpolInll = po] (3.43)
—q1n[g]
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Fig. 3.4. Binary storage in finite memory sizes: Number of stored patterns o
and output capacity A in bits/syn with the lo-fi requirement d = 0.01 for p = ¢
and n=m.
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Fig. 3.5. Retrieval error ratio d = e, /k of simulations along the a~p curves of Fig.
3.4 for dineor = 0.01. For low p-values, the experimental error is even lower than
predicted because we used learning patterns with a nonfluctuating activity in the
simulations. For higher p-values, the theoretic values are too small because, in
this range, the effects of statistical dependence between different matrix elements
should not be neglected.
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which can be put into Eq. (3.39), yielding, for po = 0.5 and m — oo, the
maximal association capacity A ~ 0.69 bits/syn.

Note that for autoassociation and heteroassociation with p = q¢,m = n,
Eq. (3.42) implies that

p x In[n}/n (3.44)
and
M* (ﬁ) . (3.45)

The relation (3.45) already has been obtained in [42, 43] for sparse memory
patterns with arbitrary learning rules by regarding the space of all possible
synaptic interactions; cf. Sec. 3.6.3.

For singular address patterns and arbitrary ¢ = const, however, error-free
retrieval is possible for M* < m, which is the combinatorial restriction for
nonoverlapping singular patterns. In this case, with Eq. (3.39), as associa-
tion capacity of A = i(g) < 1 bits/synapse is obtained. For constant p, Eq.
(3.42) demands asymptotically empty content patterns, q o< exp(—mp/u),
leading to vanishing association capacity. For singular content patterns, the
combinatorial restriction M* < m also yields vanishing association capac-

ity.

Fault Tolerance and Completion Capacity

In the case of noisy input patterns [Eq. (3.12)], the hi-fi condition becomes
ea/q = exp(mpp’ In[1 — po] — Infg]) — 0. As in the preceding subsection, we
obtain the maximal number of patterns by M'* = p' M*, where M* is the
value for faultless addressing [Eq. (3.43)]. Thus, for heteroassociation, the
association capacity exhibits a linear decrease with increasing addressing
fault, A(p’) =p'A.

For autoassociation with the hi-fi requirement, the retrieval error term in
the completion capacity [Eq. (3.36)] can be neglected as in the association
capacity, and we obtain for p — 0

e {7+ - i (BLZE)) }

= max { In[po] In1 I;[I;(;]P'(l —7) } =0.17 bits/syn  (3.46)

C

for po = 0.5 and p’ = 0.5. In Fig. 3.6, the completion capacity is plotted
against p for three finite memory sizes and for the constant error ratios a)
d = eo/p = 0.01, and b) d = 0.05. The optimum is always obtained for
p’ =0.5.
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Fig. 8.6. Binary storage in finite memory sizes: Completion capacity C in
bits/syn for two lo fi values; the maximum has always been achieved for ad-
dressation with p’ = 0.5.

3.5.2 INCREMENTAL STORAGE
Output Capacity

For faultless addressing, zero-average input, and the optimal rule Ry, the
maximal number of stored patterns for a given signal-to-noise ratio value
r is obtained from Eq. (3.28):

M* =m/(r’q(1 - q)). (3.47)

If the threshold setting provides e,/q = e;/(1 — ¢q) =: d, the association
capacity can be computed for small fixed values of the error ratio d from
Eqgs. (3.34) and (3.47):

o 10 (- q)dilzzg(i[q—d]q;r logy[(1 - g)d]} (3.48)

With substitution of r = G7[gd] + G~[(1 — ¢)d] in Eq. (3.48) we obtain
the association capacity for the rule Ry for a constant d error ratio, the
lo fi requirement. (G~![z] is the inverse Gaussian distribution.) In Fig.
3.7 we display the association capacity values for the optimal, Hebb, and
agreement rules, the latter two obtained by comparison of the signal-to-
noise ratios in Table 3.1.

The hi-fi requirement only can be obtained for 7 — oo as m — oo in
Eq. (3.47), which is possible either for M*/m — 0, leading to vanishing
association capacity, or for ¢ — 0, the case of sparse content patterns,
which we focus on in the following.

We now choose a diverging signal-to-noise ratio by

r = 4/—2In[g]/¥. (3.49)

The threshold has to be set asymmetrically, ¥ — 1, because for sparse
patterns e, /e; — 0 is demanded. (This implies ¢ = exp[—(9r)?/2], yielding,




Giinther Palm and Friedrich T. Sommer 105

E «..rule A 04 |
1.2 --rule H
] — rule Ry i
0.8 )
o 0O 0.2 ~¥-
10 ~ T 1
0.4 | ~ e
0.0 0.0+

T T 1 T T T
0.0 0.1 0.2 03 04 05 00 01 02 03 04 05
p p

Fig. 3.7. Model with incremental storage, fulfilled condition of zero-average in-
put, and m,n — oo: Number of stored patterns o (left) and asymptotic output
capacity A in bits/synapse (right) for p = g with the lo-fi requirement d = 0.01.
The optimal rule Ry is approached by the agreement rule A for p = 0.5 and by
the Hebb rule for p — 0. For p — 0, the lo-fi output capacity values of the optimal
and Hebb rules reach but do not exceed the hi-fi value of A = 0.72 bits/synapse
(this only can be observed if the p-scale is double logarithmic; see Fig. 5 in [51]).

with Appendix 3.2, e,/q =~ (7r2/2)~1/2 = 0. If the threshold ¥ approaches
1 slowly enough that (1 —9)r — oo still holds, then e; — 0 also is true and
the hi-fi requirement is fulfilled.)

With vanishing e/q, Eq. (3.48) simplifies asymptotically to

A2P+$§2M2R

Again, the information loss due to retrieval errors can be neglected due to
the high-fidelity requirement.
Inserting Eq. (3.49) into (3.47) we obtain for zero-average input and the
optimal rule Ry,
M* =m/(~2¢(1 — g) In[g]), (3.50)

which, like our result (3.49), can be calculated alternatively with the Gard-
ner method [42, 43]; cf. Sec. 3.6.3.

With Egs. (3.50) and (3.30) we obtain as asymptotic association capacity
with the hi-fi requirement, A = 0.72 bits/syn.

In contrast to the model with binary storage — where a positive as-
sociation capacity only for sparse content and address patterns has been
obtained — with incremental storage, an association capacity 4 = 0.72
bits/syn is achieved even for memory tasks with nonsparse address pat-
terns. However, for {0, 1}-neurons we again are restricted to sparse address
patterns because, for nonsparse address patterns, the zero-average input
condition cannot be satisfied.

With singular address or content patterns that are not interesting cases
for associative memory, as we will discuss in Sec. 3.6.1, incremental and
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Fig. 3.8. Incremental storage for n — oo: Completion capacity in bits/syn with
the lo-fi requirement d = 0.01 (left diagram). The optimal p’ in the addressing
has been determined numerically (right diagram).

binary storage form the same memory matrix and achieve exactly the same
performance; see the last part of Sec. 3.5.1.

Fault Tolerance and Completion Capacity

For heteroassociation with noisy addressing we obtain the association ca-
pacity for zero-average input and Ry by using Eq. (3.29) (remember that
r?2 «x m/M):
1-p)p”?
Alp') = -—(———————A. 3.51
¢ = 35 (351)
For p = 0.5 this implies A(p’) = p’* A, and for p — 0, as in the binary
case, A(p’) = p’ A. For autoassociation with the hi-fi requirement we obtain
in a way similar to Eq. (3.46)

- 92p' (1 — p)log,[p(1 — p')]
Cn) = n?x{ 21n[p23 }
2,001 _ o
= max {%—)} = 0.18 bits/syn.

Again, the maximum is reached for p’ = 0.5 and ¥ — 1.

A similar optimization in p’ can be carried out for fixed values of p and
the lo-fi requirement; see Fig. 3.8. In this case, the optimum is reached for
p’ larger than 0.5.



Giinther Palm and Friedrich T. Sommer 107
3.6 Discussion

3.6.1 HETEROASSOCIATION

In applications of associative memory, the coding of address and content
patterns plays an important role. In Sec. 3.1 we distinguished three types
of patterns leading to the memory tasks defined in Sec. 3.4: singular pat-
terns with only a single 1-component, sparse patterns with a low ratio
between the numbers of 1- and a-components, and nonsparse patterns. To
get a general idea, Table 3.2 shows those memory models which achieve
association capacity values A > 0 under the hi-fi requirement. Note that
only the Hebb and the optimal learning rules in memory tasks with sparse
or singular patterns yield nonvanishing hi-fi association capacities. In the
following, we consider the different types of content patterns subsequently.

Nonsparse Content Patterns

Only in combination with singular address patterns do nonsparse patterns
achieve high association capacity. In this case, qualified in Sec. 3.4 as the
look-up-table task, all rules achieve A = 1. The associative memory works
like a RAM device, where each of the m content patterns is written into one
row of the memory matrix M and, therefore, trivially A = i(q). However,
this is not an interesting case for associative storage because the storage
is not distributed, and in the recall no fault tolerance can be obtained:
A(p')=0forp' < 1.

Table 3.2. Models that yield A > 0 for the hi-fi require-
ment in different memory tasks (incr. = incremental stor-
age, bin. = binary storage, incr.Rp, H, for instance, de-
notes the incremental storage model with either optimal
rule or Hebb rule).

Nonsparse Sparse Singular
Content Content Content
Nonsparse — incr. Ro —_
address
Sparse — incr. Ro, H —
address bin. H
Singular incr. Ro, H — —
address bin. H
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Table 3.3. Hi-fi association capacity values of the
different models for sparse content patterns. As a
measure of addressing fault tolerance (cf. Sec. 3.3),
in the second line of each cell the reduction factor
for faulty addressing is displayed. For instance, with
sparse address and content patterns the Hebb rule in
the incremental storage yields A = 0.36 bits/syn if,
in the addressing, p’ = 0.5 is chosen.

Binary Incremental
H H Ry
Nonsparse — — A=0.72
address — — p'?

Sparse A=069| A=072| A=0.72
/ / /

address p p p

Sparse Content Patterns

Combined with sparse or nonsparse address patterns, sparse content pat-
terns represent the most important memory task for neural memory models
with Hebb or optimal learning rules, where high capacity together with as-
sociative recall properties are obtained. For optimal association capacity,
many patterns in the set of sparse learning patterns will overlap. Therefore,
in the learning process, several pattern pairs affect the same synapse, and
distributed storage takes place. In Table 3.3, the hi-fi association capacity
values can be compared. For sparse address patterns, the Hebb and optimal
rules achieve exactly the same performances because, with the zero-average
input condition, both rules are essentially identical. Even the binary Hebb
rule shows almost the same performance. At first sight it is striking that
binary storage, using only one-bit synapses, yields almost the same per-
formance as incremental storage, which uses synapses that can take many
discrete values. This fact becomes understandable if we consider the mean
contributions of all of the patterns at one synapse by incremental and by
binary storage: EM = 0.69 for incremental compared with EM = 0.5 for
binary storage. In both cases, the sparseness requirement prevents the ma-
trix elements from extensive growth; also, in incremental storage the vast
majority of synapses take only the values 0, 1, and 2.

For nonsparse address patterns, only the optimal setup, namely, the rule
Ry in the incremental storage, achieves nonvanishing association capacity.
This case is of less importance for applications since implementation is
much more difficult (higher computation effort for a # 0, and the determi-
nation of the value of a requires the parameter p of the patterns).
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Relaxing the quality criterion does not enhance the association capacity
value in the sparse limit. The lo-fi association capacity values plotted in
Figs. 3.4 and 3.7 do not exceed the hi-fi values in Table 3.3. With the
agreement rule, finite lo-fi association capacity values can be achieved (see
Fig. 3.7), whereas the hi-fi association capacity always vanishes.

Singular Content Patterns

The neural pattern classifier that responds to a nonsingular input pattern
with a single active neuron often is called the grandmother model or per-
ceptron. Here, the information contained in the content patterns is asymp-
totically vanishing compared to the size of the network: A = 0. Again, no
distributed storage takes place.

3.6.2 AUTOASSOCIATION

If content and address patterns are identical in order to accomplish pattern
completion in the retrieval, we have only to regard the cases of sparse and
nonsparse learning patterns.

Asymptotic Results

The amount of information that really can be extracted by pattern comple-
tion with high quality is given by the asymptotic hi-fi completion capacity.
It always vanishes in cases of nonsparse patterns. For one-step retrieval
with sparse patterns, we have determined C' = 0.18 and C = 0.17 bits/syn
for the Hebb rule in incremental and binary storage, respectively (Secs.
3.5.1 and 3.5.2).

Using a practically unrealistic fixed-point readout scheme’ and the Hebb
rule, we have found completion capacity values of C = 0.36 bits/syn for
incremental and C = 0.35 bits/syn for binary storage [30, 23]. Thus, one
would expect the performance of one-step retrieval to be improved by fixed-
point retrieval, i.e., starting from a single address pattern and iterating the
retrieval process until the fixed point is reached. Asymptotically, however,
fixed-point retrieval does not improve the one-step capacity results [44, 45,
46). It is a consequence of the fulfilled hi-fi condition that already after only
the first step we get asymptotically vanishing errors for diverging system
size.

Finite-Size Systems

Although Fig. 3.6 illustrates that the asymptotic capacity bounds are only
reached for astronomic memory sizes, even for realistic memory sizes sparse

"Fixed points are patterns that remain unchanged during a retrieval step, i.e.,
input and output patterns are identical.
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Fig. 8.9. Completion capacity C in bits/syn for iterative retrieval for addressa-
tion with p’ = 0.5 which has been achieved in simulations in binary storage with
4096 neurons. Depending on the number of stored patterns M an improvement
up to twenty percent (for M = 60000) can be obtained after the first step through
iteration.

patterns yield better performance than nonsparse patterns. Simulations
and analysis have revealed (again cf. [44, 45]) that iterative retrieval meth-
ods with an appropriate threshold-setting scheme (indicating how the
threshold should be aligned during the sequence of retrieval steps) yield
superior exploitation of the autoassociation storage matrix as compared to
one-step retrieval; see Fig. 3.9. For finite systems, fixed-point retrieval even
improves the performance and capacity values above the asymptotic value;
e.g., for n = 4096, about C = 0.19 bits/syn can be obtained.

For a certain application and a given finite memory size, however, we
cannot reduce the pattern activity ad libitum by modifying the coding
algorithm. Thus we sometimes may be faced with p >> In[n]; cf. Eq. (3.42).
In this case, binary Hebbian storage is ineffective — see Fig. 3.6 — and
incremental storage does not work either.

3.6.3 RELATIONS TO OTHER APPROACHES
Heteroassociation

The zero-average input condition for memory schemes with nonoptimal
local synaptic rules was first made explicit by Palm [47] but appeared im-
plicitly in some closely related papers. Horner [48] has used it to define the
neural off-value a in his model, and Nadal and Tolouse [24] have exploited
it (through their condition of “safely sparse” coding) as a justification for
their approximations.

The optimization of the signal-to-noise ratio r carried out by Willshaw
and Dayan [37] and independently by Palm [47] already has been suggested
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— though not carried out — by Hopfield [25]. Also, Amit et al. 8] have
proposed the covariance rule Rp.

The signal-to-noise ratio is a measure of how well threshold detection can
be performed in principle, independent of a certain strategy of threshold
adjustment. We have examined the model where the threshold assumes the
same value © for all neurons during one retrieval step and optimized the
response behavior depending on the individual input activity. So we could
lump together the on- and off-fractions of output neurons and calculate the
average signal-to-noise ratio.

In a recent work, Willshaw and Dayan [49] carried out a signal-to-noise
analysis using quite similar methods for a different model. In their model,
the threshold setting ©; was chosen individually for each neuron for the
average total activity of input patterns. Thus, the signal-to-noise ratio at
a single neuron was optimized for averaged input activity. Due to this
difference, the results only agree for zero-average input activity and in the
thermodynamic limit; for the same optimal rule, the same signal-to-noise
ratio is obtained. In general, their model is not invariant under the addition
of an arbitrary constant in the learning rule because, for E(R) # 0, activity
fluctuations in an individual input patterns are not compensated for by
threshold control as in our model.

Most of the results for heteroassociation discussed here can be found in
Peretto [50], Nadal and Toulouse [24], Willshaw and Dayan [37], and Palm
[47, 51). Some of our results are numerically identical to those of Nadal
and Toulouse, who employ different arguments [e.g., approximation of the
distribution of the noise term, Eq. (3.13), by a Poisson distribution]. In our
framework one also could define a “no fidelity requirement,” namely, e,
and e; — 0.5, which would correspond to the “error-full regime” of Nadal
and Toulouse. This leads to the same numerical result, 4 = 0.46, which,
however, is not very interesting from an engineering point of view since it
is worse than what can be achieved with high fidelity. The result for binary
storage stems from Willshaw et al. [4] for the Hebb rule, and to Hopfield
[25] for the agreement rule. A new aspect is the information-theoretical
view on the trade-off between association capacity and fault tolerance.

Autoassociation

Autoassociation has been treated extensively in the literature; see, for ex-
ample, (8, 25, 43, 26, 29]. In two points, our treatment differs from most of
the papers on autoassociation:

o Usually, models with fixed-point retrieval (and only with incremental
storage) have been considered.

o As the appropriate performance measure for pattern completion, we
evaluate and compare the completion capacity which takes into ac-
count the entire information balance during the retrieval.
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With one exception [48, 52], other authors regard (in our terms) the pat-
tern capacity, i.e., the retrieval starts from the perfect pattern as address.?
Hence, to compare the existing fixed-point results with our one-step re-
trieval for autoassociation, we should take the association capacity or pat-
tern capacity results calculated in Sec. 3.5.2 for heteroassociation in the
case p = q.

For nonsparse patterns with p = 0.5, fixed-point retrieval with the lo-fi
requirement stays below one-step retrieval: For the same fidelity of d =
0.002, the one-step result for the agreement rule (Fig. 3.4) is higher than
the Hopfield bound for the fixed-point retrieval in [10, p. 296]. Here, one-
step retrieval behaves more smoothly with respect to increasing memory
load because the finite retrieval errors after the first step are not increased
further by iterated retrieval. If the lo-fi fidelity requirement is successively
weakened, a smooth increase of the one-step association capacity can be
observed, and no sharp overload breakdown of the capacity (the Hopfield
catastrophy) takes place, as would be the case for fixed-point retrieval at
the Hopfield bound e, [25, 8, 29).

The pattern capacity for the binary agreement rule has been estimated
by a comparison of the signal-to-noise ratios for binary and nonbinary ma-
trices in [25] and has been exactly determined in [26] as A% = (2/7)A. For
nonsparse learning patterns, binary storage is really worse than incremental
storage.

Again, as for heteroassociation, only for sparse patterns can nonzero
values for the asymptotic hi-fi capacities can be achieved. For one-step re-
trieval with a = 0, we have found a hi-fi pattern capacity of P = 0.72
bits/syn. For fixed-point retrieval, it has been possible to apply the sta-
tistical mechanics method to sparse memory patterns; cf. for instance [53,
27]. In [27] just the same value P = 0.72 bits/syn has been obtained. By a
combinatorial calculation we also have obtained this pattern capacity value
for fixed-point retrieval [30]. One-step and fixed-point retrievals yield the
same pattern capacities because, for sparse patterns, the hi-fi condition is
satisfied. It guarantees that almost all learned patterns are preserved in the
first retrieval step and hence are fixed points.

Quite a different way to analyze the storage of sparse and nonsparse
patterns through statistical mechanics has been developed by Gardner [42,
43]. In the space of synaptic interactions, she has determined the subspace
in which every memory pattern is a stable fixed point. For sparse patterns
this method yields the same pattern capacity value.

8To obtain the pattern capacity, it is sufficient to study the properties of the
fixed points as a static problem. In evaluating the completion capacity, one has
to study how the system state evolves from a noisy input pattern in order to
determine the properties of the output pattern with a given address. This is a
dynamic problem which is in fact very difficult.
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3.6.4 SUMMARY

The main concerns of this chapter can be summarized as follows:

e The statistical analysis of a simple feedforward model with one-step
retrieval provides the most elementary treatment of the phenomena
of distributed memory and associative storage in neural architecture.

e The asymptotic analytical results are consistent with the literature.
For autoassociation, most of the cited works consider fixed-point re-
trieval, which allows us to compare one-step with fixed-point retrieval.

¢ Our information-theoretic approach introduces the capacity defini-
tions as the appropriate performance measures for evaluating for
the different memory tasks the information per synapse which can
be stored and recalled. Note that nonvanishing capacity values im-
ply that the information content is proportional to the number of
synapses in the model.

o For locallearning rules, sparse content patterns turn out to be the best
possible case, cf. [54]. High-capacity values and distributed storage
with fault-tolerant retrieval are provided by the Hebb rule and {0, 1}
neurons. Here, the number of stored patterns is much higher than the
number of neurons constituting the network. The binary Hebb rule
— much easier to implement — yields almost the same performance
as the incremental Hebb rule. For autoassociation, one-step retrieval
achieves the same asymptotic capacity values as fixed-point retrieval
(for the finite-size model, fixed-point retrieval yields higher capacity
values). The hi-fi condition can always be fulfilled by sparse content
patterns and only by these.
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Appendix 3.1

In this section we show, for the Hebb rule in binary storage, the independ-
ence of two different matrix elements. This is required in Sec. 3.3.2.
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Proposition 1 For the binary storage matriz M we have, as n — o0,
PT‘Ob[M]j =1 and sz = 1] N
Prob[M;; = 1]Prob[Mz; = 1]
PTOb[Mjl =1 and sz = 1] -
Prob[Mj; = 1]Prob[Mj; = 1]

1 and

1,

provided p and ¢ — 0 and = := Mpq stays away from 0 for n — oo.
Proof. ProbM;; =1]=1-(1-pg)™:

Prob[M;; =1 and My; =1} = Prob|[(3k: z¥ =5 =1 and y;‘ =1)or
3l,m: acll,:z:é =0,z" = O,xgn,y;-
=145 =1)]

= 1-(p(E1) + p(E2) — p(E1 N E2)),

where

E) = [Vk:not (z¥ =% =1 and ka =1) and not (z¥ = 1,z% =O,y;-c =1)]
and

E; = [Vk:not (zF = 25 = 1 and y;? =1) and not (z¥ = 0,z% = l,y;-c =1)].

Thus, Prob(E;) = Prob(E;) = (1 —pg)™ and Prob(E; NE,) = (1—¢(2p~
p?))M. Therefore, we obtain

Prob[M;; = 1 and My; = 1] — Prob[M;; = 1] - Prob[My; = 1]
= (1-2gp+qp®)™ — (1 - pg)*™ = (1 - 2gp + gp*)™
~(1-2pg +p*¢*)M

e~M@pa-pP'0) _ o~M(2p0-0"0") = o=2paM (o Mp®q _ (Mp'q"),

Thus we find
PI‘Ob[Mlj =1 and sz = 1] - Prob[Mlj = 1] . PI‘Ob[sz = 1]
PrOb[Mlj = 1] . Prob[ng = 1]
e—2x(epz _ eqp:r)
(1-e=)2

— 0,

since pr — 0 and pgz — 0.

This proposition shows the asymptotic pairwise independence of the en-
tries M;; in the memory matrix M, since entries which are not in the same
row or column of the matrix are independent anyway.

In order to show complete independence, one would have to consider
arbitrary sets of entries M;;. In this strict sense, the entries cannot be
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independent asymptotically. For example, if one considers all entries in one
column of the matrix, then Prob[M;; = 0 for all §] = (1 — ¢)™ ~ e~ M9,
which is with Eq. (3.9) in general not equal to pJ* = (1 —pg)M™ ~ e~ Mmpe,

Thus independence can at best be shown for sets of entries of the matrix
M up to a limited cardinality L{n). The worst case, which is also important
for our calculations of storage capacity, is again when all entries are in
the same column (or row) of the matrix. This case is treated in the next
proposition, which gives only a rough estimate.

Proposition 2
Prob[Mij =1 fOT 1= 1,. . .,l]
P’I‘Ob[Mij = 1]l

as long as pl? — 0 and z = Mpq stays away from 0 for n — oo.

-1 forn —

Proof.

Prob[M;; =1] < ProbM;; = 1M, =1fori=1,...,l - 1]
< Prob[M; = 1| there are at least | — 1 pairs (z*, y*) with y;‘ =1]
= 1-(1-p)"7 (1~ pg) =

Therefore,

pMi;=1fori=1,..., Sibgl_(y_mql_prq

<
1-(1-pgM

<
0 < log p[MU-—l]l <

i=0

=210g (_:55) —Zbg 1-(-ippo

1-po

since

log(l4+z)<z

< P Do

T 1-po
and if pg = (1 — pg)™ ~ eMP? = ¢~ _ 1. For Eq. (3.10) we need
the independency of | = mp matrix elements; thus, for sparse address
patterns with m?/3p — 0, the requirement of Proposition 2 is fulfilled and
the independence can be assumed.

l2
--2——*Oforp-l2—>0,
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Appendix 3.2
The following estimation of the Gauss integral G(t) is used in Sec. 3.5.2.

Proposition 3
(2rt2) "2~ /2(1 — 12) < G(~t) = 1 — G(t) < (2mt2)~1/2e~t"/2

Proof. Since z% =2 + (z — t)? + 2¢(z — t), we have

©o 2 2 oo 2
/ e % /2y = ¢t /2/ =% 2e~ Ty,
t 0

From this and with e~%"/2 < 1, we obtain the second inequality directly
since f0°° e~%dr = 1/t and the first one after partial integration because

J ze~=tdz = 1/t.
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4

Inferences Modeled with
Neural Networks

H.-O. Carmesin!

with 8 figures

Synopsis. We study changes of synaptic couplings as a consequence of re-
ceived inputs and of an internal mechanism. We adopt three approaches.
First, we study the relation between formal logic and networks using the
McCulloch—Pitts mapping from formulas to networks. We observe that
transformations of logical formulas correspond to internal changes in a net-
work, which in turn correspond to deductive inferences. In contrast, induc-
tive inferences correspond to learning in networks and to the “guessing of
axioms.” Thus, formal logic does not address learning. This deficit is re-
flected in Wittgenstein'’s paradox (unique learning of counting by children),
which can be “solved in terms of networks.” Second, under appropriate
conditions, the Hebb rule causes the minimization of complexity (num-
ber of couplings) during learning, and this makes the learning of counting
unique. The minimization also supports the view that, in psychological ex-
periments, test persons solve transitive and more complicated inferences in
a parallel rather than a sequential fashion. Third, a mechanism for inter-
nal changes in networks is studied that achieves both proofs by complete
induction and an axiom system for any given consistent task.

4.1 Introduction

You want to catch a cat. It runs into a small room. You follow, and when you
enter the door, the cat has hidden. You know that there are only two places
to hide: behind the chest or on the cupboard. If you approach the wrong
place, the cat will escape through the door. You remember that the cat has
played this game with you quite often, and it always hid behind the chest.
So you infer that the cat is behind the chest. But before you approach the
chest, you consider additionally: Most likely, my brother forgot his suitcase
behind the chest. Thus, there is insufficient space left for the cat. Hence,

'Institut fiir Theoretische Physik, Universitit Bremen, D-28334 Bremen,
Germany.
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you infer that the cat is on top of the cupboard. After you have caught your
cat, you sit in your armchair and wonder how your nervous system, which
presumably is organized according to the Hebb rule [1], provided you with
such useful inferences. Traditionally, inferences have been studied mainly
by logicians [2-5], computer scientists [6], cognitive psychologists [7], and
philosophers (8, 9]. Here, we will model inferences with neural networks
and work out essential relations to the traditional approaches.

As is illustrated in the above example, the inference is caused by inputs
that are taken at different times and in different contexts. From all of the
inputs taken, relatively few relevant inputs are selected and coordinated
to an appropriate inference. Accordingly, we will propose a framework in
which a network takes inputs in a first phase, reorganizes internal states in
a second phase, and performs an action in a third phase.

For the sake of a clear understanding of inferences, we concentrate our
attention on three efficient approaches, each of which is possible in the
proposed framework. First, we use mappings [10] from logical formulas to
networks. Second, we model the counting ability [8]. Although this ability
may appear trivial, it provides the basis for most infinite procedures? and
allows the study of learning. Third, we establish a cognitive system that
generates to a given task a corresponding axiom system in terms of net-
works. Thus, we model the formation of axioms from experience. Now that
we have characterized these three approaches, we begin our investigation
with definitions.

4.1.1 USEFUL DEFINITIONS

By inference we mean the combination of inputs by a neural network. In
our example, the nervous system combines remembered and actually per-
ceived inputs. The problem with generating such combinations of inputs
is the binding problem in its full generality, because here the combined
inputs are taken at different times and in different contexts. What are
these combinations or coordinations of inputs? Combinations occur dur-
ing the performance of the network. The performance includes changes
of neural activity and of couplings. Consequently, combinations occur ei-
ther directly through neural activities, or indirectly through changes of
(synaptic) couplings. Such changes are described by differences between
full network states® Ny,u(t), which are characterized by the couplings and

2The counting ability is the guideline along which intuitionistic logic was built
[11-13). To support an orientation in the literature, we note that the functions
that exist in intuitionistic logic are all general recursive. The general recursive
functions are the same [13] as those studied by Turing (computable functions),
and Church (\-definable functions).

3Geometrically, the full network states are elements (of a subset) of the N+N>-
space, which has as subspaces the N-space of the neuronal states and the N2-
space of the synaptic states.
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the neurons. In order to study changes of couplings, we call two network
states N(t,) and N(¢,) at times ¢, and ¢, synaptically equal if they have
the same couplings. A network is permanently changing its network state,
or N(t) — N(t + 1) for short. A network is in fact a sequence of network
states, N(t;), or N; for short. By a master mechanism we mean any rule
that determines the changes of couplings. For instance, the Hebb rule is a
master mechanism.

4.1.2 PROPOSED FRAMEWORK

We separate the combinations of inputs into the following three phases.

Learning: First, the network receives inputs and achieves its first network
state, Nj. We describe this first network state in terms of synapses, basins
of attraction, rules, etc.

Internal change: Second, the network state N7 may be active without
receiving inputs, whereby it changes internally to become Nj. For sim-
plicity, in this second phase we allow only such changes that leave invari-
ant the output generated to a given input in the third phase, but which
possibly will speed up (or slow down) the third phase. That is, N; and
N3 combine the same inputs to the same outputs. We call such internal
changes conservative. Two network states that differ only by a conserva-
tive internal change are called cognitively equivalent. If N; is faster than
Ni, then Ny can predict the behavior of N7. The study of nonconservative
internal changes is beyond the scope of this chapter. For instance, inter-
nal changes might have been involved in the above example of recalling
the suitcase.

Action: Third, the network state Ny receives other inputs and combines
them. The retrieval of a pattern [14] can be such an action; if inputs
during the learning phase define the couplings through the Hebb rule,
then these training inputs are in effect combined with those inputs that
are received during retrieval. For simplicity, we neglect the change of
couplings in this phase. In the following, it is clear from the context which
phase we are discussing and which network state we are considering.

By inductive inference we denote a coordination of the first phase (learn-
ing phase), while by deductive inference we denote one of the second phase
(internal change). The third phase (retrieval) finishes inductive and deduc-
tive inferences and leaves the full network state synaptically equal. Alto-
gether, we expect this framework to be especially appropriate for the mod-
eling of inferences, because it contains inductive inference in the first phase
and deductive inference in the second phase. In full generality, the second
phase of internal change includes changes of neuronic values. However, it is
expected that the changes of couplings are more important, because there
are far more couplings than neurons.
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() f,nt]f) (£, .., %)
! T T !
M{p} — p — N{p}
! il
t/f +

Fig. 4.1. Middle: A formula p is mapped via T and 7. Left: A mapping M{p}
maps a tupel of t/f to one t/f. Right: A network N{p} maps a tupel of +/— to

one +/—.

4.1.3 How FArR CAN WE GO WITH THE
ForMAL-LOGIC APPROACH?

McCulloch and Pitts [10] studied this question by an ingenously simple and
effective mapping:

1. The calculus of propositions [2-5] is the (ancient) starting point*:

2. Model: So far, the calculus contains meaningless sequences. This is
changed by the original “interpretation” [5): We define [10] a mapping
T, which maps each p to its Boolean function M{p}: That is, each
variable ¢ takes one of the values t/f, “true” or “false.” The formula
p determines the number d of input variables q. Each M{p} maps d
such ¢ to one r. This “interpretation” is called a “model” (according
to [5]), since p1 = po if and only if M{p1} = M{p2}, M{-p} =t if
and only if M{p} = f, and M{p; V p2} =t if and only if M{p1} =1t
or M{p2} =t; see Fig. 4.1.

3. The mapping 7 (McCulloch—Pitts mapping) maps each formula p onto
a feedforward network (dynamics defined in Sec. 4.2) N{p}, which
performs as M{p}; see Fig. 4.1, whereby a unique N{p} is achieved
by some convention.

4. The mapping 7~ maps each feedforward network N to a formula p,
such that M{p} performs as N; cf. Fig. 4.2.

5. Transformation T : To a given N we form the corresponding p via 7~

4Primitive connections are - (negation) and V (disjunction); they combine
variables or formulas; the formulas are the possible combinations. Popular abbre-
viations are p — ¢ for —p V ¢ (implication), p A g for =(=p V —¢) (conjunction),
and p = q for (p — q) A (¢ — p) (equivalence). The axioms are (1) pVp — p, (2)
p—pVg (3)pVg—qVp,and (4) (p = q) = (rVp — rVgq), where p,g, and r
can be variables, or formulas. A formula r is called an immediate consequence of
p and q if p is the formula g — r. The class of derivable formulas is defined to be
the class of formulas that contains the axioms and all immediate consequences
of derivable formulas.
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r
p e N
| logic L Tn(p,q)
q —  N{g}
T

Fig. 4.2. Upper part: N is mapped to p. Middle left part: p is transformed to the
equivalent ¢q. Lower part: ¢ is mapped to N{q}. Middle right part: Altogether, N
is mapped to N{q}.

We transform p to an equivalent ¢ through the application of axioms
and the immediate consequence. We map ¢ to the respective N{q}
via 7 (Fig. 4.2). We observe that T is a candidate for a conservative
internal change.

6. Consistency problem: If the axiom system (see footnote 3) of the
calculus of propositions were inconsistent, then -p = p would be
derivable. Then, the corresponding induced transformation Ty would
transform a network N; into a network N, that maps to the output
+ if N7 maps to the output —. We conclude that, through 7 the
consistency problem is mapped to networks (i.e., the induced trans-
formations T are conservative if and only if the axiom system is
consistent).

7. Logical operations V and —: The logical operations by which formulas
are connected are pV q and —p; corresponding operations are possible
for networks.

8. Networks as models: To each network we define the class of equally
deciding networks, i.e., of networks that map identically. These classes
of networks are another model for the calculus.

9. Discussion: The above items characterize the relation between the
calculus of propositions and feedforward neural networks®. In par-
ticular, the axioms of the logical calculus describe “generally valid”
relations. Specific knowledge is expressed in additional axioms. For in-
stance, the knowledge about classical mechanics is contained in New-
ton’s three axioms. However, the process of establishing the axioms
(i.e., the above first phase of learning) is not addressed. Newton had
to “learn” his axioms, possibly by observing the famous apple falling

By a feedback network we mean a network that contains at least one loop of
couplings. Analogous items 1-8 establish a similar relation between the calculus
of predicates with natural numbers as individuals and feedback neural networks
[18].



124 4. Inferences Modeled with Neural Networks

from the tree. The formulas provided by logic address the second
phase of internal changes. The third phase of action is established
through an interpretation of the formulas. Finally, with regard to an
application of the above considerations to neural network models,
we identify two problems that occur in the second phase of internal
change. The first one is to make internal changes conservative, be-
cause otherwise they are not reliable, and the second is to search for
such sequences of applications of axioms and immediate consequences
that speed up the network.

Facts About the Two Problems

The calculus of propositions is consistent [2-5]; thus, we can generate con-
servative internal changes in feedforward networks through 7. In neurobi-
ology, recursive networks occur as well. In order to generate conservative
internal changes in them, we have two alternatives: Either we limit the
allowed transformations of formulas [11-13, 16] and, as a consequence, ob-
tain conserved internal changes only, but at the same time the number of
internal changes is limited; or we have to make a hypothesis [4] (e.g., trans-
finite induction [17]) (for a detailed analysis of such questions see [18]) from
which we can conclude that the induced internal changes are conservative.

For instance, two pupils, Mary and Bob, have learned how to calculate
with variables. In the afternoon, they both derive new formulas. The next
day they compare their results. Most of the formulas Mary derived do not
occur in Bob’s derivations, and some have been derived by Bob, too. But
for one formula F' derived by Mary, Bob derived the negation —~F'. Both are
puzzled and confirm that they made no mistakes in their derivations. Is this
possible? (There are four possibilities: Mary and Bob made an error, only
Bob made an error, only Mary made an error, or neither Mary nor Bob
made an error. In the latter case, the transformations of formulas are not
consistent.) This example also illustrates the goal of deductive inference,
namely, to make predictions about the domain of (if the domain contains
one element only, then a single activity is predicted) future activities of
nervous systems, here about those of Mary and Bob.

The history: At the beginning of the century, logicians were looking for a
consistency proof (Hilbert’s program [19]) for a system with natural num-
bers as individuals (Peano arithmetic) and a logical calculus like that of the
Principia Mathematica [2]. A change was initiated by the logician Gédel [4],
who argued that within such a calculus there are propositions U that can
neither be proven nor disproven. First, this result gave rise to consistency
proofs which rely on additional hypotheses [17] (first of the above problems
treated with the second of the above alternatives). Second, this result was
used pragmatically by Turing, who proposed quite a general class of com-
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puting machines, which now are called Turing machines® [6], and showed
that, for a given proposition U, there is no general procedure from which
a Turing machine could decide whether U is provable (second of the above
problems). We address these two problems for the particular case of net-
works (Sec. 4.6): (1) How do conservative internal changes emerge in neural
networks? (2) Which internal changes are especially effective in networks?

Limitation of the Formal-Logic Approach

Formal logic does not address learning, although learning precedes internal
change. This limitation becomes especially apparent when logic generates
statements about infinite sequences. How can finite, “mechanically gen-
erated” formulas predict anything about possibly infinite processes, like
counting or forming sequences of primes? Consequently, it is not satisfac-
tory to neglect the study of learning or of the link between learning and
internal change. This link was studied by intuitionistic logicians who or-
ganized consistency proofs along the idea that counting already has been
learned [11]. Wittgenstein [8, 9, 20] went one step further toward basic
mechanisms and asked: How can counting be learned? To solve the above
problems, we focus our whole study on counting’ and in particular on
Wittgenstein’s question. If we explain in some terms how to count, we
have to explain these terms through other terms, etc., and we would end
up with an infinite regress. Accordingly, we consider pupils who learn count-
ing from examples, e.g., 1, 2, 3, ..., 121. A pupil who can count up to 121
(i.e., who adapted this) can usually continue to 122, ...How is this possi-
ble? Wittgenstein was not able to answer this question, because the answer
requires knowledge about the nervous system [20]. We will give an expla-
nation in terms of a self-organization process that begins with the Hebb
rule [1]. So, the used key knowledge is the Hebb rule.

Hebb’s Rule

Hebb’s neurophysiological postulate says that a synaptic efficiency
increases, if the pre- and postsynaptic neurons fire simultaneously, and
that this increase is due to some metabolic process. Recently, a roughly
similar metabolic process has been observed {21].

6 A Turing machine consists of a head and a tape. The head contains state-
ments that establish its performance. The tape is a linear sequence of sections,
called fields. In each field there is a symbol out of a finite set of symbols. At each
instant of time, the head is at a field. It reads the respective symbol and maps it
to the pair (symbol to be written to the field, move to be performed). The move
is either to the left, to the right, no move, or the end of processing.

"Together with calculating, counting covers all three phases of combinations,
is a possible basis for analysis and geometry with all transformations, and can
be studied efficiently.
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Synapses from Correlations

By its nature, the Hebb rule transforms correlations among neural activ-
ities into synaptic efficiencies. This motivated Hebb to speculate that cell
assemblies emerge as a consequence of the Hebb rule. The Hopfield rule
is highly related to the Hebb rule [14] and transforms (input) patterns
into synaptic efficiencies. Legendy [22] explained observed correlations in
spike patterns by “unspecified synapse forming mechanisms,” which occur
according to postulated principles that form synapses from correlations.

Synapses from Successful Correlations

Legendy was fully aware that synapses from correlations are too simple;
in his third section, his 14th remark is: “Presumably template formation
is, in certain systems, biologically censored when correlations are ‘too per-
fect,’ for, the alternative would be the unchecked formation and boundless
proliferation of useless templates. One may speculate that the notorious
difficulties in eliciting plasticity in physiological experiments and the rela-
tive scarcity of successes might come from such a censorship mechanism.”
Thorndike [23] formulated such a censorship mechanism before neural net-
works were invented: “When a modifiable connection between a situation
and a response is made and is accompanied or followed by a satisfying state
of affairs, that connection’s strength is increased.”

The presented mechanism that solves Wittgenstein’s paradox is the Hebb
rule with success, i.e., with some censorship mechanism (see below). As a
further result, cell assemblies of few synapses emerge. Accordingly, we ide-
alize the postulate: The couplings will be chosen such that a given task
is performed and the number of couplings (complexity) is minimized [20,
24]. Then, we show that counting is learned with that postulate. We study
properties and further consequences of this postulate: How can inductive
inference be performed most effectively? Is the experimental evidence in
favor of parallel rather than sequential processing? Altogether, the mecha-
nism presented here shows under which conditions Hebb’s and Legendy’s
speculations are confirmed.

4.2 Model for Cognitive Systems and for
Experiences

4.2.1 COGNITIVE SYSTEMS

All cognitive systems considered here consist of networks, master mecha-
nisms, and peripheral processors. The latter provide a perfect transfer of
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signals® and symbols to and from the cognitive system and are not dis-
cussed in detail, while the master mechanism is a rule (see below) for the
change of couplings. The neurons s; of the network take values s; = £1 at
discrete time steps. Their dynamics is determined by the neuronic equa-
tions [25] s;(t+1) = sgn(X;Ji;s;(t) — A;), where sgn is the signum function,
Ai is a threshold parameter, and the J;; are the couplings.

4.2.2 EXPERIENCE

For the case of inductive inference, data or experience are given. Thus, in
addition to the model of the cognitive system, we need a model of these
experiences. Here, experiences are modeled in terms of elementary tasks
and tasks as follows.

We use a trainer,® like in studies on the committee machine [26]. The
trainer generates questions g; with uniquely determined answers a; = M
(g:)- Both ¢; and a; are sequences of symbols, each of which is taken from a
finite set of symbols. The pair (g;, a;) is called an elementary task. By a task
we mean a set of elementary tasks. For a consistent task we additionally re-
quire that to each question g; there be only one answer a;. The mapping M
can be evaluated by a finite Turing machine, i.e., a Turing machine with a
finite tape that stores up to @ symbols and a finite number of statements in
its program. Each statement consists of a finite number of elementary op-
erations. Thereby, elementary operations are either elementary motions'®
or reading or writing a symbol from or to the actual field of the tape or
elementary mappings. An elementary mapping is a mapping from a finite
set of elements to another finite set of elements; e.g., the logical OR and
NOT can be elementary mappings, and the combinations thereof are suffi-
cient to determine any function from configurations of two-valued variables
to other configurations of two-valued variables [3]. The set Q of possible
questions and the set A of possible answers are the sets of sequences of up
to a symbols. So, a mapping that is evaluated by a finite Turing machine
is such a mapping M.

The trainer begins a dialogue by asking g, the cognitive system replies
G1, and the trainer answers with V; = yes if a; = a;, otherwise with
Vi = no but a;. The dialogue continues analogously. The triple (g;, ai, Vi)
is called the ith training situation. The cognitive system is adapted to the
dialogue consisting of i elementary tasks if the cognitive system generates
only correct answers @; = a; for j < ¢. The mapping M is called induced
by the trainer to the network if, for any g;, the answer of the cognitive

8Most generally, anything that can be transformed to symbols by peripheral
processors is included.

We also include the case without a trainer but with experiences in an
environment.

10Elementary motions are single moves to the right or to the left.
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system is correct. The number of nonzero couplings of the network is called
the complezity ¢(N). The principle of minimization of complexity is the
following postulate.

Postulate: After the ith training, the master mechanism determines the
couplings such that the dialogue consisting of ¢ elementary tasks of a con-
sistent task is adapted to the network N and ¢(N) is minimized.

4.2.3 FroM THE HEBB RULE TO THE POSTULATE?
1. Basic Considerations

We now study the conditions under which networks of minimal complexity
emerge from the Hebb rule. For this purpose we formulate and then analyze
an appropriate class of network models [27-30]. A network has S sensor, I
inner, and M motor neurons. We define for each elementary task u

oh { 1, if the network was successful at y;

0, otherwise. (41)

The Hebb rule shall be applied with a learning rate a, a decay rate b, and
under the condition of success. So the change of a coupling is

AJi;(t) = (as,-(t)sj(t) —bJ;; (t)). (4.2)

The s; assume values +1 (firing) and —1 (not firing). For each elementary
task, the configuration of sensor neurons is given by the question g,,. The
network generates an answer @, at its motor neurons. By {s'} we denote a
neuronal configuration so that the values of the sensor neurons are given by
gy The inner neurons and motor neurons take their values according to a
corresponding Boltzmann distribution P#. For the change of the couplings
only configurations with 7# = 1 are relevant, so that

N i —BH
H({s:}) = —% Y Jysis;,  PE({sf)) = 22’:Me:5(ex§( )ﬂH).
t5,3#7 tosd )

The sum over {s!'} is the sum over all 27+ states of the inner and motor
neurons. The network is permanently stimulated by its environment. This
is taken into account through an adiabatic approximation as follows. To
compute AJ;; that occurs after performing all 25 elementary tasks, we
sum over all configurations of the 2/ inner neurons and the 2™ motor
neurons taken with their probability,

(4.3)

25 oI+M S oI+M
A= PA({st})(asl'sh —bJy)=a) | Y stsi PH({sk})—b25J;;.
u {sh} b {sf}

(4.4)
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Accordingly, each coupling matrix J;; can be written

25 2I+M

=) > Ma({sth)shst (4.5)

b {s4}
We call the above A};({s4}) amplitudes and insert them into Eq. (4.4) so
as to obtain
25 ol+M

AJy; = Z Z ( PE({sh}) - 23)\2‘]-({3;‘}))52‘37. (4.6)

b {sh}

New stimuli steadily come in through the sensory neurons and, since the
set of input patterns is finite (25), the network cannot continue learning
indefinitely. We therefore look for stationary coupling matrices, i.e., AJ;; =
0. To this end, it suffices that each term in the sum (4.6) vanishes so that

a
b25°
This is a fixed-point equation for the amplitudes. As a result, the ampli-
tudes do not differ for different ij, i.e., Af;({sh}) = M ({s4})-

Fixed-Point theorem: All solutions of the fized-point equation are sta-
tionary networks [Eq. (4.7)].

So the fixed-point equations are sufficient for J to be stationary.

AL({s4]) = MoP*({st})  with Ao = (4.7)

Generating Function

We insert Eqgs. (4.3) and (4.7) into Eq. (4.5) to get the equivalent fixed-
s

point equation for couplings 0 = J;; — Ao Ei (0F#/0J;5) with F# =

Tln(zﬁgr T+ exp(—BH)). We express it with a generating function W:

oW 2
o=—87ij with W_22Jk,—,\OZF“ (4.8)

A linear stability analysis shows that each local minimum, maximum, and
saddle point is a stable fixed point [31]. In order to obtain networks with
minimal complexity, we modify the neural dynamics so that the motor
neurons have no noise (zero temperature), which gives the new value of a
motor neuron as s; = sgn(3_; Ji;s;)-

Illustrative Example

In order to study the emergence of a small network with inner neurons and
minimal complexity, we model one sensor neuron s;, one motor neuron s,
and two inner neurons s3 (necessary) and s4 (redundant). We consider the
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Fig. 4.3. Network emerging after training the negation task. z-axis: temperature,
y-axis: coupling times b/a, solid lines: solutions of fixed-point equation (4.7).
The data have been obtained by computer simulation. The upshot is that above
T=2 only necessary couplings (o; upper branch) are present, near T=2 hysteresis
occurs, and below T=2 redundant couplings (o; lower branch) appear.

negation task s; = —s;. We require the condition Jy2 = Jz; = 0 so that an
inner neuron becomes necessary. As a result, above a critical temperature
2, the couplings with the necessary neuron s3 are 1 while the others are
0. That is, there occurs a spontaneous breaking of the symmetry so that
one inner neuron is taken to form a network of minimal complezity. Below
T = 2, the couplings with the unnecessary neuron are nonzero; cf. Fig. 4.3.

In biological terms, the condition Ji2 = J21 = 0 means that there happen
to be no synapses Jy2 and Jo;, the weight of which could be modified by
the Hebb mechanism. Consequently, the task is performed via inner neu-
rons. The used neurons become coupled with large weights; this emerging
structure may be regarded as a cell assembly.

2. Analysis of Symmetry Breaking

In the above example the solutions J of the fixed-point equation exhibit a
spontaneous breaking of symmetry. As a consequence, there occurs a net-
work of minimal complexity. To understand symmetry breaking for three
learning procedures (2a—c below), we study fluctuations. For detailed argu-
ments, see [27]. So we consider the fixed-point equation at § = 0 [see Eq.

(4.8)],

2° ZZI:MT stst
J‘l] = )\OZ {sq2}1+M ; 2 (49)
® Z{sz‘}

(2a) By chance, one of the couplings Jo3 and Jyy4 is larger, say it is Jos.
Then s4 does not influence s,, that is, 7# does not depend on sy, i.e.,



H.-O. Carmesin 131

84 is not necessary for success. Consequently, the couplings with s4
vanish [see Eq. (4.9)]. This is not so for s3. So small networks emerge,
because neurons that are necessary for success become coupled.

(2b) If the correct answer is fixed at s (supervised learning), then no
neuron is necessary for success; thus, no neuron becomes coupled at

B=0.

(2¢) If sq fluctuates, then 7# depends on sz only. Then, at 3 = 0, success
is achieved only randomly; so, no inner neuron becomes necessary for
success; thus, no inner neuron becomes coupled.

4.3 Inductive Inference

Under what conditions does inductive inference occur? What is necessary,
sufficient, and optimal for inductive inference?

Lemma: For a given mapping M, a network N) of finite complexity ¢(Nys)
exists that maps each ¢; correctly to a; = M(g;).

Two proofs will be outlined. The first is a direct construction, the second
is an application of [10] and is stated only briefly.

First Proof: By definition, M can be generated by a finite Turing machine.
The proof is performed by constructing a finite network that simulates a
given finite Turing machine. Without restriction of generality, we assume
that, at each field of the finite tape of the Turing machine, either a —1
or a 1 is stored. Each such field can be simulated in the network by a
neuron that is coupled to itself by a positive coupling, has zero threshold,
and thus stores the value once given to it. There is a network N, of finite
complexity ¢ that counts up to the number of fields of the tape [20,30]. N,
can simulate the actual position of the head of the Turing machine. It also
can be modified such that it can count forward or backward selectively [32].
Thus, the elementary motions can be simulated by N.. To each neuron that
simulates a field one can associate a neuron that takes the value 1 if and only
if the respective number is represented by N,. A simple network N,,, can be
constructed that reads and writes if desired and if the respective associated
neuron takes the value 1. Hence, reading and writing can be simulated
by Nyy. Finally, any elementary mapping can be simulated by a network
of finite complexity c since the logical OR and NOT, and combinations
thereof, can be simulated by a network. Altogether, the Turing machine
can be simulated by the network constructed above.

Idea of Second Proof: Since the Turing machine is finite, its tape is finite;
hence, the set of questions @) and answers A is finite and accordingly the
number of mappings M is finite. Furthermore, such mappings are realizable
in a finite network according to {10].
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The first proof is applicable more generally to Turing machines with
unlimited tape and networks with unlimited external memory (see Sec.
4.4). Both proofs are applicable to dialogues in which some symbols are
hidden.

Straightforward consequences of the lemma demonstrate under which
conditions a mapping M is established by a network. Among all networks
that map each g; correctly, there are one or more networks Ny of smallest
complexity ¢(Ng). By construction, any network generated by the master
mechanism has a ¢ smaller than or equal to ¢(Np). The number mg of
dynamically nonequivalent!! networks of ¢ smaller than or equal to c¢(No)
is finite [33]. Thus, the number m, of errors (d; # a;) that the network
can make is m, < mg. After a finite time ¢y, the network makes no more
errors. Let us call a question ¢; to which the network answers incorrectly
instructive (in a given dialogue). If at time ¢y + 1 the mapping M has not
yet been induced to the network, then the trainer failed!? to ask at least
one additional instructive question. We define: A trainer who does not fail
to ask an instructive question is called instructive. By a rule we mean a set
of | @ | different questions, each with its answer. We call a rule reducible,?
if | @ |> mg. As an immediate consequence, we obtain Theorem 1.

Theorem 1:1 An instructive trainer induces a given mapping M to the
network in a finite dialogue. To a consistent task the network incorporates a
rule that depends on the task. To each reducible rule there is an instructive
trainer that provides a dialogue consisting of less than | @ | elementary
tasks.

4.3.1 OPTIMAL INDUCTIVE INFERENCE

We now turn to the comparison of alternative master mechanisms y and
networks v. Now a “generalized” cognitive system consists of peripheral
processors, a master mechanism g, and a network v that is made up of in-
terconnected elements (e.g., neurons, couplings, wheels, tubes, pipes) and
performs according to a dynamics d,. The elements belong to K types
Ex,k =1,..., K, the number of elements of type k is n; (elementary com-
lexity). The master mechanism provides a coordination of these elements.
For each such coordination the cognitive system establishes a mapping from

" Dynamically equivalent networks generate the same dynamics.

2Fven if the trainer was instructive and the cognitive system identified the
mapping, it could not be aware of it; thus, an ambiguity remains.

13Most rules of practical interest are reducible because they have relatively low
complexity.

14This theorem holds for recursive networks, feedforward networks, attractor
networks, and essentially also for networks made of wheels, tubes, pipes, etc.; see
below.
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each input (and possibly from initial values) to a corresponding output. A
generalized complezity is any linear combination ¢, = Xraxni with posi-
tive coefficients a). We require that the generalized complexity be bounded,
cg LC.

Because ¢, < ¢, only a finite number of elements is contained in the
network. Consequently, only a finite set M,,,, of mappings M can be in-
corporated by the network. The cardinality of M,,q; is called the creative
capacity k. of the network, because the answers need to be created by
the network. By inductive capacity k; we denote the number of mappings
that can be incorporated by a given cognitive system. During the training,
the master mechanism provides realizations of mappings M; € Mp,q,. The
master mechanism that realizes adaptation of the dialogue and minimiza-
tion of complexity with the generalized complexity cg is called ;. We call
p1 optimal because k; = k. for p;. In general, k; < k. (it would be in-
teresting to observe the ratio k;/k. for various animals). There are other
master mechanisms that are optimal as well,'6 e.g., master mechanisms
that adapt to any dialogue are optimal.

4.3.2 UNIQUE INDUCTIVE INFERENCE

A master mechanism g provides unique inductive inference if it identifies
each reducible rule through an appropriate dialogue consisting of less than
| @ | elementary tasks. The minimization of y; is important for the unique-
ness of inductive inference. According to Theorem 1, u; provides unique
inductive inference. In contrast, a master mechanism y’ that adapts to any
dialogue and gives the first answer of the dialogue in a novel elementary
task does not identify each reducible rule through a dialogue with | @ | —1
questions.

4.3.3 PRACTICABILITY OF THE POSTULATE

Typically, the minimization of complexity [35] requires much computing
time if a general or random set of elementary tasks is considered [36]. For
the special case of a feedforward network, the time required for minimizing
the number of neurons of the network grows faster than polynomially with
the number of the hidden units, i.e., it is NP-complete. However, this is
of little relevance for many important and nonrandom tasks. For example,
the minimization of complexity in networks has been successfully applied
to the modeling of transitive inference in pigeons [23], learning orthography

5For instance, the Hebb rule is a master mechanism which does not provide
adaptation if the network contains neurons that do not take inputs. As a con-
sequence, k; < K. for the Hebb rule and such a network. (In the human brain,
most neurons do not take inputs.)

8For a game simulating inductive inference, see (34].
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[37], electrostatics [38], geometry [39], counting [20], and calculating [32].
Furthermore, inductive inference works essentially in the same manner if
the minimization of complexity either is used in a statistical procedure with
finite computing time or emerges from a statistical network model [27-30].
Finally, in certain applications, decoupling into modules is possible [32].

4.3.4 BIOLOGICAL EXAMPLE

A pigeon in a Skinner box!? had to choose between two stimuli; this is the
elementary task [40, 24]. The stimuli were A, B, C, D, E. To each pair we
designate the answer ¢;; and the correct answer is rewarded. In the training
phase, the dialogue consisted of four elementary tasks (arrow to rewarded
stimulus): (A < B), (B — C), (C < D), (D « E). After the pigeons learned
to respond correctly, (B « D) was given as a novel, fifth elementary task,
but without reward. 87.5% of the answers were correct, i.e., the pigeons
inferred transitively.

The network model shows that transitive inference is of minimal com-
plexity. However, a Turing machine likewise requires minimal complexity,
i.e., program length, for transitive inference. In order to decide whether the
pigeon’s performance was sequential or parallel, we suggest considering the
following dialogue:

(A« B),(B«C),(C«~ D),(D« E),(E« A),
(A~ C),(B+«~ D),(C~E),(D+ A),(E « B).

Altogether, essentially 12 dialogues exist in this framework. Among these,
the suggested dialogue is relatively complex for a network, but not for a Tur-
ing machine. Meanwhile, experiments with humans have been performed
with this dialogue. The suggested task was relatively difficult for humans
and pigeons [41]. This supports the assumption that humans dealt with this
situation in a parallel fashion, i.e., that they performed “network-like.” The
point is that the “system of that task” is obvious to the reader, because here
the elementary tasks are ordered systematically. However, the test persons
received the same elementary tasks in terms of a computer game without
useful order, could not reorganize, and hence performed “network-like.”

4.3.5 LIMITATION OF INDUCTIVE INFERENCE IN TERMS
OF COMPLEXITY
Complexity measures are likewise used for inductive inference in frame-

works (e.g., parameters for fits to data, coding data, approximate repre-
sentaion of data in relatively low dimension) without networks; see, e.g., [42,

17 A Skinner box is an experimental device, in which the response of an animal
to a stimulus is studied.
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43]. In particular, if inductive inference is addressed, then the formation of
scientific theories is addressed as well [38]. First, we ask: Is a network with
the minimizing master mechanism g, a reasonable tool for the formation
of scientific theories from “isolated phenomena”? We consider the following
examples: pattern formation in clouds, the crystalline structure of a dia-
mond, and a cobweb. Although these examples exhibit significant geometric
structures (which would be detected through p;), they are explained dif-
ferently. The structure in clouds is explained as a result of the mechanical
motion of many molecules, the crystalline structure is explained as a result
of quantum mechanical interactions, while the coweb is explained by its
purpose — a tool for catching insects. Hence, the answer is no. Second, we
ask: Is a network with the minimizing master mechanism y, a reasonable
tool for the formation of scientific theories from “sufficiently large sets of
isolated phenomena”? Because there exist so many phenomena, we cannot
even study, let alone answer, this question.

4.3.6 SUMMARY FOR INDUCTIVE INFERENCE

An a priori principle is necessary for inductive inference and is provided
by the minimizing master mechanism p;. The postulate is an optimal a
priori principle. Among all complexities, only ¢, is asymptotically relevant
and is, therefore, considered in the following, i.e., the complexity is the
number of couplings. The master mechanism minimizes ¢ under certain
conditions, which we treat as modifications of the model developed so far.
Consequently, the results can be interpreted as solutions of a minimization
problem with additional conditions.

This minimization is specified as follows. If the cognitive system needs a
certain amount of complexity, it generates that complexity only for the time
it is needed, and it deletes the respective couplings as soon as possible. This
final deletion of synapses is in agreement with the above self-organization
mechanism, in which couplings to unnecessary neurons are destabilized.

4.4 External Memory

How does a cognitive system with external memory perform its tasks, and
what is its relation to a Turing machine? To answer these questions, we
consider two modifications of the theory developed so far.

First modification. The cognitive system shall have access to external
memory,'® the elementary units of which are called locations. The periph-

18In a biological cognitive system, external memory might be realized by neu-
rons or assemblies of neurons. In particular, the formatio reticularis performs
primarily operational tasks, while other parts of the brain perform primarily
memorizing tasks.
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eral processor guarantees reading from and writing to locations.® Because
the complexity ¢ is minimized, the cognitive system stores questions and
the corresponding answers on locations without using the network. The
dialogue is adapted to the cognitive system and the complexity vanishes,
i.e., ¢ = 0. In the case of counting, such a cognitive system will be unable
to generate new numbers and will perform worse than a cognitive system
without locations [20]. If the available locations are unlimited, no inductive
inference is performed by the cognitive system.

Second modification. From now on the locations are limited appropri-
ately. (For the sake of simplicity, we will assume that the cognitive system
applies locations only after it has incorporated M.) The cognitive system
contains several networks IV;. Let us define an instruction to be a set of
symbols on locations that is readable by a peripheral processor and ac-
tivates a specific performance of a peripheral processor. More precisely,
the instruction specifies under which condition a certain symbol is written
on a certain position and at which position the next instruction is to be
read. (The condition is obeyed if certain symbols are at certain positions.)
From now on it also is assumed that the peripheral processor can read and
perform such instructions.2?

The above modification leads to several interesting consequences. First,
by means of inductive inference, a rule in a given set of training situations
will be incorporated into a network. In the following, we denote by Ny the
network that incorporates the rule. Second, the cognitive system becomes?
a Turing machine.?? The application of the incorporated rule can be per-
formed by a finite set of discrete operations on a finite set of symbols on
locations, because the rule has already been incorporated into a finite net-
work. These operations can be handled by the peripheral processor without
any network if appropriate instructions are written on locations. Hence, Ny
is unnecessary if the cognitive system writes appropriate instructions on lo-
cations. Because the above possibility to reduce c to 0 exists, the master
mechanism realizes that possibility, i.e., writes the instructions, and sets ¢
to 0. In that final state, the cognitive system can be understood as a Turing
machine, and, for that purpose, all locations have to be interpreted in a
linear order by some convention. It remains to specify how the cognitive
system generates appropriate instructions.

These instructions need not be guessed; rather, they can be extracted

19These skills can be learned in the sense of Sec. 4.3.

20This can be trained as specified in Sec. 4.3.

21This result generally can be applied to automatic programming. Its real-
ization is straightforward, because only minimization procedures need to be
implemented.

22Als0 in the first case of unlimited locations the cognitive system can be in-
terpreted as a (very trivial) Turing machine that handles the storage of questions
and answers on its tape.
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from N;. For this purpose, the cognitive system specifies one location for
each neuron of N; and records all values of these (two-valued) neurons while
processing the incorporated rule. Then, another network N; is “trained”
as follows. After every action (reading or writing) of the peripheral pro-
cessor, network N, is asked: “What is the next action of the peripheral
processor, and by which instruction is it expressed?” Thereby Ns can use
as inputs only signals that are inputs to the peripheral processor. These
signals are transferred by appropriate couplings that are generated by the
master mechanism. Due to the first part of the question, the network N,
will incorporate a rule that allows the prediction of the action of the periph-
eral processor as a function of input signals to the peripheral processor. Due
to the second part of the question, Ny generates the required instructions.

4.4.1 COUNTING

We specify an elementary counting task as follows. Map a natural number
given in its binary representation to its successor. In the final state of
¢ = 0 (see first modification), the peripheral processor has to perform
an algorithm that finds the successor to a given natural number. In the
following, one such algorithm is given. (1) Write the given number on a
first line. (2) Write a 1 below with corresponding digits one below the
other. (3) Leave a third line free underneath.?® (4) Start with the right-
most digit and, for each digit, do the following. If there is no 1 in the first
three lines, write a 0 on the fourth line at the position of the corresponding
digit. If there is one 1 in the first three lines, write a 1 on the fourth line
at the corresponding digit. If there are two 1’s in the first three lines, write
a 0 on the fourth line at the respective digit and a 1 on the third line, one
digit to the left.

4.5 Limited Use of External Memory

Is it possible to systematically divide a given task into subtasks? What is
the essential subtask of counting? What is its complexity? How can the
cognitive system learn from a finite set of elementary tasks an infinite set
of elementary tasks, namely, to count numbers, i.e., to generate numbers
successively without restriction by a largest number. Once again, we first
treat a modification and then indicate its consequences.

The idea is to make certain texts on locations “taboo,” namely, the in-
structions, and thereby to force the cognitive system to incorporate the
mapping corresponding to a subtask: For every question, only empty lo-
cations are given to the cognitive system. These are the only available

23The number to be written on this line can be interpreted as carry.
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Fig. 4.4. XOR: An arrow denotes Ji; = %1. In this figure, all thresholds are 1.
s5 = XOR(s1, s2) and nec = 6. For counting, nec = 9.

locations to find an answer; thus, no instructions are available. Then, a
question is written on locations. Finally, the cognitive system is asked to
answer. The consequence is that the network will incorporate a rule; see
Theorem 1. Thereby, it will incorporate neither what the rule acts on,
namely, on questions, nor any (including intermediate) results that the
cognitive system generates, because these are on locations. A more gen-
eral modification is the following: One can construct analogous procedures
of presenting locations to the cognitive system with “auxiliary texts” and
questions in order to incorporate any desired aspect in the network while
keeping all other aspects on the locations. The main point of the above
procedure is that a network can be driven selectively. Thus, complezities of
tasks or subtasks can be investigated selectively.

4.5.1 COUNTING

With this modification, we are prepared to study the incorporation of a
rule for counting by a network. For the neuronic equations, we denote the
complexity by nec and prove the following.

Lemma: In order to map the pair (s;, s2) according to XOR(sy, s2), six
couplings are necessary and sufficient. Here, XOR denotes the “exclusive
or” operation, and feedforward networks are considered.

Idea of the Proof (as presented in [82]). The pair (s1,s2) can take four
configurations from which (-1,-1) and (1,1) must be separated. With the
sums (J,181 + Ja282 + Ag) in the sign, one neuron can separate only one
configuration; in Fig. 4.4, s4 separates (-1,-1) and so does s3 with (1,1).
Both neurons must be connected to ss; hence, nec = 6.

With this lemma, we prove the desired (Sec. 4.1) result about counting.

Proposition: For a network with limited use of locations, and for the task
of mapping a given number onto its successor, nec = 8. For the task of
counting, nec = 9.
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Fig. 4.5. Cycle of length 4: All thresholds are 0 in this case, and the neurons
take the values (-1,-1), (-1,1), (1,-1), (1,1) cyclically. This network is necessary
for the control of counting and contributes nec = 2.

Idea of the Proof ([32]). In order to control the data to and from the head
(of the Turing machine), four time steps are necessary: (1 & 2) read &
map, (3) write, (4) move. These are provided by the network in Fig. 4.5. A
network performing additions according to the algorithm discussed in Sec.
4.4 is of minimal complexity. Thereby, for two digits a and b the new digit
is XOR(a, b) and the carry is AND(a, b). Thus, six couplings are necessary
for XOR, none for AND because AND(s,, s3) is already realized by s; (Fig.
4.4), and 2 for control, i.e., 8 for adding a 1 and another one for repeating
this process for counting.

4.5.2 ON WITTGENSTEIN’S PARADOX

As was shown in Sec. 4.3, with the aid of the postulate of minimization of
complexity, counting can be learned from a finite set of elementary tasks.
The above proposition shows that the required complexity is only 9. We
conclude that the identification of the uniquely determined correct way
of counting ad infinitum practically can be performed by a network with
the assumed master mechanism, i.e., with the postulate of minimization
of complexity. This postulate emerges from the Hebb rule under appro-
priate conditions. The result is relevant for Wittgenstein’s paradox [8,9].
The essence of this paradox is that pupils practically learn to count from
elementary tasks, although the extension from the given elementary tasks
ad infinitum is not uniquely determined. Our result illustrates how a finite
series, which by itself is not uniquely extendable, is extended uniquely and
adequately ad infinitum. Thus, if one assumes that children act accord-
ing to a master mechanism like that of the principle of minimization of
complexity, which can be provided via the Hebb rule, they learn to count.

Furthermore, such a master mechanism cannot be learned without al-
ready using a similar master mechanism. The application of a master mech-
anism of the proposed kind appears to be a part of the nature of children. In
this manner, the paradox is solved by naturalization, as is modeled through
our cognitive system. More precisely, we have explained how an assumed
property of natural nervous systems solves the paradox. The study shows,
in agreement with Wittgenstein, that the ability to count cannot be trans-
ferred to a cognitive system. But it is constructed by the cognitive system
according to elementary tasks and to the master mechanism.
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Furthermore, Wittgenstein’s paradox can be interpreted as an example
for the limitations of definability. It is well known that for any mathemat-
ical theory undefined terms must be included. For instance, in the case
of Euclid’s geometry, the undefined terms are [44] point, line, extremities
of a line (i.e., points), straight line, surface, extremities of a surface (i.e.,
lines), and plane surface. We already gave a well-defined procedure for en-
abling the cognitive system to learn undefined terms in a unique manner
in Sec. 4.3. Uniqueness requires an instructive trainer who exists according
to the postulate, particularly due to minimization. Finally, this solution of
Wittgenstein’s paradox supports the central idea of intuitionistic logics [11]
that humans can count ad infinitum.

4.6 Deductive Inference

How does deductive inference emerge in a cognitive system? In order to
study this question, we first formulate our main framework. A question
¢; that can be answered in principle, but not in the required time by the
application of a rule, is called a problem about the rule. Such a problem
requires a prediction about a certain future activity of a network. If the
network performs straightforwardly, then this activity takes place only after
the moment at which the answer is required.

4.6.1 BioLoGICAL EXAMPLE

The monkey Sultan is in a cage. At the ceiling is the obligatory banana, too
high to reach without a tool. There is a box in the cage; Sultan puts it under
the banana, climbs on the box, and gets the desired fruit. Rana, another
monkey, watches the scene and is exposed to the same situation afterwards.
Rana pulls the box to some place in the cage, climbs on it and fails to get
the banana. Sultan tries again and gets the banana; Rana watches, tries
again, and fails [45]). We interpret this finding as follows: Sultan makes the
“ansatz” to increase his height by putting something under his feet. Rana
observes that Sultan pulls a box, climbs on the box, and gets the banana;
Rana reproduces what she observed. The different actions exhibited by
Sultan and Rana are possibly due to different histories of internal changes.

4.6.2 MATHEMATICAL EXAMPLES

The examples given below are assumed as tasks for a cognitive system.
Later, we will discuss in detail how the cognitive system treats them. Our
first example can be handled by a cognitive system with either inductive
or deductive inference. Consider the question of whether, after a year of
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q-f’

Fig. 4.6. In the network for hypotheses Ny (see text), the relation F(I—1) = F(I)
is incorporated by the above network. This is the essence of the proof by complete
induction. After irrelevant signals are eliminated from the merged network N,
the future events are predicted by one neuron only, and they are all the same.

counting, a counting network would still generate a sequence of numbers
such that the respective sequence of last digits reads ..01 0101 .... This
and the following question are to be answered within a time shorter than
a year, say a day. The second example is the question of whether there is a
largest prime number.

The above cognitive system that performs according to the postulate will
try to answer randomly, and it eventually will correct itself if the answer
is wrong. Apparently, this is not the best strategy because the question is
to be answered within a day, say and there is a chance to generate a more
appropriate answer during that time. An additional master mechanism for
problems (MMP) will be introduced that is able to “make the most out of
its time.”

In the following, problems of a certain format (covering a relatively large
set of problems) will be considered. We are given a mapping M : ¢, — a;
for | € L that is incorporated in N; by inductive inference. Let F for any
l € L be another mapping from pairs (g, a;) to =1 that can be performed
by a finite Turing machine in a finite amount of time. The (question of the)
problem is whether F(g;,a;) = 1 for all [ € L. If this is the case, we will
say that the elementary tasks of (g, a;) have the property Pr. In the first
period (learning), F is induced to a network by inductive inference; i.e., the
problem is induced to the cognitive system. In the following, we denote this
network by Np. In the second period (internal change), an MMP elaborates
an answer. Two MMPs are considered: The inductive MMP picks out a
finite (limited by the available time) subset of L and checks whether F =1
(for any ! in this subset). The deductive MMP merges N; with N such that
the answer &; generated by N; is inserted for a; into Np. (For simplicity,
we do not distinguish whether ¢; is taken from the trainer or generated by
N, as well.) Then, this MMP will (try to) minimize the complexity of the
merged network called N,,. This minimization yields one of the following
cases. If ¢(Ny,) = 1, then either F does not depend on ¢ or F alternates
with ¢; see Fig. 4.6. These two cases are discriminated by the MMP through
explicit consideration of the possible values of the neuron(s) at the ends
of the coupling. In the first case and F = 1 for | = 0, the pairs (g;,a;)
have the property Pp. If one [ with F = —1 is found, if F alternates, or if
¢(Np,) # 1, then the property P is not detected.
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Fig. 4.7. Relevant signal flow: In our first mathematical example, the equality
of the last digits of numbers that are generated subsequently by N; is checked
(two lines merge, i.e., two signals flow to the same vertex v); one such last digit
dy determines the subsequent d..

4.6.3 RELEVANT SIGNAL FLow

The act of proving a prediction in this framework is performed by the
act of minimizing complexity. The act of minimization of complexity plays
a key role in the above framework of the deductive MMP and should be
investigated systematically. In its full generality, this is beyond the scope of
the present investigation, but a straightforward “ansatz” will be outlined;
we denote the corresponding MMP as the standard MMP in the following.

The value of a mapping F' depends on the values of neurons. These, in
turn, depend on the signals coming from other neurons, and so forth. This
suggests that we consider a signal diagram (Fig. 4.7) that contains all flows
of signals relevant for the prediction. The events that can occur in the
merged network NV, can be described by signals that propagate through
the diagram. This signal-flow ansatz allows us to consider the propagation
of signals in the signal diagram as a mapping Mpy. The signals at time ¢
are the questions, and the relevant signals (i.e., all signals that are not yet
identified as irrelevant) at time ¢ + 1 are the answers.

The mapping My can be incorporated into a third network Ny by in-
ductive inference.?* It is sufficient for Ny to evaluate those signals that
are relevant for the evaluation of F, i.e., those that ultimately enter the
evaluation of F. This implies that, if there are identifiable rules in the flow
of relevant signals, these will be identified by Ng. The rules identified by
Ny are called hypotheses. So far, the procedure is inductive and cannot ex-
clude nonconservative internal changes. However, if we now have rules for
the flow of signals incorporated by Ny that can be verified by considering
a finite set of configurations of the finite set of involved neurons, such rules
can be verified explicitly by considering this finite set of configurations.

24This type of inductive inference is a straightforward generalization of that
elaborated in Sec. 4.3. Here, several answers are acceptable, viz. all rules about
relevant and also possibly irrelevant signals. The trainer does not provide the
correct answer but just yes or no, i.e., whether or not the hypothesized rule
is empirically correct (for a few tests). Note that it is straightforward for the
deductive MMP to check whether Ny failed to predict a relevant signal.
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Let us specify that the standard MMP does consider such finite sets of
configurations explicitly.

The standard MMP yields a network Ng of relatively low complexity ¢
that provides exactly the same signals (which are relevant for the question
under consideration) as N,. This reduction of complexity is achieved by
inductive inference. The question then is: How do relevant signals flow?
This inductive inference is verified or falsified deductively. Thus, deductive
inference emerges here. The standard MMP provides an analysis of in-
corporated causal relations, because the signals flow deterministically and
already have been incorporated.

4.6.4 MATHEMATICAL EXAMPLES REVISITED

In the first example with inductive inference, Ny will find a simple rule
for the signal flow in N,,. One such rule is that the value of F' (as defined
above) at time ¢ is a function of the values of the last digits d; and dy of
two numbers, subsequently generated by N; at times t —t; —t; and t — ¢4,
respectively (Fig. 4.7). This mapping F checks whether these digits are
unequal. Furthermore, by inductive inference, Ny realizes that the value
of such a last digit do at time ¢ —t; depends on the value of the digit d; at
time t — t; — to. Hence, F only depends on that digit d; at a certain time.
These hypotheses formed by Ny can be explicitly checked by the deductive
MMP by considering a finite set of signal configiurations. This is the case
because N, is finite. Finally, two cases remain to be considered explicitely.
The above last digit d; (at time t —t; — t2) is 1 or ~ 1. In both cases, F'
takes the value 1. Thus, the statement is verified by the cognitive system.

4.6.5 FURTHER ANSATZ

The above characterized signal-flow ansatz is not appropriate for all prob-
lems. Consider our second mathematical example, i.e., the question of
whether there is a largest prime number. There are finite networks that
check whether numbers are prime or not, or which number of a pair of
numbers is larger, or whether for a given prime there is a larger one. How-
ever, the answer to the question apparently cannot be found by using the
signal-flow ansatz. But it can be found if a new ansatz is provided. For
example, one may make a slight increase in complezity of the cognitive
system?® as follows.

One assumes a largest prime and, thus, a finite set of primes, and con-

2530 far, we have explained how the cognitive system can perform inferences
by using mechanisms like the Hebb rule, the minimization of complexity, or the
signal flow analysis. These mechanisms use data or synapses that are already
present. In contrast, an ansatz is relatively new, see Rana and Sultan and the
conclusion.
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siders the number z, which is the product of these primes plus 1. This
construction can be made in terms of a network, and with the standard
MMP the cognitive system can conclude that z is prime. The point is that
the construction, and in particular z, has not been found from an analysis
of the signal flow of N, but must be regarded as a new ansatz in this
framework.

The above discussion suggests that the deductive MMP also can be ap-
plied if further ansatz somehow are provided [15]. In neurobiological terms,
these ansatz have to be provided by an associative memory, i.e., they are
distributed among many synapses. Consequently, it is not expected that
one can adequately measure the difference between Sultan and Rana (see
above) in terms of single neurons.

4.6.6 PROOFS BY COMPLETE INDUCTION

In order to illustrate that the studied MMP is widely applicable, we note
(without proof) the following. Any proof about a sequence of cases z;,! € N,
that can be performed by complete induction also can be generated by
the standard MMP. In particular, corresponding propositions A(1) and
A(l) = A(l + 1) can be derived within the proof by complete induction.
Hence, the corresponding N,, can be reduced to the network of Fig. 4.6.

4.6.7 ON SIEVES

By a case we denote a configuration of signals that represents a pair (g, a:),
is generated by Nj, and is transferred to Nr. The network Np that tests
a property Pr of a case is metaphorically called a sieve for a case. Those
cases that are in accordance with the property Pr fall through the sieve,
while the others do not. Conversely, a property Pr that can be checked
by a finite Turing machine in finite time for one single case generated by
Nj can be checked by Np. Alternatively, Nr can be interpreted as a sieve
that discriminates networks Ny, such that those N; that generate cases in
accordance with the property P fall through the sieve, while the others
do not. In this context, we call Ng a sieve.

A series of properties Pr,,k € K, is a unique characterization of certain
mathematical objects, and the series is identified as the format of any axiom
system for these objects.?6 The corresponding series of sieves N, play a
key role?” in the incorporation of axiom systems into networks.

26More generally, these objects need not be mathematical objects [3]. For in-
stance, an object that is yellow, lengthy, curved, and tastes like a banana is a
banana.

27 A practical advantage of a series of sieves is that in cognitive systems trans-
formations and compositions of sieves are possible and essential for deductive
reasoning. The detailed investigation thereof is beyond the scope of this chapter
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How does a cognitive system generate sieves? Sieves are generated by
a variant (the signal flow of N instead of N, is analyzed) of the stan-
dard MMP as follows. Rules about the signal flow in [V, are hypothetically
formed by Ny and verified afterwards. We generalize the property Pr as
follows. F is a function from a case to £1. If Ny works under the constraint
that the identified rules have the format of properties [i.e., these rules tell
us whether a case z of the signal flow is generated by Ny (F(z) = 1) or not
(F(z) = —1)], then we identify Ny as a sieve.

Axiom Systems in Terms of Sieves

Although the ultimate origin of the contents of the cognitive system is seen
in the elementary tasks, it is possible to begin with the axioms, as is the
case for the axiomatic method [48].

What is an aziom system? A sufficient characterization in terms of prop-
erties from which no part can be eliminated, such that the remaining is
still sufficient, is called a minimal sufficient characterization, or an azriom
system. Consequently, a series of sieves is a candidate for an axiom system
because it is & characterization in terms of properties.

What is a useful aziom system? We call a network N; and a series of
sieves Np,,k € K, self-consistent if the cognitive system can obtain the
series of sieves N, ,k € K, from Ny, and vice versa. Altogether, we are
prepared to show that our cognitive system is able to establish to any
consistent task an axiom system in terms of a series of sieves that is self-
consistent with the corresponding N;.

Theorem 2: From any consistent task, an axiom system can be gener-
ated by a cognitive system in a self-consistent manner using the postulate,
locations, and the standard MMP.

Proof: Consider any consistent task. There is a network N; that incorpo-
rates a corresponding rule; see Theorem 1. We construct a series of sieves
as follows.

As a first series, we take the trivial set of sieves consisting of one sieve
Nr,, which generates the answer to a given question by (a copy of) Nj.
If (and only if) the entering answer equals the answer generated by Ng,,
then the entering answer falls through Npg, .

As a second series, we add to the first sieve N, additional sieves Np,, k >
1, which we introduced in Sec. 4.6.7.

In order to obtain a third series of sieves N F;»J € J, we eliminate from
the second series irrelevant signals via the method introduced in Sec. 4.6.3.

but is given in [15, 46]. The description of such transformations in [10] is regarded
as inconclusive [47] for feedback networks. Furthermore, sieves can be applied to
more than countably many objects which then are represented in a symbolical
manner (like ). This is the basis for novel results about logic [18].
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consistent task| —— o Iset of a.xiomsl

Fig. 4.8. Axioms obtained by the cognitive system. Left: Ny incorporates a rule
from a consistent task via inductive inference. Upper arrow: The standard MMP
generates an axiom system in terms of a series of sieves. Conversely, from a series
of sieves the same N; is reproduced. Thus, V) and the series of sieves are self-
consistent.

Finally, we show that N; and the third series of sieves N, Fy»J € J are self-

consistent, i.e., we show that we can reproduce N; from N, F;J € J (Fig.
4.6). For that purpose, we take each question g; of the dialogue and generate
the answer q; as follows: We generate answers at random, use N, F;J €J,
as a sieve, and take the answer a; that falls through. This answer a; is the
same as that of the dialogue because N7 makes this answer; hence, N,
generates this a;, this a; falls through the second series of sieves, and then
a; also falls through the third series of sieves.

4.7 Conclusion

Learning. The master mechanism that minimizes the complexity estab-
lishes an optimal a priori principle, guarantees that a trainer can be in-
structive to the network, provides unique inductive inference, and emerges
from the Hebb rule. The master mechanism can be understood as follows. It
emerges from the Hebb rule. Its adaptation part guarantees that inductive
inference takes place. Its minimization part guarantees uniqueness. These
three properties together solve Wittgenstein’s paradox by naturalization.

Internal change. The goal of conservative internal change is to make
predictions about future activities of (other) networks. Conservative inter-
nal changes are mapped to formal logic as follows. Networks are interpreted
as a model for a logical calculus. Internal changes model transformations of
logical formulas. The consistency problem of logic is mapped to the problem
to provide conservative internal changes.

Links between learning and internal change. A formal logical cal-
culus does not address learning. In contrast, for Brouwer [11] the (learned)
counting ability of humans was the central idea of intuitionistic logic. We
study this link with a learning network that establishes a formal axiom
system to any consistent task.

Second link. As a tool for conservative internal change, a master mecha-
nism is investigated that uses inductive and deductive inference. The master
mechanism extracts possibly relevant signal flows in a hypothetical man-
ner by the former and verifies or rejects these hypotheses by the latter.
This combination is advantageous: First, inductive inference is blind for
nonconservative internal changes but not for rules inherent to signal flows,



H.-O. Carmesin 147

while verification is blind for such rules but detects nonconservative inter-
nal changes. Second, the conservative internal changes cover infinite objects
(Fig. 4.6); this “infinite predictability” is ultimately based on the word
“all” in the sentence: “The neuronic dynamics is valid for all neurons at
any time.”

Third link. New ansatz are efficient tools for internal change in the
modeled cognitive systems. Typically, new ansatz are provided by the cul-
tural heritage. The modeled cognitive system is able to learn and to change
these, i.e., to reject, reconstruct, analyze, reorganize, use, modify, combine,
or improve these ansatz.
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