

Physics of Neural Networks

Series Editors:
E. Domany J.L. van Hemmen K. Schulten

Springer-Science+Business Media, LLC Advisory Board:
H. Axelrad
R. Eckmiller
J.A. Hertz
J.J. Hopfield
P.I.M. Johannesma
D. Sherrington
M.A. Virasoro

Physics of Neural Networks

Models of Neural Networks
E. Domany, J.L. van Hemmen, K. Schulten (Eds.)

Models of Neural Networks II: Temporal Aspects of Coding and Information
Processing in Biological Systems

E. Domany, J.L. van Hemmen, K. Schulten (Eds.)

Models of Neural Networks III: Association, Generalization, and Representation
E. Domany, J.L. van Hemmen, K. Schulten (Eds.)

Neural Networks: An Introduction
B. Miiller, J. Reinhart

E. Domany J.L. van Hemmen
K. Schulten (Eds.)

Models of
Neural Networks III
Association, Generalization, and
Representation

With 67 Figures

, Springer

Series and Volume Editors:

Professor Eytan Domany
Department of Electronics
Weizmann Institute of Science
76100 Rehovot
Israel

Professor Dr. J. Leo van Hemmen
Institut fiir Theoretische Physik
Technische Universităt Miinchen
D-85747 Garching bei Miinchen
Germany

Professor Klaus Schulten
Department of Physics
and Beckman Institute
University of Illinois
Urbana, IL 61801
USA

Library of Congress Cataloging-in-Publication Data
Models of neural networks III / E. Domany, J.L. van Hemmen, K.

Schulten, editors.
p. cm. - (Physics of neural networks)

Includes bibliographical references and index.
ISBN 978-1-4612-6882-6 ISBN 978-1-4612-0723-8 (eBook)
DOI 10.1007/978-1-4612-0723-8
1. Neural networks (Computer science)-Mathematical models.

1. Domany, E. (Eytan). II. Hemmen, J.L. van (Jan
Leonard). III. Schulten, K. (Klaus) IV. Series.
QA76.87.M59 1995
006.3-dc20 95-14288

Printed on acid-free paper.

© 1996 Springer Science+Business Media New York
Originally published by Springer-Verlag New York in 1996
Softcover reprint ofthe hardcover Ist edition 1996

Ali rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Science+Business Media, LLC), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form ofinformation stora­
ge and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
byanyone.

Production coordinated by Publishing Network and managed by Natalie Johnson; manufac­
turing supervised by Jeffrey Taub.
Typeset by Bytheway Typesetting, Norwich, NY.

9 8 7 6 5 432

ISBN 978-1-4612-6882-6

Preface

One of the most challenging and fascinating problems of the theory of
neural nets is that of asymptotic behavior, of how a system behaves as time
proceeds. This is of particular relevance to many practical applications.
Here we focus on association, generalization, and representation. We turn
to the last topic first.

The introductory chapter, "Global Analysis of Recurrent Neural Net­
works," by Andreas Herz presents an in-depth analysis of how to construct
a Lyapunov function for various types of dynamics and neural coding. It
includes a review of the recent work with John Hopfield on integrate-and­
fire neurons with local interactions.

The chapter, "Receptive Fields and Maps in the Visual Cortex: Models
of Ocular Dominance and Orientation Columns" by Ken Miller, explains
how the primary visual cortex may asymptotically gain its specific structure
through a self-organization process based on Hebbian learning. His argu­
ment since has been shown to be rather susceptible to generalization.

Association long has been a key issue in the theory of neural nets. Local
learning rules are quite convenient from the point of view of computer
science, but they have a serious drawback: They do not see global correla­
tions. In order to produce an extensive storage capacity for zero threshold,
the couplings on the average should vanish. Accordingly, there is a deep
truth behind Wills haw's slogan: "What goes up must come down." Mean­
while we have a zoo of local learning rules. In their chapter, "Associative
Data Storage and Retrieval in Neural Networks," Palm and Sommer trans­
form this zoo into a well-organized structure taking advantage of just a
simple signal-to-noise ratio analysis.

Hebb's epoch-making book The Organization of Behavior appeared in
1949. It proposed one of the most famous local learning rules, viz., the
Hebbian one. It was preceded by the 1943 paper of McCulloch and Pitts,
which is quite notorious because of its formal logic. In "Inferences Modeled
with Neural Networks," Carmesin takes up this lead and integrates it with
the Hebbian approach, viz., ideas on assemblies and coherence. In so doing
he provides a natural transition from "association" to "generalization."

Generalization means that, on the basis of certain known data, one
extrapolates the meaning of a new set. There has been quite a bit of progress
in formally understanding the process of generalization, and Opper and
Kinzel's chapter "Statistical Mechanics of Generalization" summarizes this

vi Preface

progress. It starts from scratch, assuming only some basic knowledge of
statistical mechanics.

Bayes stands for conditional probabilities. For example, what is the
probability of having sunshine on the American East coast tomorrow given
that today's weather has no clouds? The sentence starting with "given
that ... " is a condition and the question entails an extrapolation. Adding
one further condition, viz., that it is during the summer, the chance in
question is about one. MacKay presents a careful and detailed exposition of
the beneficial influence of "Bayesian Methods for Backpropagation Net­
works."

The last two chapters return to representation. Optical character recogni­
tion is well known as a playground of neural network ideas. The chapter
"Penacee: A Neural Net System for Recognizing On-Line Handwriting," by
Guyon et al., aims at making the underlying concepts also widely known.
To this end, the setup is explained with great care. Their real-world exam­
ples show that an intelligently built but yet relatively simple structure can
give rise to excellent performance.

Robotics has been in the realm of neural networks for a long time; and
that is understandable. After all, we perform grasping movements ourselves
with great ease. That is to say, our motor cortex allows us to do so. Cortical
ideas also have permeated robotics. In their chapter "Topology Represent­
ing Networks in Robotics," Sarkar and Schulten present a detailed algo­
rithm for the visually guided control of grasping movements of a pneumatic
robot as they are performed by a highly hysteretic five-joint pneumatic
robot arm. In so doing, they unfold a modified version of the manifold­
representing network algorithm, a Kohonen-type approach. Here, too, gov­
erning asymptotic behavior is the algorithm's goal.

All of the chapters have one element in common: answering the question
of how one can understand an algorithm or procedure theoretically. And
that is what each volume of Models of Neural Networks is after.

The Editors

Contents

Preface

Contributors

1. Global Analysis of Recurrent Neural Networks
Andreas V.M. Herz

v

xiii

1

1.1 Global Analysis -Why? 1
1.2 A Framework for Neural Dynamics . . 4

1.2.1 Description of Single Neurons . 4
1.2.2 Discrete-Time Dynamics . . 8
1.2.3 Continuous-Time Dynamics. 12
1.2.4 Hebbian Learning 15

1.3 Fixed Points 18
1.3.1 Sequential Dynamics: Hopfield Model 19
1.3.2 Parallel Dynamics: Little Model . . . 21
1.3.3 Continuous Time: Graded-Response Neurons. 22
1.3.4 Iterated-Map Networks 24
1.3.5 Distributed Dynamics. 26
1.3.6 Network Performance 29
1.3.7 Intermezzo: Delayed Graded-Response Neurons. 32

1.4 Periodic Limit Cycles and Beyond . . 33
1.4.1 Discrete-Time Dynamics . . 34
1.4.2 Continuous-Time Dynamics . 38

1.5 Synchronization of Action Potentials 42
1.5.1 Phase Locking. . . 43
1.5.2 Rapid Convergence. 45

1.6 Conclusions 48
References. 51

2. Receptive Fields and Maps in the Visual Cortex: Models of Ocular
Dominance and Orientation Columns 55
Kenneth D. Miller
2.1 Introduction...................... 55
2.2 Correlation-Based Models. 59

2.2.1 The Von der Malsburg Model of VI Development 60
2.2.2 Mathematical Formulation 61
2.2.3 Semilinear Models 62

viii Contents

2.2.4 How Semilinear Models Behave . 63
2.2.5 Understanding Ocular Dominance and Orientation

Columns with Semilinear Models. 66
2.2.6 Related Semilinear Models 67

2.3 The Problem of Map Structure 68
2.4 The Computational Significance of Correlatin-Based Rules 71

2.4.1 Efficient Representation of Information 71
2.4.2 Self-Organizing Maps and Associative Memories 73

2.5 Open Questions 74
References . 75

3. Associative Data Storage and Retrieval in Neural Networks 79
Gunther Palm and Friedrich T. Sommer
3.1 Introduction and Overview 79

3.1.1 Memory and Representation. 81
3.1.2 Retrieval from the Memory . 82
3.1.3 Fault Tolerance in Addressing . 82
3.1.4 Various Memory Tasks . 82
3.1.5 Retrieval Errors 83

3.2 Neural Associatve Memory Models 83
3.2.1 Retrieval Process . 84
3.2.2 Storage Process 86
3.2.3 Distributed Storage . 87

3.3 Analysis of the Retrieval Process. 88
3.3.1 Random Pattern Generation. 89
3.3.2 Site Averaging and Threshold Setting. 90
3.3.3 Binary Storage Procedure . 90
3.3.4 Incremental Storage Procedure 91

3.4 Information Theory of the Memory Process 97
3.4.1 Mean Information Content of Data 97
3.4.2 Association Capacity . 98
3.4.3 Including the Addressing Process 99
3.4.4 Asymptotic Memory Capacities 100

3.5 Model Performance 101
3.5.1 BinaryStorage . 101
3.5.2 Incremental Storage 104

3.6 Discussion . .. 107
3.6.1 Heteroassociation 107
3.6.2 Autoassociation .. 109
3.6.3 Relations to Other Approaches 110
3.6.4 Summary 113
Appendix 3.1 . 113
Appendix 3.2. 116
References . 116

Contents ix

4. Inferences Modeled with Neural Networks 119
H.-a. Carmesin
4.1 Introduction......... 119

4.1.1 Useful Definitions . . 120
4.1.2 Proposed Framework . 121
4.1.3 How Far Can We Go with the Formal-Logic

Approach? 122
4.2 Model for Cognitive Systems and for Experiences . 126

4.2.1 Cognitive Systems 126
4.2.2 Experience............. 127
4.2.3 From the Hebb Rule to the Postulate? 128

4.3 Inductive Inference. 131
4.3.1 Optimal Inductive Inference. 132
4.3.2 Unique Inductive Inference . 133
4.3.3 Practicability of the Postulate 133
4.3.4 Biological Example. 134
4.3.5 Limitation of Inductive Inference in Terms of

Complexity 134
4.3.6 Summary for Inductive Inference 135

4.4 External Memory. 135
4.4.1 Counting....... 137

4.5 Limited Use of External Memory 137
4.5.1 Counting....... 138
4.5.2 On Wittgenstein's Paradox 139

4.6 Deductive Inference 140
4.6.1 Biological Example. . . 140
4.6.2 Mathematical Examples. 140
4.6.3 Relevant Signal Flow . . 142
4.6.4 Mathematical Examples Revisited 143
4.6.5 Further Ansatz. 143
4.6.6 Proofs by Complete Induction. 144
4.6.7 On Sieves 144

4.7 Conclusion
References. . . .

146
147

5. Statistical Mechanics of Generalization 151
Manfred Opper and Wolfgang Kinzel
5.1 Introduction.......... 151
5.2 General Results,. 153

5.2.1 Phase Space of Neural Networks. 153
5.2.2 VC Dimension and Worst-Case Results. 154
5.2.3 Bayesian Approach and Statistical Mechanics. 155
5.2.4 Information-Theoretic Results. 159
5.2.5 Smooth Networks 163

x Contents

5.3 The Perceptron . 166
5.3.1 Some General Properties 166
5.3.2 Replica Theory . 168
5.3.3 Results for Bayes and Gibbs Algorithms 171

5.4 Geometry in Phase Space and Asymptotic Scaling . 175
5.5 Applications to Perceptrons . 181

5.5.1 Simple Learning: Hebb Rule. 181
5.5.2 Overfitting . 184
5.5.3 Maximal Stability. 187
5.5.4 Queries 191
5.5.5 Discontinuous Learning. 193
5.5.6 Learning Drifting Concepts 195
5.5.7 Diluted Networks. 198
5.5.8 Continuous Neurons 200
5.5.9 Unsupervised Learning 201

5.6 Summary and Outlook 203
Appendix 5.1: Proof of Sauer's Lemma. 204
Appendix 5.2: Order Parameters for ADALINE 206
References . 207

6. Bayesian Methods for Backpropagation Networks 211
David J. C. MacKay
6.1 Probability Theory and Occam's Razor. 211

6.1.1 Occam's Razor . . 212
6.1.2 Bayesian Methods and Data Analysis. 215
6.1.3 The Mechanism of the Bayesian Occam's Razor:

The Evidence and the Occam Factor 216
6.2 Neural Networks as Probabilistic Models . 222

6.2.1 Regression Networks . .. 223
6.2.2 Neural Network Learning as Inference 224
6.2.3 Binary Classification Networks 225
6.2.4 Multiclass Classification Networks . 225
6.2.5 Implementation 226

6.3 Setting Regularization Constants ex and ~ . 226
6.3.1 Relationship to Ideal Hierarchical Bayesian

Modeling 228
6.3.2 Multiple Regularization Constants . 228

6.4 Model Comparison . 229
6.4.1 Multimodal Distributions 230

6.5 Error Bars and Predictions 231
6.5.1 Implementation 231
6.5.2 Error Bars in Regression 232
6.5.3 Integrating Over Models: Committees 232
6.5.4 Error Bars in Classification 232

Contents xi

6.6 Pruning.............. 233
6.7 Automatic Relevance Determination . 236
6.8 Implicit Priors 238
6.9 Cheap and Cheerful Implementations 239

6.9.1 Cheap Approximations for Optimization of a
and {3 • • • • • • • • • • • • • • • • • • • 240

6.9.2 Cheap Generation of Predictive Distributions. 241
6.10 Discussion. 242

6.10.1 Applications. 242
6.10.2 Modeling Insights. 242
6.10.3 Relationship to Theories of Generalization 244
6.10.4 Contrasts with Conventional Dogma in Learning

Theory and Statistics 246
6.10.5 Minimum Description Length (MDL) 248
6.10.6 Ensemble Learning. 251
References. 252

7. Penacee: A Neural Net System for Recognizing On-Line
Handwriting 255
l. Guyon, J. Bromley, N. Mafic, M. Schenkel, and H. Weissman
7.1 Introduction........... 255
7.2 Description of the Building Blocks . 257

7.2.1 Recognition Preprocessor 257
7.2.2 Neural Feature Extractor . 258
7.2.3 Classifier 260
7.2.4 Segmentation Preprocessor and

Postprocessor . . . 261
7.2.5 Similarity Measurer. 262
7.2.6 Loss Calculator 263
7.2.7 Global Optimization Techniques . 264

7.3 Applications.............. 265
7.3.1 Isolated Character Recognition . 266
7.3.2 Hand-Printed Word Recognition 268
7.3.3 Signature Verification. 273

7.4 Conclusion 276
References. 277

8. Topology Representing Network in Robotics 281
Kakali Sarkar and Klaus Schulten
8.1 Introduction............ 282
8.2 Problem Description 285
8.3 Topology Representing Network Algorithm 287

8.3.1 Training of First-Stage Motion . . 287

xii Contents

8.3.2 Training of Final Grasping of the Cylinder-
Second Stage of Movement 294

8.4 Experimental Results and Discussion 297
8.4.1 Robot Performance 297
8.4.2 Combination of Two Networks for Grasping 299
8.4.3 Discussion. 300
References. 300

Index 303

Contributors

J. BROMLEY AT&T Bell Labs, Room 4G-338, Holmdel, NJ 07733, USA

H.-O. CARMESIN Institut fur Theoretische Physik, Universitat Bremen,
0-28334 Bremen, Germany

I. GUYON AT&T Bell Labs, 955 Craston Road, Berkeley, CA 94708, USA

ANDREAS V.M. HERZ Department of Zoology, University of Oxford, Ox­
ford, OXI 3PS, England

WOLFGANG KINZEL Physikalisches Institut, Universitat Wiirzburg, 0-97074
Wurzburg, Germany

DAVID J.C. MACKAy Cavendish Laboratory, University of Cambridge,
Madingley Road, Cambridge, CB3 OHE, England

N. MATle AT&T Bell Labs; presently at Synaptics, 2698 Orchard Park­
way, San Jose, CA 95134, USA

KENNETH D. MILLER Departments of Physiology and Otolaryngology,
W.M. Keck Center for Integrative Neuroscience, and Sloan Center for
Theoretical Neurobiology, University of California, San Francisco, CA
94143-0444, USA

MANFRED OPPER Physikalisches Institut, Universitat Wurzburg, 0-97074
Wurzburg, Germany

GUNTHER PALM Abteilung Neuroinformatik, Fakultat fur Informatik,
Universitat VIm, Oberer Eselsberg, 0-89081 Ulm, Germany

KAKALI SARKAR Department of Physics/Beckman Institute, University of
Illinois, Urbana, IL 61801, USA

M. SCHENKEL AT&T Bell Labs and ETH-Zurich, CH-8092 Zurich, Swit­
zerland

KLAUS SCHULTEN Department of Physics/Beckman Institute, University
of Illinois, Urbana, IL 61801, USA

FRIEDRICH T. SOMMER Institut fur Medizinische Psychologic und Verhal­
tensneurobiologic der Universitat Tubingen, Gartenstr. 29, 0-72074 Tu­
bingen, Germany

H. WEISSMAN AT&T Bell Labs; presently at 12 Mordehai-Hetez St.,
Petah-Tikua, Israel

1

Global Analysis of Recurrent
Neural Networks
Andreas V.M. Herz1

with 6 figures

Synopsis. This chapter reviews recurrent neural networks whose retrieval
dynamics have been analyzed on a global level using Lyapunov functions.
Discrete-time and continuous-time descriptions are discussed. Special at­
tention is given to distributed network dynamics, models with signal de­
lays, and systems with integrate-and-fire neurons. The examples demon­
strate that Lyapunov's approach provides powerful tools for studying the
retrieval of fixed-point memories, the recall of temporal associations, and
the synchronization of action potentials.

1.1 Global Analysis - Why?

Information processing may be defined as the systematic manipulation of
external data through the internal dynamics of some biological system or
artificial device. In general, such a manipulation requires a highly nontrivial
mapping between input data and output states. Important parts of this
task can be accomplished with recurrent neural networks characterized by
massive nonlinear feedback: Triggered by an appropriate external stimulus,
such systems relax toward attractors that encode some a priori knowledge
or previously stored memories.

Within this approach to information processing, understanding associa­
tive computation is equivalent to knowing the complete attractor structure
of a neural network, that is, knowing what kind of input drives the net­
work to which of its possibly time-dependent attractors. Understanding
the computational properties of a recurrent neural network thus requires
at least three levels of analysis: (1) What can be said about the existence
and stability of fixed-point solutions? (2) Are there static attractors only,
or are there also periodic limit cycles and aperiodic attractors, as would be

IDepartment of Zoology, University of Oxford, Oxford, OXI 3PS, England.

2 1. Global Analysis of Recurrent Neural Networks

expected for generic nonlinear systems? (3) What is the structure of the
basins of attraction?

Questions about the precise time evolution between the initial network
state and the final output define a fourth level of analysis. Though less
important within the framework of attractor neural networks, these ques­
tions are highly relevant for systems that extract information "en route"
without waiting for the arrival at some attractor [1]. At a fifth level of anal­
ysis, one might finally be interested in questions concerning the structural
stability of a given network, that is, its robustness under small changes of
the evolution equations.

With regard to the computational capabilities of a neural network, ques­
tions about the type of attractor and the structure of basins of attraction
are of paramount importance. These questions deal with global properties
of the network dynamics. Accordingly, they cannot be answered using local
techniques only: A linear stability analysis of fixed-point solutions, the first
level of analysis, may reveal helpful knowledge about the network behavior
close to equilibria, but it never can be used to rule out the existence of
additional time-dependent attractors that may dominate large parts of the
network's state space. Due to computational constraints, numerical simu­
lations can offer limited additional information only.

Highly simplified network models provide a partial solution in that they
often permit the application of global mathematical tools. However, such
formal networks are characterized by bold approximations of biological
structures. In the manner of good caricatures, they may nevertheless cap­
ture features that are also essential for more detailed descriptions.

One of the global mathematical tools is Lyapunov's "direct" or "second
method" [2]. In the present context, it may be described as follows. Let
the vector x = (Xl! ... , x N) denote the state variables of a neural network.
These variables change in time according to some evolution equation, for
example, a set of coupled differential equations (d/dt)Xi = fi(X) if time is
modeled as a continuous variable t. A solution will be denoted by x(t). If
there exists an auxiliary scalar state function L(x) that is bounded below
and nonincreasing along all trajectories, then the network has to approach a
solution for which L(t) == L(x(t)) does not vary in time.2 The global dynam­
ics can then be visualized as a downhill march on an "energy landscape"
generated by L. In this picture, every solution approaches the bottom of
the valley in which it was initialized.

2Special care has to be taken with respect to unbounded solutions and con­
tinuous families of solutions with equal L. Note at this point that, in the present
chapter, formal rigor often will be sacrificed for transparency of presentation. A
mathematically rigorous introduction to Lyapunov functions can be found in the
monograph of Rouche, Habets, and Laloy [3]. It also contains - apart from a
large number of interesting theorems and proofs - some fascinating examples
that illuminate possible pitfalls due to imprecise definitions.

Andreas V.M. Herz 3

The asymptotic expression for L(t) and the equation (dfdt)L(t) = 0
contain valuable information about the very nature of the attractors -
the first and second levels of analysis. Notice in particular that a solution
that corresponds to a local minimum of the Lyapunov function has to be
asymptotically stable, that is, it attracts every solution sufficiently close to
it.

As an example, consider a gradient system

dXi 8L(x)
dt = - 8Xi . (1.1)

Using the chain rule, the time derivative of L is given by

~L(t) = L 8L dxi = - L dxi N N ()2
dt i=l 8X i dt i=l dt

(1.2)

The last expression is negative unless x(t) is a fixed-point solution. It follows
that, if L(x) is bounded below, the system has to relax to an equilibrium.

The most important feature of Lyapunov's direct method cannot be
overemphasized: The method does not require any knowledge about the
precise time evolution of the network; the mere existence of a bounded func­
tion that is nonincreasing along every solution suffices to characterize the
system's long-time behavior. As a consequence, one can analyze the long­
time dynamics of a feedback network without actually solving its equations
of motion. Furthermore, most Lyapunov functions studied in this chapter
play a role similar to that of the Hamiltonian of a conservative system:
For certain stochastic extensions of the deterministic time evolution, the
network dynamics approach a Gibbsian equilibrium distribution generated
by the Lyapunov function of the noiseless dynamics. This has allowed the
application of powerful techniques from statistical mechanics and has led to
quantitative results about the performance of recurrent neural networks far
beyond the limits of a local stability analysis. The existence of a Lyapunov
function is thus of great conceptual as well as technical importance.

Lyapunov's method suffers, however, from one serious flaw: No system­
atic technique is known to decide whether a dynamical system admits a
Lyapunov function or not. Finding Lyapunov functions requires experience,
intuition, and luck. Fortunately, a wealth of knowledge on both practical
and theoretical issues has been accumulated over the years.

The present chapter is intended as an overview of neural network ar­
chitectures and dynamics where Lyapunov's method has been successfully
employed to study the global network behavior. A general framework for
modeling the dynamics of biological neural networks is developed in Sec.
1.2. This framework allows for a classification of various dynamical schemes
found in the literature and facilitates the formal analysis presented in later
sections.

4 1. Global Analysis of Recurrent Neural Networks

Recurrent networks that relax to fixed-point attractors only have been
used as auto-associative memories for static patterns. Section 1.3 reviews
convergence criteria for a number of prototypical networks: The Hopfield
model [4], the Little model [5], systems with graded-response neurons [6,
7], iterated-map networks [8], and networks with distributed dynamics [9,
10]. A statistical mechanical analysis of networks with block-sequential dy­
namics and results about the convergence to fixed points in networks with
signal delays conclude the section.

Neural networks with signal delays can be trained to learn pattern se­
quences. Such systems are analyzed in Sec. 1.4. It is shown that, with
a discrete-time evolution, these networks can be mapped onto "equiva­
lent networks" with block-sequential updating and no time delays. This
connection allows for a quantitative analysis of the storage of temporal
associations in time-delay networks. Next, the time evolution of a single
neuron with delayed feedback and continuous-time dynamics is discussed.
Two different Lyapunov functions are presented. The first shows that, un­
der certain conditions, all solutions approach special periodic attractorsj
the second demonstrates that, under less restrictive conditions, the system
relaxes to oscillating solutions that need not be periodic.

The pulselike nature of neural activity has frequently been modeled using
(coupled) threshold elements that discharge rapidly when they reach a trig­
ger threshold. With uniform positive couplings, some networks composed
of such integrate-and-fire neurons approach globally synchronized solutions
where all neurons fire in unison. With more general coupling schemes, the
systems approach phase-locked solutions where neurons only exhibit lo­
cally synchronized pulse activity. Section 1.5 presents Lyapunov functions
for such a class of integrate-and-fire models. An additional proof shows that
the phase-locked solutions are reached in minimal time.

1.2 A Framework for Neural Dynamics

Starting with a brief description of the anatomy and physiology of single
neurons, this section introduces a general framework for modeling neural
dynamics.

1.2.1 DESCRIPTION OF SINGLE NEURONS

Neurons consist of three distinct structures: dendrites, a cell body, and an
axon. Dendrites are thin nerve fibers that form highly branched structures
called dendritic trees. They extend from the central part of a neuron, called
the cell body or soma, which contains the cell nucleus. The axon, a single
long fiber, projects from the soma and eventually branches into strands
and substrands. Located along the axon and at its endings are synapses

Andreas V.M. Herz 5

that connect one (presynaptic) neuron to the dendrites and/or cell bodies
of other (postsynaptic) neurons [11].

Neurons communicate via an exchange of electrochemical signals. At
rest, a cell is held at a negative potential relative to the exterior through
selective ion pumps in the cell membrane. If the potential at the soma ex­
ceeds a firing threshold due to incoming signals, a strong electrochemical
pulse is generated. This excitation is called an action potential or spike. It
is propagated along the axon by an active transport process that results
in a solitonlike pulse of almost constant size and duration [12]. Following
the generation of a spike, the membrane potential quickly drops to a sub­
threshold value. After the event, the neuron has to recover for a short time
of a few milliseconds before it can become active again. This time interval
is called the refractory period.

At synapses, action potentials trigger the release of neurotransmitters,
which are chemical substances that diffuse to the postsynaptic cell where
they bind to receptors. This process leads to changes of the local mem­
brane properties of the postsynaptic neuron, causing either an increase
or decrease of the local potential. In the first case, the synapse is called
an excitatory synapse; in the second case, an inhibitory synapse. Through
(diffusive) transport processes along the dendritic tree, an incoming signal
finally arrives at the soma of the postsynaptic neuron where it makes a
usually minute contribution to the membrane potential.

How can one construct a mathematical framework for neural dynamics
that may be used to analyze large networks of interconnected neurons?

Let me begin with the description of neural output activity. A spike
is an all-or-none event and thus may be modeled by a binary variable
as was pointed out by McCulloch and Pitts [13]. It will be denoted by
Si = ±1, where i enumerates the neurons. This specific representation
emphasizes the resemblance between McCulloch-Pitts neurons and Ising
spins.3 Following the conventional notation, Si = 1 means that cell i is
firing an action potential, and Si = -1 means that the cell is quiescent.

In an alternative formulation, a quiescent cell is denoted by Si = O. Both
representations are equivalent if the network parameters are transformed
appropriately. In the integrate-and-fire models that are discussed in this
chapter, the duration of action potentials is set to 0 for simplicity. To obtain
a nonvanishing pulse integral, a spike is modeled by a Dirac 8-function, so
that, formally speaking, one is dealing with a 0/00 representation of action
potentials.

3The Ising model [14] provides an extremely simple and elegant description of
ferromagnets and has become one of the most thoroughly studied models in solid­
state physics. The formal similarity between certain extensions of this model,
namely, spin glasses, and neural networks such as the Hopfield model has stim­
ulated the application of statistical mechanics to neural information processing
(see also Sec. 1.3.6).

6 1. Global Analysis of Recurrent Neural Networks

An action potential is generated if the membrane potential Ui exceeds a
firing threshold Uthresh. Since the trigger process operates without signifi­
cant time lags, spike generation (in the ±1-representation) may be written

(1.3)

where sgn(x) denotes the signum function.
In most of the models that will be analyzed in this chapter, the mem­

brane potential Ui is not reset after the emission of an action potential. An
important exception are networks with integrate-and-fire neurons whose
precise reset mechanism is discussed in Sec. 1.2.3.

Some cortical areas exhibit pronounced coherent activity of many neu­
rons on the time scale of interspike intervals, that is, 10 - 100 ms [15, 16,
17]. Modeling this phenomenon requires a description of output activity in
terms of single spikes, for example, by using integrate-and-fire neurons.4 In
other cases, the exact timing of individual action potentials does not seem
to carry any relevant information. One then may switch to a description in
terms of a coarse-grained variable, the short-time-averaged firing rate V.
Unlike the binary outputs of McCulloch-Pitts neurons, the firing rate is a
continuous variable. The firing rate varies between 0 and a maximal rate
Vrnax , which is determined by the refractory period. Within a firing-rate
description, model neurons are called analog neurons or graded-response
neurons.

In such a real-valued representation of output activity, the threshold
operation (1.3) is replaced by an s-shaped ("sigmoid") transfer function to
describe the graded response of the firing rate to changes of the membrane
potential,

(1.4)

with gi : IR -+ [0, VrnaxJ. The functions gi can be obtained from neuro­
physiological measurements of the response characteristic of a cell under
quasi-stationary conditions.

Once generated by a neuron, say neuron j, an action potential travels as
a sharp pulse along the axon and arrives at a synapse with neuron i after
some time lag Tij' The delay depends on the distance traveled by the signal
and its propagation speed, and may be as long as 10 - 50 ms. It follows that
the release of neurotransmitter at time t does not depend on the present
presynaptic activity but that it should be modeled by some function whose
argument is the earlier activity 8j (t - Tij). Diffusion across the synaptic
cleft adds a distributed delay that is usually modeled by an integral kernel
with a single hump.

What remains in the modeling process is the formalization of the den­
dritic and somatic signal processing. The force driving the membrane poten-

4 Alternative approaches are discussed in the contribution of Gerstner and van
Hemmen in this volume [18).

Andreas V.M. Herz 7

tial Ui up or down will be called the local field and denoted by hi. Formally,
the local field can always be written as a power series of the synaptic input
currents. The exact form of the coefficients depends on the microscopic cell
properties.

Dendrites and cell bodies are complex extended objects with intricate
internal dynamics. This implies that, within any accurate microscopic de­
scription, even the dendrites and soma of a single cell have to be repre­
sented by a large number of parameters and dynamical variables [19, 20].5
However, such a detailed approach cannot be pursued to analyze the time
evolution of large networks of highly interconnected neurons as they are
found in the cerebral cortex, where a neuron may be connected with up to
10,000 other cells [21].

The theory of formal neural networks offers a radical solution to this
fundamental problem. Following a long tradition in statistical physics, the
theory is built on the premise that detailed properties of single cells are not
essential for an understanding of the collective behavior of large systems of
interacting neurons: "Beyond a certain level complex function must be a
result of the interaction of large numbers of simple elements, each chosen
from a small variety." [22]. This point of view invites a long and controver­
sial debate about modeling the brain and, more general, modeling complex
biological systems. Such a discussion is beyond the scope and intention of
the present chapter. Instead, I will cautiously adopt this position as a pow­
erful working hypothesis whose neurobiological foundations require further
investigation.6 The advantage is obvious: Under the assumption that the
function of large neural networks does not depend on microscopic details
of single cells, and knowing that, in general, many incoming signals are
necessary to trigger an action potential, it is sufficient to consider just the
first terms of the power series defining the local field hi. For the rest of this
chapter, I will use the simplest approach and take only linear terms into
account. The local field then may be written as

(1.5)

For two state neurons, the term Vj(t - r) is replaced by 8j(t - r). The
weight Jij(r) describes the influence of the presynaptic activity of neuron
j at time t - r on the local field of neuron i at time t. Input currents due
to external stimuli are denoted by Ifxt(t).

5The argument applies to axons as well, but due to the emergent simplicity of
axonal signal transport - action potentials are characterized by a dynamically
stabilized, fixed pulse shape - a macroscopic description in terms of all-or-none
events is justified.

6Unexpected support for this viewpoint comes from elaborate computer sim­
ulations of the dynamics of single cerebellar Purkinje cells [23].

8 1. Global Analysis of Recurrent Neural Networks

The temporal details of signal transmission are reflected in the func­
tional dependence of Jij (T) on the delay time T. Axonal signal propagation
corresponds to a discrete time lag; diffusion processes across the synapses
and along the dendrites result in delay distributions with single peaks. Dis­
tributed time lags with multiple peaks may be used to include pathways via
interneurons that are not explicitly represented in the model. A synapse is
excitatory if Jij(T) > 0 and inhibitory if Jij(T) < O. Self-couplings Jii(T)
that are strongly negative for small delays may be used to model refractori­
ness [24, 25].7 In network models without synaptic and dendritic delays,
the local field hi is identical to the total synaptic input current to neuron
i, which often is denoted by Ii in the neural network literature.

As shown in this section, there are three main variables to describe the
activity of single neurons - the membrane potential Ui, the output activity
Vi or Si, and the local field hi. These three variables correspond to the three
main parts of a neuron - soma, axon, and dendritic tree. The strongly
nonlinear dependence of Vi or Si on ui captures the "decision process" of
a neuron - to fire or not to fire. This decision is based on some evaluation
of the weighted average hi of incoming signals. To close the last gap in the
general framework, one has to specify the dynamical relation between the
membrane potential Ui and the local field hi.

If there are no transmission delays, Eqs. (1.3)-(1.5) contain only a single
time argument and no time derivatives, that is, they do not describe any
dynamical law. It follows that the relation between Ui and hi has to be
formulated as an evolution equation. If one opts for a description where time
is treated as a discrete variable, the evolution equation will be a difference
equation; otherwise, a differential equation. As a first approximation, both
types of dynamical descriptions may be linear since the main source for
nonlinear behavior, namely, spike generation, is already described by Eq.
(1.3) or (1.4).

1.2.2 DISCRETE-TIME DYNAMICS

Within a discrete-time approach, time advances in steps of fixed length,
usually taken to be unity. To obtain a consistent description, all signal
delays should be nonnegative integers. Accordingly, the temporal integral
J;max Jij(T)Sj(t-T)dT in Eq. (1.5) is replaced by a sum E~~o Jij(T)Sj(t­
T).

In a discrete-time model, the most straightforward dynamic relation be­
tween Ui and hi is the shift operation

(1.6)

TIn some sense, the same is achieved in integrate-and-fire models where the
membrane potential is explicitly reset after spike generation.

Andreas V.M. Herz 9

At a first glance, this dynamical relation neglects any inertia of the mem­
brane potential caused by a nonzero transmembrane capacitance. Accord­
ing to Eq. (1.6), the membrane potentials are just time-shifted copies of
the local fields. Inertia could be included on the single-neuron level by an
additive term O:Ui(t) on the right-hand side of Eq. (1.6); however, a similar
effect can be obtained through a proper choice of the update rule for the
overall network, as will be discussed at the end of this section.

For two state neurons, Eqs. (1.3), (1.5), and (1.6) may be combined to
yield the single-neuron dynamics

(1.7)

where
N 'I'max

hi(t) = L L Jij(r)Sj(t - r) + I;xt(t). (1.8)
j=1 '1'=0

The term Uthresh has been absorbed in I;xt without loss of generality. In
passing, note that, in the exceptional case hi(t) = 0, it is advisable to sup­
plement Eq. (1.7) by the convention Si(t+ 1) = Si(t) for (purely technical)
reasons that will become apparent in Sec. 1.3.1.

For analog neurons, Eqs. (1.7) and (1.8) are replaced by

(1.9)

and
N 'I'max

hi(t) = L L Jij(r)Vj(t - r) + I;xt(t). (1.10)
j=1 '1'=0

The membrane potential Ui no longer appears in Eqs. (1.7)-(1.10) as the
single-neuron description has been reduced from three to two variables­
output activity and local field. Either one might be used as a state variable.

Neurotransmitters are released in small packages by a stochastic mech­
anism that includes spontaneous release at times when no spikes arrive at
a synapse [26, 27]. This phenomenon, known as synaptic noise, is the most
important source of stochasticity in neural signal transmission.

If one takes synaptic noise into account, the local field becomes a fluctu­
ating quantity hi + IIi, where IIi denotes the stochastic contributions. The
probability of spike generation then is equal to the probability that the lo­
cal field exceeds the firing threshold. For two state neurons, this probability
may be written as

(1.11)

where Prob denotes probability and f : R -+ [0,1] is a monotone increasing
function.

10 1. Global Analysis of Recurrent Neural Networks

A careful analysis of synaptic transmission reveals that, under the as­
sumption of linear dendritic processing, the stochastic variable Vi is dis­
tributed according to a Gaussian probability distribution [22, 28]. In that
case, Eq. (1.11) can be approximated by

Prob[Si(t + 1) = ±1] = HI ± tanh[.8hi (t)]), (1.12)

where T == {3-1 is a measure of the noise level. In the limit as T -+ 0,
one recovers the deterministic threshold dynamics (1. 7). In the physics
literature, the update rule (1.12) is known as Glauber dynamics [29]. It was
invented as a heat-bath algorithm for the Ising model [14] and has become
an important tool for analyzing the collective properties of many-particle
systems.

Equations (1.7)-(1.10) describe the time evolution of individual neurons.
This leaves a number of options for the updating process at the level of the
overall network [10].

First, there is the question of how many neurons may change their state
at a time. Theoretical investigations of recurrent networks with discrete­
time dynamics have almost exclusively focused on two cases: parallel dy­
namics (PO) and sequential dynamics (SO). In the former case, all neurons
are updated in perfect synchrony, which has led to the name synchronous
dynamics. In the latter case, only one neuron is picked at each time to
evaluate its new state - one-at-a-time updating - while the activities of
all other neurons remain constant. Parallel updating and sequential up­
dating are two extreme realizations of discrete-time dynamics. Intermedi­
ate schemes will be called distributed dynamics (00) and include block­
sequential iterations where the network is partitioned into fixed clusters of
simultaneously updated neurons.

Next, there is the question of how groups (of one or more neurons) are
selected at each time step. One may have a fixed partition of the network, or
one may choose random samples at each time step. Alternatively, one may
study selective mechanisms such as a maximum-field or greedy dynamics
[30]. Here, the neuron with the largest local field opposite to its own activity
is updated.8

Network dynamics are said to be fair sampling if, on an intermediate
time scale, no neuron is skipped for the updating process on average. The
terminology emphasizes the similarity with the idea of "fairness" used by
the computer science community [31]. On a conceptual level, fair sampling
assures that all neurons have a chance to explore the part of phase space
accessible to them through their single-neuron dynamics. Most computa-

8The network dynamics of integrate-and-fire neurons also may be viewed as
a selective update process: Only those neurons whose local fields are larger than
the threshold are active for the duration of an action potential. After that time,
both output Si and membrane potential Ui are reset to their rest values.

Andreas V.M. Herz 11

(a)

r--l
n n

n

(c)

r--ln n
r--l nn n n
nn rf r--l n n r--l

Fig. 1.1. Schematic representation of discrete-time updating schemes. Horizon­
tal axes represent time, ticks on the vertical axes label the neurons. Delays due
to transmission and computation times are indicated by the finite duration of the
updating "event" for a given neuron. Clocked networks have ticks on the time
axis. (a) One-at-a-time or sequential dynamics (SD); (b) synchronous or parallel
dynamics (PD); (c) distributed dynamics (DD): still clocked, but with arbitrary
update groups at each time step; (d) fully asynchronous dynamics including over­
lapping delays.

tionally useful iteration schemes are of this type. All updating schemes with
a fixed partition or a random selection process are fair sampling. Exceptions
may only occur in pathological situations within selective algorithms.

Finally, there is the question of whether signal delays mayor may not
overlap, as is illustrated in Fig. 1.1. The latter case is of utmost importance
for the storage and retrieval of pattern sequences, as will be discussed in
Sec. 1.4.

Summarizing the above discussion, updating rules for networks with dis­
tributed discrete-time dynamics may be categorized according to the fol­
lowing five criteria:

1. Description of output activity: (a) discretej (b) continuous.

2. Single-neuron dynamics: (a) deterministicj (b) stochastic.

3. Size of group to be updated at each time step:

(a) all neurons - parallel dynamics (PD)j

(b) some neurons - distributed dynamics (DD)j

12 1. Global Analysis of Recurrent Neural Networks

(c) one neuron - sequential dynamics (SO).

4. Selection of the update group at each time step: (a) fixed partition;
(b) random sample; (c) selective choice.

5. Handling of delays: (a) overlapping not allowed; (b) overlapping al­
lowed.

Most discrete-time descriptions appearing in the literature can be classi­
fied by these five criteria. For instance, Caianiello's model [32] uses McCul­
loch-Pitts neurons (rule la) and includes a broad distribution of transmis­
sion delays (rule 5b). All neurons are updated at the same time (rules 3a
and 4a) according to a deterministic threshold operation (rule 2a). The Lit­
tle model [5] differs from Caianiello's approach in that it describes single
neurons as stochastic elements (rule 2b) with instantaneous interactions
only (rule 5a). In the Hopfield model [4], neurons are updated one at a
time (rule 3c), again without signal delays (rule 5a).

If neurons are picked in a random order, there is a nonzero chance that a
neuron will be skipped during an elementary cycle of the network dynamics.
On the level of macroscopic order parameters, this leads to an effective
inertia comparable to that generated by an additive term aUi(t) in Eq.
(1.6).9

In closing this section, we introduce some helpful notation: Networks with
deterministic parallel dynamics, continuous neurons, and no transmission
delays (rules lb, 2a, 3a, 4a, and 5a) will be called iterated-map networks
(1M); those with (a broad distribution of) transmission delays and a deter­
ministic parallel dynamics (rules 2a, 3a, 4a, and 5b) will be referred to as
time-delay networks (TO).

1.2.3 CONTINUOUS-TIME DYNAMICS

The step size in a discrete-time description is usually identified with the
duration of an action potential. This implies on the one hand that such
a description cannot accommodate the time resolution required to study
the synchronization of action potentials.10 On the other hand, the feed­
back delay implicitly built into any discrete-time description may lead to
dynamical artefacts such as spurious oscillations. To avoid both problems,
one may alternatively study networks with continuous-time dynamics.

9For a derivation of the evolution equations of macroscopic order parameters,
see for example, reference [33J.

lODecreasing the step size leads to a complication in the mathematical formula­
tion because one is forced to introduce effective delayed interactions if one wants
to assure that action potentials last for multiple elementary time steps.

Andreas V.M. Herz 13

Graded-Response Neurons

Membrane potentials of real neurons are subject to leakage currents due
to the finite resistivity of biological membranes. Once charged by a short
input current modeled by the local field hi(t), the membrane potential Ui(t)
of cell i relaxes to some rest value that is set to 0 for simplicity.

The physics of charging and leakage is best captured by the linear first­
order differential equation

(1.13)

Here, C denotes the input capacitance of a neuron and R is its trans­
membrane resistance. Model neurons whose membrane potential changes
according to the differential equation (1.13) will be called graded-response
neurons (GR).

Inserting Equation (1.5) into (1.13), the time evolution of graded-re­
sponse neurons may be written as

(1.14)

where, as in Sec. 1.2.1, the output activity V; depends on the membrane
potential Uj through the nonlinear response characteristic (1.4).

Similar to the discrete-time dynamics considered in Sec. 1.2.2, one of the
original three variables to describe neural activity has become superfluous.
In Sec. 1.2.2, the membrane potential Ui(t) was expressed through the
(time-shifted) local field hi (t -1) j now, the local field hi (t) has been replaced
by the membrane potential Ui(t) and its time derivative Ui(t).

Integrate-and-Fire Neurons

Below the firing threshold, (leaky) integrate-and-fire neurons operate in
the same way as graded-response neurons [Eq. (1.13)]. However, when the
membrane potential of a cell reaches the threshold Uthresh, the cell produces
an action potential and resets its potential to Ureset. For convenience, units
can be chosen such that Uthresh = 1 and Ureset = O.

Assuming vanishing signal delays and action potentials of negligible du­
ration, the local field hi(t) of neuron i then is given by

hi(t) = L Jij/j(t) + I;xt(t),
j

(1.15)

where the instantaneous firing rate /j(t) is a sum of Dirac 6-functions,

/j(t) = L 6(t - tj), (1.16)
n

14 1. Global Analysis of Recurrent Neural Networks

and the tj are the times at which neuron j generates an action poten­
tial. Throughout the remaining sections on integrate-and-fire neurons, the
external input 1Ft(t) is assumed to be constant in time, 1fxt(t) = 1Ft.

The general behavior of the system is now as follows. While none of the
neurons is producing an action potential, Eq. (1.13) can be integrated to
yield

for t ~ to, (1.17)

where to denotes the last firing time. When the potential Uj of neuron j
reaches 1 (the threshold), it drops instantaneously to 0. At the same time,
the potential Ui of each neuron i to which j makes a synapse is increased
by Jij •

Because the durations of action potentials and synaptic currents have
been set equal to 0, the description given so far contains an ambiguity. To
which value should neuron i be reset if at time t an action potential is
produced by cell j, if the synapse from j to i is excitatory, Jij > 0, and if
Ui(t-) > 1 - Jij? In this case, the action potential will raise Ui above 1,
and cell i should generate its action potential during the flow of synaptic
current produced by the synapse Jij. When synaptic (and dendritic) time
constants of the nerve cells to be modeled are longer than the duration of
action potentials, what should actually happen in the model is that cell j
should fire when its potential reaches Uthresh = 1, and the synaptic current
from synapse Jij that arrives after i fires should be integrated to yield a
positive potential (relative to Ureset) afterward. Thus, if cell j fires first and
at time t, and that event evokes a firing of neuron i, then, after both action
potentials have been generated, the two membrane potentials should be

(1.18)

and
(1.19)

The first equation represents the fact that j fired first when Uj = 1 was
reset to 0, and when neuron i subsequently generated its action potential,
this changed the potential of j to Jji. The second equation represents the
fact that i fired second, reduced its potential by 1 when it did so, but
received the synaptic current Jij when neuron j fired.

The updating rule can be generalized to a large network of neurons by the
following algorithm. As the potentials all increase with time, a first neuron j
reaches Uj = 1. Reset that potential to 0. Then change the potential of each
neuron i by Jij . If, following this procedure, some of the potentials become
greater than 1, pick the neuron with the largest potential, say, neuron k,
and decrease its potential by 1.11 Then change the potential of each neuron

lllf several neurons exhibit the same maximum potential, one may use some
fixed, random, or selective update order to pick one of them.

Andreas V.M. Herz 15

1 by Jlk. Continue the procedure until no membrane potential is greater
than 1. Then "resume the flow of time," and again let each potential Ui
increase according to Eq. (1.17).

This deterministic algorithm preserves the essence of the idea that firing
an action potential carries a neuron from Uthresh to Ureset, and effectively
apportions the synaptic current into a part that is necessary to reach thresh­
old and a part that raises the potential again afterward. Because the firing
of one neuron can set off the instantaneous firing of others, this model can
generate events in which many neurons are active simultaneously.

When synaptic (and dendritic) time constants are shorter than the dura­
tion of an action potential, all contributions from the synaptic current that
arrive during spike generation are lost, and Eq. (1.19) should be replaced by
Ui(t+) = O. Generalizing from these two extreme cases, Eq. (1.19) becomes

Ui(t+) = 'Y[Ui(t-) + Jij - 1] (1.20)

with 0 ~ l' ~ 1.
For models with l' = 1, the order in which the neurons are updated in

an event in which several neurons fire at once does not matter as long as
Jij ~ O. For these cases, any procedure for choosing the updating sequence
of the neurons at or above threshold will yield the same result because
the reset is by a fixed negative amount (here: -1) regardless of whether
immediately prior to reset Ui = 1 or Ui > 1.

If, in addition to choosing l' = 1, the limit R -+ 00 is considered, one
is dealing with perfectly integrating cells. For a network of such neurons,
the cumulative effects of action potentials and slow membrane dynamics
commute if Jij ~ O. This makes the model formally equivalent to a class of
Abelian avalanche models [34, 35]. Closely related earthquake models and
(discrete-time) "sandpile models" relax to a critical state with fluctuations
on all length scales, a phenomenon known as self-organized criticality [36].

The similarity between the microscopic dynamics of such model systems
and networks of integrate-and-fire neurons has led to speculations about a
possible biological role of the stationary self-organized critical state [37, 38,
39]. However, whereas for earthquakes, avalanches, and sandpiles the main
interest is in the properties of the stationary state, for neural computation
it is the convergence process itself which does the computation and is thus
of particular interest. Furthermore, computational decisions must be taken
rapidly, and in any event the assumption of constant input from other
cortical areas implicit in all models breaks down at longer times [40, 41].

1.2.4 HEBBIAN LEARNING

The previous sections focused on the dynamics of neural activity. Synaptic
efficacies were treated as time-independent parameters. Real synapses, how­
ever, are often modifiable. As was postulated by Hebb [42], their strengths
may change in response to correlated pre- and postsynaptic activity: "When

16 1. Global Analysis of Recurrent Neural Networks

an axon of cell A is near enough to excite cell B and repeatedly or persis­
tently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A's efficiency, as one of the cells firing
B, is increased."

Hebbian plasticity has long been recognized as a key element for asso­
ciative learning [43].12 How should it be implemented in a formal neural
network that might include transmission delays?

Hebbian learning is local in both space and time: Changes in synaptic
efficacies depend only on the activity of the presynaptic neuron and the
evoked postsynaptic response. Within the present framework, presynaptic
activity is described by the axonal output Vj or Sj. Which neural variable
should be chosen to model the postsynaptic response?

Neurophysiological experiments demonstrate that postsynaptic spiking is
not required to induce long-term potentiation (LTP) of synaptic efficacies
- "a critical amount of postsynaptic depolarization is normally required to
induce LTP in active synapses, but sodium spikes do not play an essential
role in the LTP mechanism" [45]. This result implies that the postsynaptic
response is best described by the local field hi - it represents the dendritic
potential and is not influenced by the detailed dynamics of the cell body
(Ui) or the spike-generating mechanism (Vi or Si)'

Let us now study a discrete-time system where delays arise due to the
finite propagation speed of axonal signals, and focus on a connection with
delay r between neurons j and i. Originally, Hebb's postulate was formu­
lated for excitatory synapses only, but, for simplicity, it will be applied to
all synapses of the model network.

A presynaptic action potential that arrives at the synapse time t was
generated at time t - r. Following the above reasoning, Jij (r) therefore
should be altered by an amount that depends on Vj(t - r) and hi(t), most
simply, their product

(1.21)

The bilinear expression (1.21) does not cover saturation effects. They could
be modeled by an additional decay term - aJij(r)6.t on the right-hand
side of Eq. (1.21).

The combined equations (1.3)-(1.5) and (1.21) describe a "double dy­
namics," where both neurons and synapses change in time. In general,
such a system of coupled nonlinear evolution equations cannot be analyzed
using Lyapunov's direct method, although there are some interesting coun­
terexamples [46]. To simplify the analysis, one usually splits the network
operation into two phases - learning and retrieval. For the learning phase,
one frequently considers a clamped scheme, where neurons evolve according

12Various hypotheses about the microscopic mechanisms of synaptic plasticity
are the subject of an ongoing discussion [44J.

Andreas V.M. Herz 17

to external inputs only, hi(t) = Ifxt(t). Once the learning sessions are over,
the Jij (r) are kept fixed.

In the following, we focus on deterministic discrete-time McCulloch-Pitts
neurons in a clamped scheme with Ifxt(t) = ±1. This simplification implies
that Sj(t+1) = I;xt(t). Starting with a tabula rasa, Jij(r) = 0, one obtains
after P learning sessions, labeled by J." and each of duration Du ,

P D,.

Jij(r) = e(r)N-1 L L I;Xt(tJL)I;xt(tJL - 1- r) == e(r)Jij(r). (1.22)
JL=l t,.=l

The parameters e(r) model morphological characteristics of the axonal de­
lay lines, and N-1 is a scaling factor useful for the theoretical analysis.
Note that an input sequence should be offered rmax time steps before the
learning session starts so that all variables in Eq. (1.22) are well defined.
According to Eq. (1.22), synapses act as microscopic feature detectors dur­
ing the learning sessions: They measure and store correlations of the taught
sequences in both space (i,j) and time (r). This leads to a resonance phe­
nomenon where connections with delays that approximately match the time
course of the external input receive maximum strength. Note that these
connections are also the ones that would support a stable sequence of the
same duration. Thus, due to a subtle interplay between external stimu­
lus and internal architecture (distribution of r's), the Hebb rule (1.22),
which prima facie appears to be instructive in character, exhibits in fact
pronounced selective characteristics [47].

An external stimulus encoded in a network with a broad distribution of
transmission delays enjoys a rather multifaceted representation. Synaptic
couplings with delays that are short compared to the typical time scale
of single patterns within the taught sequence are almost symmetric in the
sense that Jij(r) ~ Jij(r). These synapses encode the individual patterns
of the sequence as unrelated static objects. On the other hand, synapses
with transmission delays of the order of the duration of single patterns of
the sequence are able to detect the transitions between patterns. The corre­
sponding synaptic efficacies are asymmetric and establish various temporal
relations between the patterns, thereby representing the complete sequence
as one dynamic object.

Note that the interplay between neural and synaptic dynamics, and in
particular the role of transmission delays, has been a subject of intensive
research [32, 42, 48, 49]. The full consequences for the learning and retrieval
of temporal associations have, however, been explored only recently.

As a special case of Eq. (1.22), consider the Hebbian learning of static
patterns, Irt (tJL) = ~r, offered during learning sessions of equal duration
DJL = D to a network with a uniform delay distribution. For mathematical
convenience, the distribution is taken to be e(r) = D-1. In this case, Eq.

18 1. Global Analysis of Recurrent Neural Networks

(1.22) yields synaptic strengths that are independent of the delay T,

P

Jij(T) = Jij = N-1 I:~r~f, (1.23)
J.!=l

and symmetric,
(1.24)

The synaptic symmetry (1.24) plays a key role in the construction of Lya­
punov functions, as will be shown in the following sections.

Another kind of symmetry arises if all input sequences Iixt(tJ.!) are cyclic
with equal periods DJ.! = D. If one defines patterns ~fa by ~fa = Iixt(tJ.! = a)
for 0 :s: a < D, one obtains from Eq. (1.22)

P D-l

iij(T) = N-1 I: I: era~f.a-l-T· (1.25)
J.!=l a=O

Note that the synaptic strengths are now in general asymmetric. They do,
however, obey the symmetry iij(T) = iij(D - (2 + T)). For all networks
whose a priori weights £(T) satisfy C:(T) = c:(D - (2 + T)), this leads to an
extended synaptic symmetry [50, 51]'

(1.26)

extending the previous symmetry (1.24) in a natural way to the tempo­
ral domain. This type of synaptic symmetry allows the construction of a
Lyapunov function for time-delay networks, as will be explained in Sec.
1.4.1.

1.3 Fixed Points

This section focuses on the storage of static patterns in networks with
instantaneous interactions. It will be shown that, under certain conditions
for the model parameters, various network dynamics exhibit the same long­
time behavior: They relax to fixed points only.

Feedback networks with fixed-point attractors can be made potentially
useful devices for associative computation as soon as one knows how to
embed desired activity patterns as attractors of the dynamics. In such cir­
cumstances, an initial state or "stimulus" lying in the basin of attraction of
a stored "memory" will spontaneously evolve toward this attractor. Within
a biological context, the arrival at the fixed point may be interpreted as a
cognitive event, namely, the "recognition of the stimulus."

The hypothesis that the brain utilizes fixed-point attractors to perform
associative information processing has led to quantitative predictions [52]

Andreas V.M. Herz 19

that are in good agreement with neurophysiological measurements [53].
However, even if the hypothesis was refuted in its literal sense, it would
nevertheless continue to provide an important conceptual tool to think
about neural information processing.

1.3.1 SEQUENTIAL DYNAMICS: HOPFIELD MODEL

Hopfield's original approach [4] is based on McCulloch-Pitts neurons with
discrete-time dynamics, instantaneous interactions, and constant external
stimuli. Neurons are updated one at a time, either according to a determin­
istic threshold operation (1.7) or probabilistic Glauber dynamics (1.12). In
the original model neurons are chosen in a random sequential manner, but
in simulations the update order is often fixed in advance, corresponding
to a quenched random selection. Within the classification scheme of Sec.
1.2.2, the Hopfield model is thus characterized by rules la, 3c, and 5a.

If the single-neuron dynamics are deterministic, the time evolution of the
network is a special realization of Eqs. (1.7) and (1.8) and may be written
as

Sk{t + 1) = sgn[hk{t)],

where k is the index of the neuron updated at time t and

hk(t) = L Jkj 8j (t) + I~xt.
j

All other neurons remain unchanged, Sj{t + 1) = Sj(t) for j '" k.

(1.27)

(1.28)

What can be said about the global dynamics generated by Eqs. (1.27)
and (1.28)? Consider the quantity

N N
LSD = -! " .kS·S· - " If!xtS· 2 ~ '3 '3 ~, ,.

i"j=l i=l

(1.29)

The change of LSD in a single time step, ALSD(t) == LSD(t + 1) - LSD{t),
is

1 N
ALsD{t) = - 2 L Jij[Si{t + I)Sj{t + 1) - Si {t)Sj (t)]

i"j=l
N

- L Ifxt[Si{t + 1) - Si{t)]. (1.30)
i=l

Assume again that neuron k is updated at time t. The difference ASj{t) ==
8j (t + 1) - 8j (t) equals 0 or ±2 if j = k and vanishes otherwise. For the
special case where the synaptic efficacies satisfy the symmetry condition

20 1. Global Analysis of Recurrent Neural Networks

(1.24), one obtains

<1LSD(t) = <1S.(t)J"S.(t) - <1S.(t) [t. J.;S;(t) + If'l
= -~Jkk[LlSk(t)]2 - LlSk(t)hk(t). (1.31)

According to Eq. (1.27) and the remark following Eq. (1.8), neuron k does
not change its state if hk(t)Sk(t) ~ O. If this condition is not fulfilled, the
neuron flips and LlSk(t) = 2Sk(t + 1). The change of LSD then may be
written as

LlLsD(t) = -2[Jkk + Sk(t + l)hk(t)]
= -2[Jkk + Ihk(t)I]. (1.32)

The last line follows from the evolution equation (1.27) and the identity
lal = a sgn(a). Equation (1.32) proves that LSD is nonincreasing along
every solution if the self couplings Jii are nonnegative.13 As a finite sum
of finite terms, LSD is bounded. If Jii ~ 0 for all neurons, LSD(t) has to
approach a limit as t --+ 00. Furthermore, LlLso(t) vanishes only if the
neuron updated at time t does not change its state.14 This proves that the
Hopfield network relaxes to fixed-point solutions only. According to Eqs.
(1.27) and (1.28), these equilibria satisfy

S, =.gn [~J';S, + if" 1 for all i. (1.33)

The results obtained may be summarized as follows:
If the synaptic efficacies Jij satisfy the symmetry condition {1.24}, and if

the self- interactions Jii are nonnegative, then the dynamics of the Hopfield
model [Eqs. {1.27} and {1.28}] admit the Lyapunov function {1.29} and
converge to fixed points {1.99} only.

Let me clarify a potentially confusing point. For neural networks with
McCulloch-Pitts neurons, the state space consists of the corners of an N­
dimensional hypercube {-I, +1}N, also known as Hamming space. In this
discrete space, the smallest state change possible is a single-spin flip, Si --+

-Si. As a consequence, the system may converge to fixed points that are not
stable with respect to activity changes of single neurons, in the sense that

13This condition is satisfied in Hopfield's original model, where all self-couplings
are set to O.

14For zero self-coupling Jlclc, and in the exceptional case hlc(t) = 0, ~LSD(t)
vanishes for any update rule, even if one chooses SIc(t+ 1) = -SIc(t) if hlc(t) = O.
However, if one sets SIc(t + 1) = SIc(t) as mentioned in Sec. 1.2.1, ~LSD(t) = 0
implies ~SIc(t) = 0, as desired.

Andreas V.M. Herz 21

a single-spin flip made to a fixed-point solution could actually lower L. For
instance, consider a network where, for some neuron i, the self-interaction
Jii dominates possible contributions from other neurons, Jii < ~#i \Jij\'
In such a case, the initial value of Si will never be changed, independent
of its sign. The earlier results about network convergence continue to hold;
that is, the system evolves towards fixed-point solutions only, but those are
not necessarily local minima of L in the discrete-space sense.

1.3.2 PARALLEL DYNAMICS: LITTLE MODEL

The Little model [5] uses the most simple discrete-time dynamics conceiv­
able: It is a network of McCulloch-Pitts neurons, updated in parallel using
instantaneous interactions only (rules la, 3a, 4a, and 5a). Within a deter­
ministic description of single neurons (rule 2a), the time evolution of the
network is given by

for all i, (1.34)

where
(1.35)

j

Except for the update order, Eqs. (1.34) and (1.35) are identical to Eqs.
(1.27) and (1.28). Accordingly, the fixed-point solutions of the Little model
are the same as those of the Hopfield model, given by Eq. (1.33). Are there
additional time-dependent attractors?

For simplicity, only the case Iixt = 0 will be analyzed in this section.
Nonzero inputs will be treated in Secs. 1.3.4 and 1.3.5. As in Sec. 1.3.1, we
focus on networks with symmetric couplings and study the time evolution
of a suitable auxiliary function:

N N
Lpo = - L Ihil = - L hi sgn(hi). (1.36)

i=l i=l

If one evaluates this expression along a solution generated by the network
dynamics (1.34) and (1.35), one obtains

N

Lpo(t) = - L hi (t)Si(t + 1)
i=l

N

= - L JijSj {t)Si (t + 1). (1.37)
i ,j=l

Using the synaptic symmetry in Eq. (1.24), the last line also may be written
as

N

Lpo(t) = - L Sj (t)hj (t + 1). (1.38)
j=l

22 1. Global Analysis of Recurrent Neural Networks

The difference .6.LPD (t) == LpD(t + 1) - LpD(t) is then

N N
.6.LpD(t) = - L Ihi(t + 1)1 + L Si(t)hi(t + 1)

i=l i=l
N

= - L[Si(t + 2) - Si(t)]hi(t + 1), (1.39)
i=l

where Eq. (1.34) has been used to obtain the last equation.
Like LSD, the function L pD is bounded. Evaluated along any solution of

Eqs. (1.34) and (1.35), L pD is nonincreasing because the right-hand side
of Eq. (1.39) is nonpositive; the product Si(t)hi(t + 1) is ±hi(t + 1) and
thus smaller or at most equal to Ihi(t + 1)1. Consequently, .6.LpD(t) has
to approach 0 as t -+ 00 . .6.LpD (t) vanishes only if the system settles into
a state with Si(t + 2) = Si(t) for all i, that is, a fixed-point solution [Eq.
(1.33)J or a limit cycle of period two. In the latter case, some neurons switch
between firing and quiescence at every time step while all other neurons
remain in one activity state:

Assume that the synaptic couplings Jij satisfy the symmetry condition
(1.24). Then the dynamics of the Little model [Eqs. (1.94) and (1.95)J
admit the Lyapunov function (1.96) and converge to fixed points (1.99) or
period-two oscillations.

As will be shown in Sec. 1.3.5, the oscillating solutions can be excluded
under additional assumptions for the synaptic couplings.

1.3.3 CONTINUOUS TIME: GRADED-RESPONSE NEURONS

This section deals with the continuous-time dynamics of neural networks
composed of analog neurons without signal delays. The network dynamics
in Eq. (1.14) reduce to a set of coupled ordinary differential equations,

N

Cdd Ui = -R-1Ui + LJijVj + Irt ,
t . 1 J=

(1.40)

where
(1.41)

Since the dynamical variables Ui and Vi in Eq. (1.40) are taken at equal
times, all temporal arguments have been omitted.

The input-output relation gi will be called sigmoid if it is increasing,
differentiable, and grows in magnitude more slowly than linearly for large
positive or negative arguments. The maximum slope of gi will be referred to
as the gain 'Yi of neuron i. The nonlinearity is often modeled by a hyperbolic
tangent, gi(Ui) = ~[1 + tanh(-Yiui)J. In the high-gain limit 'Yi -+ 00, one
obtains a 0/1 representation of neural activity. It can be mapped onto
Ising spins [14J through the identification Si = 2Vi - 1.

Andreas V.M. Herz 23

Cohen and Grossberg [6] and Hopfield [7] studied the global behavior of
networks with graded- response neurons, sigmoid response functions, and
symmetric synapses. They used Lyapunov functions of the form

N N N

LGR = -~ L Jij ViVj - L IixtVi + L R-1Gi(Vi),
i,j=l i=l i=l

(1.42)

where the functions Gi(Vi) are given by

(1.43)

The last expression is well defined because sigmoid nonlinearities are
strictly monotone by definition. Since sigmoid functions grow less than
linearly for large absolute arguments, the functions Gi(Vi) increase faster
than Vi2 as Vi -+ ±oo. The function LGR is therefore bounded below.

Let us compute the time derivative of LGR along a solution of the network
dynamics. Using the synaptic symmetry in Eq. (1.24), one obtains

= - ~ [~ J. y. + Jf:xt - R-1U'] dVi
L.J L.J '3 3' 'dt
i=l j=l
N

= _ L c-1 dUi dVi
i=l dt dt

= _ t C-1 (dU i)2 dgi $ O.
. dt dUi
&=1

(1.44)

The formula proves that the function LGR is nonincreasing along every
trajectory. The time derivative vanishes only at equilibria, which are given
by

V; = 9' [R Y J,; V; + RIt"'] , (1.45)

or at network states, where dgi/dui = 0 for all i. If, however, the latter
states do not satisfy Eq. (1.45), the system will continue to evolve according
to Eqs. (1.40) and (1.41). The final result may be stated as follows:

Suppose that the synaptic efficacies in a network oj graded-response neu­
rons [Eqs. {1.40} and (1.41)] respect the symmetry condition (1.24) and
that the input-output relations are sigmoid. Then the network dynamics ad­
mit the Lyapunov function {1.42} and relax to fixed-point solutions (1.45)
only.

A comparison of the Lyapunov function LGR with the Lyapunov function
LSD provides some hints about how to construct Lyapunov functions for

24 1. Global Analysis of Recurrent Neural Networks

systems with sigmoid input-output characteristics: The additional term
Ei R-IGi(Vi) dominates the quadratic term -~ Ei,j Jij ViVj for large Vi
if the 9i are sigmoid. Consequently, the function LGR is bounded below even
if the 'Vi are not.15 Furthermore, the term Ei R-1Gi (Vi) is constructed in
such a way that its partial derivative with respect to Vi supplies the term
R-1ui, which makes it possible to insert the evolution equation (1.40) into
Eq. (1.44). Similar ideas will be applied in Secs. 1.3.4 and 1.3.5 to analyze
discrete-time networks with sigmoid nonlinearities.

1.3.4 ITERATED-MAP NETWORKS

Feedback networks with deterministic analog elements and synchronous
discrete-time updating have been studied for a long time [32, 48, 49]. For
vanishing signal delays and fixed inputs, the network dynamics, Eqs. (1.9)
and (1.10), become

'Vi(t + 1) = 9i[hi(t)] for all i, (1.46)

where
N

hi(t) = LJijVj(t) +I;xt. (1.47)
j=1

Systems described by Eqs. (1.46) and (1.47) have been called iterated-map
networks [8]. Their fixed points coincide with those of graded-response net­
works [Eq. (1.45)] once one sets R = 1.

lfthe input-output functions 9i are threshold functions, 9i(Ui) = sgn(ui),
one recovers the Little model, Eqs. (1.34) and (1.35). This connection indi­
cates that one may find a Lyapunov function for iterated-map networks by
combining appropriate parts of the Lyapunov function for the Little model
with that for networks of graded-response neurons.

Let us follow the approach of Marcus and Westervelt [8] and study the
time evolution of the function

N N
LIM(t) = - L Jij Vi(t)V;(t - 1) - L I;xt[Vi(t) + Vi(t -1)]

i,j=1 i=1

N

+ L[Gi ('Vi (t» + Gi(Vi(t - 1»], (1.48)
i=1

where Gi('Vi) is defined as in Eq. (1.43).
Apart from a global time shift, the first term in Eq. (1.48) corresponds

to LpD, as can be seen from Eq. (1.37); the other terms should be com-

1I1lt should be noted that, if a Lyapunov function is not globally bounded below,
it still might be used for a local analysis.

Andreas V.M. Herz 25

pared with the second and third terms in Eq. (1.42). Notice that, un­
like LpD in Eq. (1.36), the function LIM is written as an explicitly time­
dependent function with temporal arguments t and t - 1. In principle, one
could use the evolution equations (1.46) and (1.47) and replace Vi(t) by

gi [I:f=l Jij Vj (t - 1) + Iixt] to obtain a description that involves a single
time argument only. However, since we mainly are interested in the evalu­
ation of LIM along trajectories, the shorter definition in Eq. (1.48) suffices.

Under the assumption of synaptic symmetry in Eq. (1.24), the temporal
difference ~LIM(t) == LIM(t + 1) - LIM(t) is

~LIM(t) = - L hi(t)~2 Vi(t) + L[Gi(Vi(t + 1)) - Gi (Vi (t - 1))], (1.49)
i i

where
~2 Vi(t) == Vi(t + 1) - Vi(t - 1) (1.50)

is the change of Vi over two time steps.
The right-hand side of Eq. (1.49) is 0 if ~2 Vi(t) = 0 for all i. Let us

analyze the case where ~2 Vi(t) =f:. 0 for at least some i. For sigmoid gi, gil is
single-valued and increasing. Consequently, Gi is strictly convex. Through
a Taylor expansion of Gi(Vi(t - 1)) around Vi(t + 1), one obtains

For an illustration of the ineqUality, see the left part of Fig. 1.2.
Inserting the identity

(1.52)

and Eq. (1.51) into Eq. (1.49), one arrives at the expression

(1.53)

where the strict inequality holds if ~2 Vi(t) =f:. 0 for at least one neuron.
As was demonstrated in the last section, the functions Gi(Vi) increase

faster than Vi2 for large IViI. This result implies that LIM is bounded below.
As is shown by Eq. (1.53), the function LIM strictly decreases along any
solution of Eqs. (1.46) and (1.47) unless ~2Vi(t) = 0 for all neurons. The
derivation may be summarized in the following way:

Assume that the synaptic efficacies in an iterated-map network {Eqs.
(1..46) and {1.47)j are symmetric {Eq. (1.24}J and that the nonlineari­
ties are sigmoid. Then the network dynamics admit the Lyapunov function
{1.48} and relax to fixed-point solutions {1.45} or period-two oscillations.

In closing this section, let us briefly discuss antisymmetric synaptic cou­
plings,

(1.54)

26 1. Global Analysis of Recurrent Neural Networks

g.
I

Fig. 1.2. Illustration of the inequalities (1.51) and (1.58) for a sigmoid input­
output function 9i(Vi). The convex function Gi(Vi) is defined in Eq. (1.43). The
straight line on the left-hand side and the parabola on the right-hand side are tan­
gent to Gi(Vi). The inequality (1.51) is the statement A < B, and the inequality
(1.58) is the statement C < D.

The derivation of Sec. 1.3.2 for the Little model (with no external input)
shows that, if Eq. (1.54) holds, one obtains

N

~LpD{t) = - L:[Si{t + 2) + Si{t)]hi{t + 1). (1.55)
i=l

In this case, the network approaches solutions that satisfy Si{t + 2) =
-Si{t), that is, special limit cycles with period four [54].

It is left as an exercise to verify the same result for iterated maps without
external input. Here, an additional condition is required, namely, that the
input-output characteristics have to be odd functions, 9i ('Vi) = - 9i (- Vi).
The interested reader may also try to construct Lyapunov functions for
more general systems. In particular, he or she could look at two problems:
(I) What kind of time-varying external stimuli can be incorporated into
the Lyapunov function of the Little model if one focuses on antisymmet­
ric couplings? (2) Are there Lyapunov functions for neural networks with
McCulloch-Pitts neurons, antisymmetric couplings, and sequential dynam­
ics with fixed update order?

1.3.5 DISTRIBUTED DYNAMICS

In this section discrete-time updating schemes are considered that gener­
alize beyond the Hopfield and Little models on both the single-neuron and
network levels. Neurons are described by continuous variables with deter-

Andreas V.M. Herz 27

ministic single-cell dynamics, that is, they fall into classes 1 band 2a in
the scheme of Sec. 1.2.2. McCulloch-Pitts neurons with stochastic Glauber
dynamics are discussed in Sec. 1.3.6. For the network dynamics, all choices
of rules 3 and 4 are allowed that are fair sampling and do not lead to over­
lapping delays (rule 5a). The network dynamics are thus defined by a set
of coupled nonlinear discrete-time equations:

if i is in U(t),
otherwise.

(1.56)

Here, U(t) denotes the group of neurons updated at time t. The distributed
dynamics, Eq. (1.56), reduce to block-sequential algorithms studied by
Goles-Chacc et al. [9] if one considers McCulloch-Pitts neurons and fixed
update groups Uk, k = 0,1, ... , K -1 with U(t) = Ut(modulo K).

There are a number of reasons to study partially parallel network dynam­
ics such as Eq. (1.56). First, one may achieve a better understanding of the
essential ingredients needed to construct feedback networks that possess
fixed-point attractors only. Second, distributed dynamics map naturally on
the architecture of parallel computers or computer networks. Third, the
evolution equations (1.56) extend iterative methods that have been devel­
oped within the computer science community to solve nonlinear systems
of equations [55, 56, 57, 58] to systems with noncontracting functions and
multiple solutions.

What can be said about the long-time behavior of neural networks with
distributed dynamics? As in Sees. 1.3.1 - 1.3.4, let us assume that the
synaptic couplings are symmetric [Eq. (1.24)] and that the input-output
characteristics are sigmoid. Consider again the Lyapunov function of net­
works with graded-response neurons in Eq. (1.42). The function now will be
called LDD to distinguish its discrete-time evolution from the continuous­
time evolution of Sec. 1.3.3.

The only neurons that may change their state at time t belong to the
update group U(t). Accordingly, ~Vi(t) == Vi(t + 1) - Vi(t) vanishes for
all other neurons. Using the symmetry [see Eq. (1.24)] of the synaptic
couplings, the change ~LDD(t) = LDD(t + 1) - LDD(t) is given by

1 N
~LDD(t) = -"2 L L Jij~Vi(t)~V;(t) - L L JijV;(t)~Vi(t)

iEU(t) jEU(t) j=1 iEU(t)

- L Iixt~Vi(t) + L [Gi(Vi(t + 1)) - Gi(Vi(t)). (1.57)
iEU(t) iEU(t)

Since the functions gi(Vi) are assumed to be sigmoid, the auxiliary func­
tions Gi(Vi) are again strictly convex. Expanding Gi(Vi(t)) to second order
around Vi(t + 1) and replacing the coefficient of the quadratic term with
the smallest possible value, that is, 7;1, the following upper bound can be

28 1. Global Analysis of Recurrent Neural Networks

established (see also the right part of Fig. 1.2):

Gi{Vi{t + 1» - Gi{Vi{t)) ::; LlVi{t)G~{Vi{t + 1)) - ~[LlVi{t)]2'Yil. (1.58)

Equality holds if and only if Vi{t + 1) = Vi (t). Inserting Eqs. (1.52) and
(1.58) into Eq. (1.57) gives

LlLoo{t) ::; -~ L L (Jij + Oij'Yi-1)LlVi{t)LlV;{t). (1.59)
iEU(t) jEU(t)

To facilitate further discussion, let us define W(t) as the number of
neurons in the group U(t) and symmetric matrices U(t) of dimension
W (t) x W (t) as submatrices of the connection matrix J, which are given by
the synaptic strengths of those neurons that are updated at time t. For the
Hopfield model, Eqs. (1.27) and (1.28), where updating is one-at-a-time,
W(t) = 1 for all t, and U{t) reduces to the self-interaction term Jii , where
i denotes the neuron being updated at time t. For the Little model, Eqs.
(1.34) and (1.35), or iterated-map analog networks, Eqs. (1.46) and (1.47),
the matrix is identical to J itself. As is obvious from these limiting cases,
the structure of the set of matrices U(t) encodes the global dynamics.

The maximum neuron gain in the update group U(t) will be denoted by
'Y(t) and the minimum eigenvalue of the matrix U(t) by Amin[U(t)]. Since,
for arbitrary symmetric matrices A and B, Amin[A + B] ~ Amin[A] +
Amin[B], a sufficient condition for LlL(t) ::; 0 is given by

(1.60)

If the above condition holds for all t, Loo(t) is strictly decreasing as long
as Vi{t + 1) =I- Vi{t) for at least some i in the update group U{t). As before,
the function Loo is bounded below. The network therefore relaxes asymp­
totically to a state where L does not vary in time if all directions in the
space spanned by the neural activities are explored, that is, if the updating
scheme is fair sampling. Since equality in Eqs. (1.58) and (1.59) holds only
if Vi{t + 1) = Vi(t), all solutions of Eq. (1.56) with time-independent Loo
are fixed-point solutions [10]. The result may be stated as follows:

Suppose the following three conditions hold: 1) the updating rule is fair
sampling, 2) the neuron transfer functions are sigmoid, and 9) the symmet­
ric connection matrix satisfies Eq. (1.60) for all times. Then the distributed
dynamics (1.56) admit the Lyapunov function (1.42) and converge to fixed
points only.

For iterated-map networks, U{t) is constant in time and equals the set of
all neurons. The criterion Amin[J] ~ -'Y{t)-l provides a sufficient condition
to exclude two cycles that exist in the general case as shown in Sec. 1.3.4:
Lowering the neuron gain eliminates spurious oscillatory modes.

Neural networks with discrete elements correspond to the limit 'Yi - 00,

where Eq. (1.60) reduces to Amin[U(t)] ~ O. This implies in particular that

Andreas V.M. Herz 29

there are no two cycles possible in the Little model if the whole connection
matrix is nonnegative definite. The general remark from Sec. 1.3.1 about
the convergence to solutions that are not minima of LDD still holds in
the discrete-neuron limit. This atypical behavior is, however, only possible
because the 9i are piecewise constant functions in models with discrete
neurons. For the generic case of continuous input-output characteristics,
the network will always settle in a minimum as long as the initial conditions
do not coincide with an unstable fixed-point of Eq. (1.56).

The convergence criterion in Eq. (1.60) is less restrictive for smaller up­
date groups than for larger ones because

Amin[U1] ~ Amin[U2] if Ul c U2. (1.61)

Note that Eq. (1.61) implies that the stability criterion for a fully parallel
network, where Amin[J] ~ -7-1, is a sufficient condition for Eq. (1.60) and
thus is sufficient to assure that the system (1.56) will converge to a fixed
point for any fair sampling updating scheme.

Formula (1.61) has direct consequences for possible applications. Con­
sider a high-dimensional optimization task such as the traveling salesman
problem. It may be mapped onto a neural network architecture which then
defines a fixed connection matrix J [59]. The computational time needed
to find a good solution can be reduced easily on a parallel computer by
increasing the size of the update groups. However, the bounds given by
Eq. (1.60) have to be met in order to assure convergence to fixed points,
and will limit the maximal size of the update groups. The goal of large
updating groups will be achieved in an optimal way if one can form up­
date groups of weakly or noninteracting neurons. All submatrices U(t) will
have small off-diagonal elements in that case, and their eigenvalues will
be close or identical to the diagonal elements, that is, the bounds in Eq.
(1.60) are largely independent of the size of the update groups. In princi­
ple, the search for optimal partitions of the above kind is itself a difficult
optimization problem, but many applications exhibit an intrinsic structure
(for example, predominantly short-range interactions) that naturally leads
to good choices for the updating groups.

1.3.6 NETWORK PERFORMANCE

The results obtained thus far demonstrate that the long-time behavior of
neural networks with symmetric synaptic couplings is surprisingly robust
with respect to alterations of model details at both the level of single neu­
rons and the level of the overall network dynamics. All systems studied
relax to fixed-point solutions under appropriate additional conditions on
the synaptic efficacies and the input-output characteristics.

Various prescriptions for the storage of static patterns as fixed-point
attractors have been discussed in the literature [22, 60, 61]. In what fol­
lows, we concentrate on the Hebbian learning rule [Eq. (1.23)]. A statisti-

30 1. Global Analysis of Recurrent Neural Networks

cal mechanical analysis of performance measures, such as storage capacity
and retrieval quality, can be carried out most readily for networks with
McCulloch-Pitts neurons and block-sequential dynamics. It also will be as­
sumed that the network can be partitioned into n fixed update blocks of
equal size W such that there are no interactions within a group [lOJ. As was
emphasized before, such a situation can be arranged for many applications
that map onto diluted or geometrically structured networks. In the limiting
case W = 1, one recovers the Hopfield model.

To simplify the analysis, neurons are labeled by a double index Sia' The
first index, 1 ~ i ~ W, refers to the position within an update group, while
the second 1 ~ a ~ n labels the update group. The same notation applies
to stored patterns era, where the additional index J1., 1 ~ J1. ~ p, labels the
patterns. With these conventions, the Hebb rule in Eq. (1.23) becomes

if a =1= b,
if a = b.

(1.62)

The normalization factor N-l in Eq. (1.23) has been changed to [W(n-
1)t1 to guarantee the correct scaling behavior of LDD in the thermody­
namic limit N -+ 00.

Statistical mechanics may be used to analyze the emergent properties of
feedback neural networks once it has been shown that, under a stochastic
update rule, the network relaxes to a Gibbsian equilibrium distribution
generated by the Lyapunov function of the deterministic dynamics [22, 60,
62]. For Glauber dynamics [Eq. (1.12)] and a one-at-a-time or a parallel
updating scheme, such a relation exists as can be shown using the principle
of detailed balance [28].

Although LDD is identical to LSD for two-state neurons, a block-sequen­
tial realization of Glauber dynamics need not approach a Gibbsian equi­
librium distribution. However, in the special case of vanishing connection
strength within all update groups [Eq. (1.62)], neurons "do not know"
about the state of other neurons in the same group. Thus there is no for­
mal difference between the block-sequential rule considered here and serial
updating, where neurons change their state in consecutive order: Every set
of W successive updates of the latter dynamics is identical to one time step
in the former case.

In what follows, we focus on the retrieval of unbiased random patterns
where efa = ±1 with equal probability and study networks at a finite
storage level a == piN. The case of large cluster size, W -+ 00, with the
number n of update groups kept finite will be analyzed; n has to be at
least equal to 2 because, according to Eq. (1.62), all neurons would be
disconnected otherwise. Following the replica-symmetric theory of Amit,
Gutfreund, and Sompolinsky [63], a fixed number s of patterns is singled
out, and it is assumed that the network is in a state highly correlated
with these "condensed" memories. The remaining patterns are described

Andreas V.M. Herz 31

collectively by a noise term. Notice that, for coupling matrices of the form
in Eq. (1.62), both the overlaps m and spin-glass parameters q have to be
defined as order parameters on the level of the update groups. For retrieval
solutions, this requirements leads to the Ansatz

w
m~a == W- l L efaSfa = mD,""l (1.63)

i=l

and
w

q~~ == W- l L SfaSib = Dab[Opu(1- q) + qj (1.64)
i=l

for a k-fold replicated network, 1 $ p, (J' $ k. The resulting fixed-point
equations are

m = ((tanh[T-l{m + VOrz}])} (1.65)

and
(1.66)

where
_ q q(n -1)

r - - -:----~'='"~'----:-:'"'"
- [1 - T-l{l - q)j2 [n - 1 + T-l(l - q)j2. (1.67)

Double angular brackets represent an average with respect to both the
condensed patterns and the normalized Gaussian random variable z [10].

Equations (1.65)-(1.67) closely resemble their counterparts for the Hop­
field model [63] and become identical to them in the limit of large n. On a
formal level, the same holds for n = 1, but, as was explained before, this
case does not correspond to a physical situation. For a general number of
update groups there exists a first-order phase transition at T = 0 between
the retrieval state and a spin-glass phase as et is varied. The critical storage
level is denoted by etc and the corresponding overlap by mc.

The relative information content IR, measured per synapse and relative
to that of the Hopfield model,

IR n == In (block-sequential) = n· etc{n) ,
() I{random-sequential) (n - 1) . etc{Hopfield)

(1.68)

is a third performance measure. A comparison between various network
architectures in terms of all three measures is given in Table 1.1.

The performance of block-sequential updating schemes is quantitatively
similar to that of the Hopfield model where etc = 0.138 and mc = 0.97 [63]:
The capability to retrieve stored random patterns is slightly lower when
measured in terms of patterns per neuron, as is indicated in the second
column of Table 1.1, and slightly higher when measured in terms of patterns
per synapse, as is shown in the last column. Notice, in particular, that the
information content increases with decreasing network connectivity, that
is, for small n.

32 1. Global Analysis of Recurrent Neural Networks

Table 1.1. Numerical solution of the saddle-point equations at T = 0, Displayed
are the storage capacity C¥e, the retrieval overlap me, and the relative information
content IR as functions of the number n of update groups.

n eke me IR

2 0.100 0.93 1.45
3 0.110 0.95 1.20 (1.69)

4 0.116 0.96 1.12
5 0.120 0.96 1.09

The results demonstrate that feedback networks can be used to store
large amounts of information: The number of patterns (each of size N)
that can be memorized grows linearly with N, so that the information
stored per synapse remains at a constant value of roughly 0.1 bits per
synapse. l6 Stored patterns can be retrieved from noisy or incomplete data
as long as the storage level remains below the critical level eke. Compared to
sequential or fully synchronous update schemes, partially parallel schemes
offer a potentially large advantage in terms of computational costs when
implemented on a parallel computer allowing for a speedup that may be as
large as the number of processors without sacrificing network stability.

1.3.7 INTERMEZZO: DELAYED GRADED-RESPONSE
NEURONS

The dynamical description of Sec. 1.3.3 neglects any time lags due to finite
propagation velocities of neural signals. As a first step toward the general
formulation (1.14), one may study models where the communication time
between neurons is modeled by one fixed delay 7',

N

Cdd Ui(t) = -R-1Ui(t) + L: Ji;V;(t -7') + I;xt(t)
t ;=1

(1.70)

with
(1.71)

A mathematical analysis of this model is quite complicated. Because of the
discrete delay, the initial condition for each neuron has to be specified as
a function over a time interval of length 7'. Consequently, Eqs. (1.70) and
(1.71) describe an infinite-dimensional dynamical system even in the scalar
case (N = 1), which will be discussed in detail in Sec. 1.4.2.

Obviously, fixed-point solutions of Eqs. (1.70) and (1.71) do not depend
on the time lag and are thus identical with those of the original model

16This number is increased significantly by more elaborate learning rules [64].

Andreas V.M. Herz 33

without delays, described by Eqs. (1.40) and (1.41). However, equilibria
that are stable without delays may become unstable for large enough time
lag, as can be verified through a local stability analysis [65].

Global results about Eqs. (1.70) and (1.71) have been obtained under
conditions that exclude nontrivial fixed-point solutions. A proof based on a
Lyapunov functional shows that in this case there are no limit cycles either
[66].

The lack of stronger global analytical results illustrates the limits of Lya­
punov's direct method. It is often very hard or impossible to find a Lya­
punov function for a given dynamical system under conditions that admit
interesting applications - multiple fixed points in the present example. On
the other hand, there are many cases where one can find Lyapunov func­
tions as soon as one enlarges the class of systems studied. In the present
case, one could replace the single discrete lag in Eq. (1.70) by a distributed
delay such as the one used in Eq. (1.14). At a first glance, this seems to
complicate the analysis even further. However, there exist nontrivial delay
distributions for which the dynamics generated by Eq. (1.14) admit global
Lyapunov functionals [67].

The remark applies also to systems with synaptic couplings Jij (T) that
are of the form Jijc(T) , where c(T) satisfies a linear ordinary differen­
tial equation in T. For instance, if Tmax = 00 and c(T) = exp(-T), one
may rewrite the dynamical equations as a set of 2N ordinary differential
equations. The example demonstrates that, unlike networks with discrete
time lags, networks with distributed delays need not represent infinite­
dimensional dynamical systems. Models with delay distributions that are
"reducible" in this sense have been studied extensively in the applied math­
ematics literature [68]. For a neurobiologically motivated system of two
limit-cycle oscillators with reducible signal delay, a Lyapunov function is
given in reference [69).

1.4 Periodic Limit Cycles and Beyond

Natural stimuli provide information in both space and time. Recurrent neu­
ral networks with delayed feedback can be programmed to recognize and
generate such pattern sequences or "temporal associations" [70, 71, 72,
73, 74, 75, 76],17 Recurrent networks with a broad distribution of signal
delays and a Hebbian learning rule such as Eq. (1.22) are well suited to
learn pattern sequences as well [47, 77, 78, 79, 80, 81]. These systems are
characterized by a high degree of compatibility between the network archi­
tecture, the task of learning spatio-temporal associations, and the learning
algorithm. As in networks with fixed-point attractors, an initial state or

17 A detailed discussion can be found in reference [33].

34 1. Global Analysis of Recurrent Neural Networks

"stimulus" lying in the basin of attraction of a stored "memory" will spon­
taneously evolve toward this attractor. In the present context, however,
memories are spatia-temporal patterns of neural activity.

This section demonstrates that one can understand the computation of
certain networks with signal delays as a downhill march on an abstract
spatia-temporal energy landscape. The result allows the application of tech­
niques developed in the last sections.

1.4.1 DISCRETE-TIME DYNAMICS

Let us focus on a synchronous discrete-time dynamics with deterministic
McCulloch-Pitts neurons. For vanishing external inputs, the network dy­
namics in Eqs. (1.7) and (1.8) become

for all i (1.72)

with
N 'Tmax

hi(t) = L L Jij(r)Sj(t - r). (1. 73)
j=l T=O

In the following, it is assumed that the synaptic couplings Jij (r) satisfy the
extended symmetry Jij(r) = Jij(D - (2 + r)). As was shown in Sec. 1.2.4,
this symmetry arises if the network is taught cyclic pattern sequences of
equal duration D.

The construction of a Lyapunov function for the retrieval dynamics in
Eqs. (1.72) and (1.73) is facilitated by the following consideration: If the
network has learned cyclic associations with common length D, every cor­
rect retrieval solution corresponds to a D-periodic limit cycle. D-periodic
oscillatory solutions of a discrete-time network, however, can always be
interpreted as static states in a fictitious system of size D x N [50, 51].

Let us consider such a "D-plicated" network with D columns and N
rows. The neural activities are denoted by Sia, where 1 ~ i ~ Nand
o ~ a ~ D. To reproduce the synchronous dynamics of the original system,
neurons Sia with a = t (modulo D) are updated at time t.

The time evolution of the new network is block-sequential: synchronous
within single columns and sequential with respect to these columns. In
terms of the original variables Si, the new activities Sia are therefore given
by Sia(t) == SiCa + nt) for a ~ t (modulo D) and Sia(t) == SiCa + nt - D)
for a > t (modulo D), where nt is defined through t == nt + t (modulo D).
The update rule reads

Sia(t + 1) = { sgn [I:f=l I:~=~l JijbSjb(t)]
Sia(t)

The synaptic couplings Jf/ are defined as

if a = t(modulo D),
otherwise.

(1.74)

Jijb = Jij «b - a - 1) (modulo D)). (1.75)

Andreas V.M. Herz 35

Notice that the time evolution [Eq. (1.74)] of the equivalent fictitious
system is the same as a block-sequential updating of a network with D x N
McCulloch-Pitts neurons and block size N, as is illustrated in Fig. 1.3. Sec­
tion 1.3.5 shows how to guarantee that such a system relaxes to fixed points
only: through synaptic symmetry together with the condition Amin[U(t)] ~
O.

Synaptic symmetry in the fictitious system, Jf/ = Jjf, is equivalent to
the extended symmetry ofEq. (1.26) for the original couplings Jij(T). The
second condition, Amin[U(t)] ~ 0, is equivalent to Amin[J(D -1)] ~ O. This
condition can be satisfied by setting Tmax = D - 2.

It is left as an exercise for the interested reader to show that the Lya­
punov function LDD, formulated for the equivalent fictitious system, may
be rewritten in terms of the original time-delay network as

N D-l

LTD(t) = -~ L L Jij(T)Si(t - a)Sj (t - (a + T + l)(modulo D)).
2 .. 1 0 1,3= 4,'T=

(1.76)
One may once again calculate the difference LlLTD (t) == LTD (t+ 1) - LTD (t)
and arrive, as expected, at

N

LlLTD(t) = - L [Si(t + 1) - Si(t + 1 - D)] hi(t) ~ O. (1.77)
i=l

The derivation may be summarized as follows:
Suppose that the synaptic efficacies of the time-delay network [Eqs. {1.72}

and {1.73}] satisfy the extended symmetry condition {1.26}. Then the re­
trieval dynamics are governed by the Lyapunov junction {1.76}. The net­
work relaxes to a/ixed-point solution or a limit cycle with Si(t) = Si(t-D),
that is, an oscillatory solution with the same period as that of the taught
cycles or a period that is equal to an integer fraction of D.

Due to the equivalence of Eqs. (1.72) and (1.73) with a block-sequential
update rule for the fictitious system, one may apply the quantitative anal­
ysis of Sec. 1.3.6 to time-delay networks that store temporal associations.
There is, however, a slight technical difficulty that has to be handled prop­
erly. Storing one D-periodic pattern sequence in the original model corre­
sponds to memorizing D static patterns of size D x N in the equivalent
system, each shifted by one column (modulo D) with respect to the next
pattern. This complication arises because every sequence may be occurring
with its first pattern recalled at some time t, or at time t+l, or at time t+2,
and so on. In the equivalent D-plicated system, each of these time-shifted
cyclic temporal associations corresponds to a new pattern.

For generic temporal associations, the analysis becomes rather compli­
cated due to nontrivial correlations between shifted copies of the same
pattern. If, however, each pattern of a sequence lasts for one time step
only, all relevant correlations are the same as if one had stored D unrelated

36 1. Global Analysis of Recurrent Neural Networks

(a) ------------

I I

z z z
------------ ------------

(b)

5
J53 J35

0
4 ~1 1 0
3 0
2 0

o J54 .
0

I 0
J52 0

S.(t) = S.(t - 5)
I I

(c)

5 0 J3~ J3~ 0
4 0 1 10..1 10.. 0
3 0 0 0 0-- 0 0 0 0 0 0
2 0 I J3~ t J3~ 0
1 0 0

S.(t) == S.(t -5)
I I

(d)

~I~~I~~~ I B I A I c I H I ~~I~~~~~~
Fig. 1.3. Schematic drawing of the dynamics of a time-delay network (c and d)
and its equivalent fictitious system with block-sequential time evolution (a and
b). Horizontal axes represent time, vertical axes in (b) and (c) denote the index
of neurons. (a) The pattern "Z" is retrieved in the fictitious network with five
update groups that are represented in (b) by five neurons. (c) Time evolution
of one neuron in a network with signal delays and discrete-time dynamics. The
system recalls the cyclic pattern sequence "BAACH" as shown in (d).

Andreas V.M. Herz 37

Table 1.2. Influence of the weight distribution on the collective network proper­
ties. The storage capacity Qe, the critical overlap me, and the relative information
content IR are displayed for some choices of e(T) for D = 4.

= 0

c(T) = 1/3
c(T) = 1/2
c(T) = 0

1 2 3

1/3 1/3 0
o 1/2 0
1 0 0

0.116 0.96 1.12
0.100 0.93 1.45
0.050 0.93 1.45

(1.78)

patterns. This implies that the results of Sec. 1.3.6 also cover the storage
of pattern sequences where each pattern lasts for one unit of time.

As an example, take D = 2. With the maximal delay Tmax set to D - 2,
Tmax is 0, and one has recovered the Little model. According to Table 1.1,
0.100N two-cycles of the form 1/Jt ;::::!: 1/J~ may be recalled as compared to
0.138N static patterns [82]: a 1.45-fold increase of the information content
per synapse. At the same time, the retrieval overlap drops slightly from
0.97 to 0.93.

The performance of networks with distributed delays and D = 4 is dis­
played in Table 1.2.

As is shown in Table 1.2, the uniform distribution leads to the largest
O:c but the smallest IR. The other two networks have the same value of
IR as the (unique) D = 2 system due to the particular structure of their
eigenvalue spectrum. Furthermore, one obtains IR = 1.45 independently
of D for all networks with a minimal connectivity where only one synapse
links two neurons. IS Simulation data show slightly higher values of O:c,

possibly indicating effects of replica symmetry breaking as in the Hopfield
model [63].

In passing, note that each cycle consists of D patterns so that the storage
capacity for single patterns is ac = Do:c• During the recognition process,
however, each pattern will trigger the cycle it belongs to and cannot be
retrieved as a static memory.

If static patterns instead of temporal associations are learned, the synap­
tic strengths do not depend on the delay; see also Eq. (1.23). The synaptic
couplings still satisfy the extended symmetry, and, with T max = D - 2, one
recovers the Lyapunov function for networks with McCulloch-Pitts neurons
and "multiple-time-step parallel dynamics" [83],

1 N D-2 D-2

LMTS(t) = -2 L Jij L Si(t - a) L Sj(t - b).
i ,j=1 a=O b=O

(1.79)

The evolution equations (1.72) and (1.73) may be generalized to analog

18This case is possible if D is an even number.

38 1. Global Analysis of Recurrent Neural Networks

systems with periodic external inputs. Using the "cooking recipes" of Secs.
1.3.1-1.3.4, it is possible to construct a Lyapunov function for that case as
well [84].

The learning rule in Eq. (1.26) also may be utilized to store cycles of
correlated real-valued pattern sequences. Numerical studies have been per­
formed for low-dimensional trajectories (small N) with high numbers of
data points (large D). For many examples, good retrieval could be obtained
without any need for highly time-consuming supervised learning schemes.
However, algorithms of the latter kind facilitate the learning of more so­
phisticated real-world tasks. Here, Lyapunov functions are of great help
since they permit the application of mean-field techniques [85] to a wide
class of supervised learning strategies such as spatio-temporal extensions
of the "Boltzmann Machine" concept [86] and contrastive-learning schemes
[87].

In closing this section, let me mention that an analysis of the storage
capacity along Gardner's approach [88] has been given in reference [89].
Analytical results on highly diluted systems with time lags have also been
obtained [90].

1.4.2 CONTINUous-TIME DYNAMICS

The global dynamics of certain networks with graded-response neurons and
delayed interactions may be studied in a manner similar to that of Sec. 1.4.1
[67]. In the following, we focus on the simplest case, a single neuron (or a
homogeneous assembly of neurons) coupled to itself through one inhibitory
feedback loop with delay T. Equation (1.14) reduces to

d _
C dt u(t) = -R lu(t) - g[u(t - T)], (1.80)

where 9 satisfies the condition

ug(u) > 0 for u =F 0 and g(O) = O. (1.81)

Solutions of this seemingly simple scalar equation include a fixed point
u(t) = 0 and, depending on the graph of g, periodic limit cycles and chaotic
trajectories [91]. Such a diversity of temporal phenomena is possible since,
due to the discrete delay, Eq. (1.80) describes an infinite-dimensional dy­
namical system as was already mentioned in Sec. 1.3.7.

Various aspects of the scalar delay differential equation (1.80) have been
discussed in the mathematics literature. Most articles have concentrated
on periodic solutions, in particular on those that are "slowly oscillating,"
that is, periodic solutions with zeros spaced at distances larger than the
time lag T. Results about their existence, uniqueness, and local stability
have been obtained by Kaplan and Yorke [92], Nussbaum [93], and Chow
and Walther [94], respectively.

Andreas V.M. Herz 39

The global analysis of Eq. (1.80) is simplified significantly if one neglects
the transmembrane current R-1u(t) and if 9 is an odd sigmoid function.
Without loss of generality, one may set C = r = 1 and study the evolution
equation

d
dt u(t) = -g[u(t - 1)].

Consider the auxiliary function LDDE(t),

LDDE(t) = -! r1 t+l u(s)u(s - r)ds dr
2 io it+r-l

1121t+l +-2 U(S)U(8 - r)ds dr
1 t+r-l It+l 1

+ t-l G(u(s))ds+'4[u(t+l)+u(t-l)]2,

(1.82)

(1.83)

where G(x) is defined as in Eq. (1.43).19 For bounded nonlinearities g,
all solutions of Eq. (1.82) are bounded. They are differentiable for t > 1.
Consequently, LDDE(t) is bounded below for t > 2. It follows that, for
t > 1, the time derivative of LDDE{t) along a solution of Eq. (1.82) is well
defined and given by

d
dt LDDE(t) = [u(t + 1) + u(t - l)][u(t) - !u(t + 1) - !u(t - 1)]

+G(u(t + 1)) - G(u(t - 1))
+![u(t + 1) + u(t - l)][u(t + 1) + u(t - 1)]

= u(t)[u(t+l) + u(t-l)] + G(u(t+l))-G(u(t-l)). (1.84)

Because the input-output characteristic is assumed to be an odd sig­
moid function, g-1 is odd, single-valued, and monotone increasing. Con­
sequently, the function G is even and strictly convex. In particular, the
equality G(u(t - 1)) = G(-u(t - 1)) holds. Performing a Taylor expansion
as in Eq. (1.51), one therefore obtains

G(u(t + 1)) - G(u(t - 1)) :5 [u(t + 1) + u(t - 1)]g-I(U(t + 1))

:5 -[u(t + 1) + u(t - 1)]u(t). (1.85)

Equality in Eq. (1.85) holds if and only if u{t + 1) = -u{t - 1). Taking
the evolution equation (1.82) and the strict monotonicity of 9 into account,
the last equation also may be written u{t) = -u(t - 2).

19 LODE has been introduced as an explicitly time-dependent function for sim­
plicity and has been written in terms of both '1£ and 'Ii. for the same reason.
However, the initial function may not be differentiable. This (purely technical)
difficulty can be avoided if 'Ii.(s) is replaced by -g(U(8 - 1)). LODE then may be
properly defined as a functional in the space of continuous functions from the
interval [-2,0] to the real numbers [95].

40 1. Global Analysis of Recurrent Neural Networks

1 ;"'--------"\

:\

1\

" " , , ' ' , . ' ' , ' , , , ' , , , , ' ' 0.5 ' . ' ' , , ' ' , , ' ' , , ' ' , , ' ' , , ' ' , , ' ' , , ' ' , '

0

-0.5

-1

-1. 5

50 52 54 56 58

u-
Ii ---­
L

60

Fig. 1.4. Time evolution of a single neuron with delayed feedback according
to the evolution equation {1.82}. The input-output characteristic is g{u} =
tanh{5u}. The state variable u is plotted as a solid line, its derivative u as a dashed
line, and the Lyapunov function LOOE as a dotted line. Notice that LOOE{t} ap­
proaches a constant value as required for a Lyapunov function, whereas u relaxes
toward a periodic oscillatory solution with period four.

Inserting Eq. (1.85) into Eq. (1.84), one finally arrives at

for t ~ 2, (1.86)

where equality holds if and only if u(t) = -u(t - 2).20 An illustration is
given in Fig. 1.4. According to Eq. (1.86), LDDE(t) is nonincreasing along
every solution for t > 2. The overall result may be summarized in the
following way:

Suppose that the function g is odd, bounded, and sigmoid. Then the evo­
lution equation (1.82) admits the Lyapunov function (1.83). Solutions of
Eq. (1.82) converge either to the trivial fixed point u = 0 or to a periodic
limit cycle that satisfies

u(t) = -u(t - 2). (1.87)

Notice that the period P of the limit cycles does not depend on the graph

20The curious reader is invited to compare this result and its derivation with
that for the Little model with antisymmetric couplings in Eq. {1.54}.

Andreas V.M. Herz 41

of g; according to Eq. (1.87), it is always given by P = 4/(4k + 1), where k
is a nonnegative integer.21 On the other hand, it is well known that, for the
general equation (1.80), the period of a periodic solution is influenced by
the ratio of RC to r and the shape of 9 [96J. This fact implies that the above
methods probably cannot be extended to study delay differential equations
of the type in Eq. (1.80). There is, however, another way to analyze this
equation [97J. To facilitate the discussion, let ti, i E N with ti < ti+1 denote
the times of consecutive zero crossings u(t) = 0 of a solution of Eq. (1.80).
One may then prove the following proposition:

Assume that the function 9 is bounded and satisfies the condition in Eq.
{1.81}. For every solution u(t) of Eq. {1.80}, the numbern(i) of zero cross­
ings in the interval [ti - r, ti) is a nonincreasing function of i.

This result means that a solution of Eq. (1.80) oscillates more and more
slowly around 0 as time proceeds. For long times it approaches a solution
with constant n = n(i); possibly n = O. In particular, if the system is
initialized with a solution that has n zero crossings in the interval [-r, 0),
it can never reach an oscillation with more than n zero crossings in anyone
of the intervals [ti - r, ti).

Let me briefly sketch the proof. The reader is also referred to Fig. 1.5. If
9 is bounded and satisfies the condition (1.81), solutions of Eq. (1.80) exist
for all positive t and are continuous [98J. Assume without loss of generality
that, at time tj, (d/dt) u(tj) > O. According to Eqs. (1.80) and (1.81),
this means that u(tj - r) < 0 because u(tj) = 0 by definition. The same
argument may be used at time tj+1' where it implies that U(tj+l - r) > 0
because U(tj+l) = 0 and (d/dt) U(tj+l) < O. Together with the continuity
of u(t), this implies that there is an odd number k(j) ~ 1 of zero crossings
in the interval [tj - r, tj+1 - r).

Denote the number ofzero crossings in the interval [tj+1-r, tj) by l(j).22
It follows that n(j) = l + k(j) and n(j + 1) = l(j) + 1. Since k(j) ~ 1, both
relations may be combined to the statement n(j) ~ n(j + 1), which proves
the proposition.

The number of zero crossings in any interval is nonnegative - the func­
tion n(i) is bounded below. Since it is nonincreasing along every solution
of Eq. (1.80), it is an integer-valued Lyapunov function. Accordingly, solu­
tions of Eq. (1.80) relax to solutions with constant n(i). Notice that those
solutions may be periodic but could - at least in principle - also be ape-

21Further results derived with the help of LODE can be found in reference [95].
One proof is well suited to highlight the potential of Lyapunov functions - once
they are found: It can be shown that, for large enough g'(O), the global minimum
of LODE is always achieved on a slowly oscillating solution [otherwise on the
trivial fixed point u(t) = 0]. This immediately implies that those solutions have
to be asymptotically stable (except for global phase shifts), a conclusion that
previously required elaborate analytical techniques.

22It is understood that l(j) = 0 if tj+1 - T ~ tj.

42 1. Global Analysis of Recurrent Neural Networks

u

-', , , · · · · · · ·

: Delay 't
. .
. <- ~.

Delay't

Fig. 1.5. Time evolution of a single graded-response neuron with delayed self­
inhibition modeled by the delay differential equation (1.80). There are zero cross­
ings of the solution u(t) at time tj, tHl, and at various earlier (and later) times.
In the interval [tj -7', tj+l - 7'), two possible solutions are drawn. They have one
and three zero crossings, respectively.

riodic. This is a surprising result; it highlights the generality of Lyapunov's
second method in a rather illuminating way.

1.5 Synchronization of Action Potentials

While it frequently may be the case that mean-firing rates are an adequate
description of neural information, there are many instances where the de­
tailed timing and organization of action potentials matter. An important
example is given by the stimulus-dependent synchronization of action po­
tentials [15, 16, 17].

Due to the inherent limitations of descriptions based on discrete-time
dynamics or mean-firing rates, realistic synchronization processes are not
captured by the networks discussed in Secs. 1.3 and 1.4. Synchronization
processes may, however, be studied using networks with integrate-and-fire
neurons, whose time evolution was introduced in Sec. 1.2.3.

Networks of that type often show globally synchronized neurons when
all-to-all couplings are used.23 Note that, throughout this section, terms

23Doubts about the structural stability of simple integrate-and-fire models have
been raised because some model variants do not exhibit systemwide synchroniza­
tion with all-to-all couplings [99, 100, 101J.

Andreas V.M. Herz 43

such as "synchronized neurons" always refer to the time of spike gener­
ation. According to this definition, a periodic network state (also called
a phase-locked solution) mayor may not be "globally synchronized." A
global analysis for networks described by Eqs. (1.13), (1.20), and the "ab­
sorbtion rule" Uj(t+) = 0 [instead of Eq. (1.18)] has been given in reference
[102]. With excitatory all-to-all couplings of equal strength, nonzero leakage
currents, uniform external inputs, and a reset to 0 after spike generation
(; = 0), the size of the largest synchronized cluster is a nondecreasing
function of time - a (discrete-valued) Lyapunov function! The proof then
shows that such systems approach a globally synchronized solution where
all neurons fire in unison.

Networks with more general nonuniform interaction admit richer dynami­
cal behavior [25, 103, 104]. Equipped with excitatory finite-range couplings,
one class of networks relaxes to phase-locked clusters of (locally) synchro­
nized neurons [105, 106]. The shapes and relative phases of the clusters
encode information about the initial stimulus. this result is in accordance
with the hypothesis that synchronized cortical neurons are used to bind
stimulus features together [107J.

1.5.1 PHASE LOCKING

Global results for locally coupled networks with integrate-and-fire neurons
have been obtained in the limiting case R -+ 00 of perfectly integrating
cells and uniform positive input currents 1:xt = 1 > O. In this situation,
external information is encoded in the initial conditions Ui(t = 0), not in
the input currents. This choice is reminiscent of the experimental paradigm
of stimulus-induced oscillations [15]. Due to the constant positive input
current 1, each model cell fires regularly if there is no further synaptic
input from other cells. Thus, 1-1 represents the spontaneous firing rate
of an isolated neuron. By rescaling time, the capacitance C and input 1
in Eq. (1.13) can be taken as unity. The overall dynamics then may be
summarized by the following update rules:

(i) Initialize the Ui(t = 0) in [0, 1] according to the external stimulus.

(ii) If Ui ~ 1, and if neuron i is next in the update scheme, then

and
Uj -+ uj = Uj + Jji.

(iii) Repeat step ii until Ui < 1 for all i.

(iv) If the condition of step ii does not apply, then

d
-u· =1 dt ' for all i.

(1.88)

(1.89)

(1.90)

44 1. Global Analysis of Recurrent Neural Networks

Under the condition that all neurons have the same total incoming synap­
tic strength,

LJij =A,
j

and the same total outgoing synaptic synaptic strength,

none may prove that the simple function LIAF,

LIAF = - LUi,

(1.91)

(1.92)

(1.93)

that is, the total (negative) membrane potential, plays the role of a Lya­
punov function for the system defined by steps i-iv, as is shown in reference
[106]:

Assume that "Y = 1 and that the synapses satisfy Jij ~ 0 and the con­
straints in Eqs. (1.91) and (1.92) with A < 1. Then the dynamics generated
by Eqs. {1.88}-(1.90} admit the Lyapunov function (1.99) and converge to
cyclic solutions with period PrAF = 1 - A. On periodic solutions, each neu­
ron fires exactly once in a period.

Notice that synaptic symmetry has not been required! This distinguishes
the present model from the networks discussed in the previous sections.

Depending on the initial conditions, the periodic solutions can contain
events in which one neuron fires alone, and others in which many neurons
fire in synchrony. In networks with excitatory short-range connections only,
regions with small variability of the initial conditions are smoothed out
and represented by locally synchronized clusters of neurons whose firing
times encode the stimulus quality. Regions with high variability, on the
other hand, give rise to spatially uncorrelated firing patterns. Through an
appropriate choice of coupling strengths, more complex computations can
be performed as demonstrated by numerical simulations [106].

In order to prove the proposition, let us first show that no neuron fires
more than once in any interval of length PrAF.

Lemma: Let ni(t, t') denote the number of times neuron i fires in [t, t').
If the conditions of the proposition hold, then ni(t, t + PrAF) ~ 1.

Starting at time t, if some neuron fires twice before t + PrAF, then some
neuron k must first fire twice, and at time t' < t+PrAF. For that to happen,
the total change in Uk from t to t' due to the synaptic currents and the
external input must be greater than 1. Thus one requires that, for neuron
k,

, (1 - A) "'" ') (t - t) Pr + L..J Jkjnj(t, t > 1.
AF j

(1.94)

However, by hypothesis (t' - t) < PrAF, and, since k is the first neuron to
fire twice, the number nj(t, t') of firings of each of the other neurons up to

Andreas V.M. Herz 45

t' is less than or equal to 1. For Jij nonnegative, the left-hand side of Eq.
(1.94) is less than (1- A) + A = 1. The contradiction shows that k cannot
have fired twice.

Returning to the proof of the proposition, let us consider the change of
LIAF in a time interval oflength PrAF, ~LIAF(t) == LIAF(t+PrAF)-LIAF(t).
It is

~LIAF(t) = -(I-A)N - L Jijnj(t, t+PrAF)+ L ni(t, t+PrAF)' (1.95)
i,j i

The first term comes from the constant input current, the second term from
the effect of the firing of other neurons, and the third term comes from i
itself firing. Using the condition (1.91), one finds

aLIAF(t) = -(I-A) [N - ~n;(t.t+lllF)l. (1.96)

Due to the lemma, ni(t, t + PrAF) $ 1 for all t. The change of LIAF
in each time interval PrAF is thus nonpositive. Since LIAF is bounded, the
system performs a downhill march on the energy landscape generated by the
Lyapunov function LIAF - if the function is measured after time steps of
length PrAF. The difference ~LIAF (t) vanishes if and only if ni (t, t+ PrAF) =
1 for all i, that is, on periodic solutions where every neuron fires exactly
once in a time interval of length PrAF [106].24

To avoid the unfamiliar evaluation of the Lyapunov function LIAF at the
discrete times t + kPIAF, kEN, one may alternatively use the functional

LIAF = 1° LIAF(S)ds. (1.97)
-PtAF

Along solutions, LIAF is differentiable with (d/dt)L1AF(t) = ~LIAF(t­
PrAF) for all t ~ PrAF, so that the previous conclusions are reached again.
For an illustration, see Fig. 1.6.

1.5.2 RAPID CONVERGENCE

The results of the previous section prove that specific networks of integrate­
and-fire neurons approach phase-locked solutions. Numerical simulations of
these and more general networks [102,106,108,109,110,111] indicate that
the convergence process takes place in a very short time - see also Fig.
1.6.25 This observation can be substantiated under certain conditions [105,
106]:

24 A related proof has been given in reference [35]. Notice also that a continuous
set of stable (but not asymptotically stable) periodic solutions is reached.

251n general, clusters of locally synchronized neurons will slowly reorganize
after the initial rapid convergence. The models analyzed in this chapter are an
exception in that they do not show such slow relaxation phenomena.

46 1. Global Analysis of Recurrent Neural Networks

UI 80 'iii
E
~
Co

c: 60 0

~ co
"0
CD
N Or: 40 e

.s::.
0
c:
in'
a ...
CD
D
E
::l
c:

e;
CD
c:
CD

20

-850

-900

-950

-1000

o 2 3 4 5 6 7 8 9 time

Fig. 1.6. Rapid local synchronization of action potentials. Shown are results
from numerical simulations of a planar network with 40 x 40 integrate-and-fire
neurons (R-1 = 0, 'Y = 1), periodic boundary conditions, and nearest-neighbor
interactions of strength Jnn = 0.24. Each dot in the upper trace represents the
number of simultaneous action potentials as a function of time. The lower trace
depicts the time evolution of the Lyapunov function LIAF (solid line) and the
Lyapunov functional LIAF (dashed line). The inset verifies that, as predicted, the
latter approaches a constant value.

Andreas V.M. Herz 47

Assume that the synapses satisfy Jij 2: 0 and the condition {1.91} with
A < 1. Then all solutions of Eqs. {1.88}-{1.90} converge to cyclic solutions
with period PIAF = 1 - A. The attractor is reached as soon as every neuron
has fired once. On the periodic solution, each neuron fires exactly once in
a period.

Notice that, although the conditions on 'Y and on the sum of outgoing
synaptic strengths have been dropped, the conclusions are now stronger
than in the previous proposition. However, the proof given is not based
on a Lyapunov function, so the concept of a downhill march on an energy
landscape generated by the Lyapunov function no longer is available. The
lack of a Lyapunov function might also be a drawback when stochastic
extensions are considered in the future. 26

Let tmax denote the first time every neuron has fired at least once. Some
cells may have fired repeatedly before tmax, depending on the parameter
values and initial conditions. Let ti denote the last time neuron i fires before
tmax, tmin the minimum of all these times t i , and k a cell that fires at tmin
for the last time without being triggered by other cells.

By definition, every cell discharges at least once in the interval [tmin,
tmax1. This implies in particular that every neuron j from which cell k
receives synaptic input emits one or more action potentials in that interval.
Each spike adds Jkj to Uk. The total change of Uk in [tmin' tmax1 is thus
equal to or greater than A + tmax - tmin. This number has to be smaller
than 1 because, otherwise, neuron k would fire a second time in the interval
[tmin' tmax1 in contradiction to the assumption. It follows that tmax -tmin <
HAF.

Going back to Sec. 1.5.1, one notices that the condition on the sum of
outgoing synaptic strengths [Eq. (1.92)1, although essential for the proof
of the main proposition, is not required for the proof of the lemma: The
lemma is also valid under the weaker conditions of the present section.
Evaluated at time t = tmax - PIAF and combined with the previous results,
the lemma implies that every cell fires exactly once in [tmin, tmax1 and no
cell fires in (tmax - HAF, tmin). Since tmax ~ 1, the last result proves that,
in finite time tmax - PIAF, a limit cycle is approached in the sense that
Ui (t) = Ui (t + HAF) for t 2: tmax - AAF. The argument also shows that the
attractor is reached as soon as every neuron has fired once.

The proof does not depend on the details of the reset mechanism. This
means that it covers not only the present model with arbitrary 0 ~ 'Y ~ 1,

26The sentence reflects the author's hope that it might be possible to construct
simple stochastic dynamics of integrate-and-fire neurons such that the Lyapunov
function of the noiseless dynamics determines a Gibbs distribution for the stochas­
tic extension. Equilibrium statistical mechanics then could be applied to analyze
the collective phenomena in networks of integrate-and-fire neurons in the same
spirit as has been done for the neural network models discussed in Secs. 1.3 and
1.4. Regrettably, such evolution equations have not been found yet.

48 1. Global Analysis of Recurrent Neural Networks

but also all schemes where a neuron i firing at time t is relaxed to some
value between 0 and Ui(t-) -1. Perhaps surprisingly, this allows atochastic
updatings during the transient phase.

In all model variants except from the limiting case 'Y = 1, cyclic solutions
with period PrAF and one spike per cycle cannot occur if a neuron is driven
above threshold. In events with multiple neurons firing "at the same time,"
the potentials have to be fine-tuned such that, if neuron i is triggered by
neuron j, Ui(t-) = 1- Jij. This implies that, although every firing sequence
of the model with 'Y = 1 can be realized in these models, the volume of all
attractors is greatly reduced when measured in the space of the dynamical
variables Ui.

1.6 Conclusions

The examples presented in this chapter demonstrate that Lyapunov's direct
method has widespread applications within the theory of recurrent neural
networks. With respect to the list of levels of analysis sketched in the
Introduction, it has been shown that Lyapunov's method is most helpful
on the second level, which deals with questions about the type of attractors
possible in a neural network.

Combined with powerful techniques from statistical mechanics, Lyapun­
ov's approach allows not only for a qualitative understanding of the global
dynamics, but also for quantitative results about the collective network
behavior. As was shown in Sees. 1.3, 1.4, and 1.5, Lyapunov's method
applies to the retrieval of static patterns in networks with instantaneous
interactions, to the recall of spatia-temporal associations in networks with
signal delays, and to synchronization processes in networks of integrate­
and-fire neurons.

There remain numerous interesting questions about the global dynam­
ics of feedback neural networks. These include questions concerning the
convergence of network models with discrete-time dynamics, symmetric
couplings, and overlapping delays [see Fig. 1.1(d)]. Numerical simulations
suggest that such systems relax to fixed-point solutions [112], but the ana­
lytic results from the computer science literature [55, 56, 57, 58] only cover
the case where a single pattern is stored in the network.

With regard to networks with transmission delays, it would be interesting
to know more about the global dynamics generated by Eqs. (1.70) and
(1.71) under conditions that admit multiple fixed-point attractors. With a
similar interest in mind, one could try to perform a statistical mechanical
analysis of the system (1.72), (1.73) with delay-independent symmetric
couplings [Eq. (1.23)] to study the influence of signal delays on the collective
properties of networks that store static patterns.

In the proofs concerning integrate-and-fire neurons, synaptic strengths
were assumed to be excitatory. There is, however, strong numerical evidence

Andreas V.M. Herz 49

that inhibition does not change the overall results [106J. If the synaptic
couplings continue to satisfy the condition (1.91) with A < 1, and if the
network parameters are chosen such that there are no runaway solutions
and no solutions with neurons that are permanently below threshold, then
all simulations of the dynamics generated by Eqs. (1.88)-(1.90) approach
periodic solutions of period P1AF = 1 - A. For leaky integrate-and-fire
models (finite R), the same is true, but the period is given by the period
FtIAF of the globally synchronized solution in such a system:

PLIAF = RC[ln(RI - A) -In(RI - 1)J. (1.98)

This observation gives hope that further understanding of integrate-and­
fire models is possible, although the mathematical situation is more com­
plicated than in the cases discussed in Sec. 1.5. A convergence proof based
on Lyapunov functions such as Eq. (1.93) is possible because every peri­
odic solution of the model has the same period. This is not the case for
models for finite R, as is shown by the following counterexample. Consider
a spatia-temporal "checkerboard" pattern, where the "black" sites fire at
even multiples of 1l/2 and the "white" sites at odd multiples of 1l/2. A
self-consistent calculation of the firing pattern leads to an implicit equation
for Il:

(1.99)

Excepting from the limiting case R -+ 00, Il differs from the period of the
globally synchronized solution. A stability analysis verifies that the checker­
board pattern is unstable, but its mere existence indicates that it will be
difficult to find Lyapunov functions for leaky integrate-and-fire models.

More generally, one may ask which conditions in the proofs of Secs. 1.3,
1.4, and 1.5 can be violated without changing the desired emergent net­
work behavior. These questions deal with the structural stability of neural
networks, the fifth level of analysis, and have to be answered if one wants to
evaluate the biological relevance of specific networks. In order to keep the
chapter within reasonable bounds, this topic has not been discussed here. A
particularly important issue, the convergence of "conventional" recurrent
neural networks (of the type studied in Sec. 1.3) without synaptic symme­
try, has been studied extensively in the literature [113, 114]. In passing,
let me note that one may always generate specific asymmetric networks
through appropriate transformations of both the coupling matrix and dy­
namical variables of systems with symmetric interactions.

There are a number of other topics related to the main theme of this
chapter that could not be included. Let me briefly mention two of these
issues.

First, one may design dynamical systems such that they perform a down­
hill march on an energy landscape that encodes some optimization task [59].
Various biologically motivated examples can be found in the computer vi­
sion literature [115, 116J.

50 1. Global Analysis of Recurrent Neural Networks

Second, one may construct feedback networks that possess desired at­
tractors but no spurious stable states [117, 118]. The construction of such
artificial associative memories is greatly facilitated if one deliberately lifts
modeling restrictions that otherwise would be naturally imposed by bio­
logical constraints.

Let me close with a general comment: "Associative computation" means
that many different inputs are mapped onto few output states. The time
evolution of a dynamical system that performs such a computation is char­
acterized by a contraction in its state space, that is, it is dissipative.27 This
observation suggests that many dynamical systems that have been used
as models for associative computation may admit Lyapunov functions. As
was emphasized in Sec. 1.3.7, minor modifications of the models may be
needed to satisfy technical requirements.

In view of the many Lyapunov functions already found, I would like to
conclude with a remark from the monograph of Rouche, Habets, and Laloy
[3]: "Lyapunov's second method has the undeserved reputation of being
mainly of theoretical interest, because auxiliary functions are so difficult to
construct. We feel this is the opinion of those people who have not really
tried ... "

Acknowledgments. Most of the author's own results presented in this chap­
ter were obtained in collaborations with Bernhard Sulzer, Charlie Marcus,
John Hopfield, Leo van Hemmen, Reimer Kiihn, and Zhaoping Li. Dis­
cussions with David MacKay and Hans-Otto Walther were of great help.
The work on integrate-and-fire neurons was stimulated by a series of helpful
conversations with John Rundle and benefitted from valuable comments by
Tom Heskes and powerful computing resources provided by Klaus Schul­
ten. Atlee Jackson, Ken Wallace, Reimer Kiihn, Ron Benson, and Wulfram
Gerstner contributed with critical remarks on earlier drafts of the manu­
script. Burkhard Rost, John Hopfield, Li-Waj Tang, and Tanja Diehl were
sources of inspiration when it came to understanding complex biological
systems of various kinds.

It is a great pleasure to acknowledge the continuous support from the
above people. I would also like to thank these colleagues and friends for
sharing happy and exciting times. This work has been made possible
through grants from the Deutsche Forschungsgemeinschaft, the Beckman
Institute, and the Commission of the European Communities under the
Human Capital and Mobility Programme.

27The threshold operation of a two-state neuron might be interpreted as a
special realization of this contraction process.

Andreas V.M. Herz 51

REFERENCES

[1] M. Abeles (1991) Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge
University Press, Cambridge)

[2] J. LaSalle, S. Lefschetz (1961) Stability by Ljapunov's Direct Method (Academic
Press, New York)

[3] N. Rouche, P. Habets, M. Laloy (1977) Stability Theory by Liapunov's Direct
Method (Springer-Verlag, New York)

[4] J.J. Hopfield (1982) Proc. Nat!. Acad. Sci. USA 79:2554-2558

[5] W.A. Little (1974) Math. Biosci. 19:101-120

[6] M.A. Cohen, S. Grossberg (1983) IEEE Thlns. SMC 13:815-826

[7] J.J. Hopfield (1984) Proc. Nat!. Acad. Sci. USA 81:3088-3092

[8] C.M. Marcus, R.M. Westervelt (1989) Phys. Rev. A 40:501-504

[9] E. Goles-Chacc, F. Fogelman-Soulie, D. Pellegrin (1985) Disc. Appl. Math. 12:261-
277

[10] A.V.M. Herz, C.M. Marcus (1993) Phys. Rev. E 47:2155-2161

[l1J E.R. Kandel, J.H. Schwartz (1985) Principles of Neural Science (Elsevier, New
York)

[12J A.L. Hodgkin, A.F. Huxley (1952) J. Physiol. (London), 117:500-544

[13] W.C. McCulloch, W. Pitts (1943) Bull. Math. Biophys. 5:115-133

[14] E. Ising (1925) Z. Phys. 31:253

[15] R. Eckhorn (1988) BioI. Cybero. 60:121-130

[16] C.M. Gray, W. Singer (1989) Proc. Natl. Acad. Sci. USA 86:1698-1702

[17J G. Laurent, H. Davidowitz (1994) Science 265:1872-1875

[18J W. Gerstner, J.L. van Hemmen (1994) In: Models of Neural Networks II, E. Do­
many, J.L. van Hemmen, K. Schulten (Eds.) (Springer-Verlag, New York), pp.
1-93.

[19] M.A. Wilson, J.M. Bower (1989) In: Methods in Neuronal Modeling: From
Synapses to Networks, C. Koch, I. Segev (Eds.) (MIT Press, Cambridge), pp.
291-334

[20] R.D. Traub, R. Miles (1991) Neural Networks of the Hippocampus (Cambridge
University Press, Cambridge)

[21J V. Braitenberg (1986) In: Brain Theory, G. Palm, A. Aertsen (Eds.) (Springer­
Verlag, Berlin) pp. 81-96

[22J D.J. Amit (1989) Modeling Brain FUnction: The World of Attractor Neural Net-
works (Cambridge University Press, Cambridge)

[23J E. de Schutter, J.M. Bower (1994) Proc. Natl. Acad. Sci. USA 91:4736-4740

[24] P.C. Bressloff (1991) Phys. Rev. A 44:4005-4016

[25] W. Gerstner, J.L. van Hemmen (1992) BioI. Cybero. 67:195-205; Network 3:139-
164

52 1. Global Analysis of Recurrent Neural Networks

[26] B. Katz (1966) Nerve, Muscle, and Synapse (McGraw-Hill, New York)

[27] Y. Burnod, H. Korn (1989) Proc. Natl. Acad. Sci. USA 86:352-256

[28] P. Peretto (1984) BioI. Cybern. 50:51-62

[29] R.J. Glauber (1963) J. Math. Phys. 4:294-307

[30] H. Horner (1988) In: Computational Systems - Natural and Artificial, H. Haken
(Ed.) (Springer-Verlag, Berlin) pp. 118-132

[31] KM. Chandy (1990) Sci. Compo Pro 14:117-132

[32] E. Caianiello (1961) J. Theor. BioI. 1:204-235

[33] R. Kuhn, J.L. van Hemmen (1991) In: Physics of Neural Networks, E. Domany,
J.L. van Hemmen, K Schulten (Eds.) (Springer-Verlag, Berlin) pp. 213-280

[34] A. Gabrielov (1993) Physica A 195:253-274

[35] A. Gabrielov, W.I. Newman, L. Knopoff (1994) Phys. Rev. E 50:188-196

[36] P. Bak, C. Tang, K Wiesenfeld (1987) Phys. Rev. Lett. 59:381-384

[37] S. Dunkelmann, G. Radons (1994) In: Proceedings of the International Conference
on Artificial Neural Networks, M. Marimnaro, P.G. Morasso (Eds.) (Springer­
Verlag, London), pp. 867-871

[38] R.W. Kentridge (1994) In: Computation and Neural Systems, F.H. Eeckman, J.M.
Bower (Eds.) (Kluwer, Netherlands), pp. 531-535

[39] M. Usher, M. Stemmler, C. Koch, Z. Olami (1994) Neural Comput. 6:795-836

[40] J.J. Hopfield (1994) Physics Today 46:40-46

[41] J.B. Rundle, A.V.M. Herz, J.J. Hopfield (1994) preprint

[42] D.O. Hebb (1949) The Organization of Behavior (Wiley, New York)

[43] J.H. Byrne, W.O. Berry (Eds.) (1989) Neural Models of Plasticity (Academic Press,
San Diego, CAl

[44] F. Edwards (1991) Nature 350:271-272

[45] T.H. Brown, A.H. Ganong, E.W. Kairiss, C.L. Keenan, S.R. Kelso (1989) In: Neural
Models of Plasticity, J.H. Byrne, W.O. Berry (Eds.) (Academic Press, San Diego,
CAl, pp. 266-306

[46] D.W. Dong, J.J. Hopfield (1992) Network 3:267-283

[47] A.V.M. Herz, B. Sulzer, R. Kuhn, J.L. van Hemmen (1988) Europhys. Lett. 7:663-
669; (1989) BioI. Cybern. 60:457-467

[48] S. Grossberg (1968) J. Math. Anal. Appl. 21:643-694

[49] S.1. Amari (1972) IEEE 7hms. Compo C 21:1197-1206

[50] Z. Li, A.V.M. Herz (1990) In: Proceedings of the XI. Sitges Conference, "Neural
Networks," L. Garrido (Ed.) (Springer-Verlag, Berlin), pp. 287-302

[51] A.V.M. Herz, Z. Li, J.L. van Hemmen, (1991) Phys. Rev. Lett. 66:137(}-1373

[52] D.J. Amit, N. BruneI, M.V. Tsodyks (1994) J. Neurophysiol. 14:6445

[53] K Sakai, Y. Miyashita (1991) Nature 354:152-155

Andreas V.M. Herz 53

[54] H. Gutfreund, J.D. Reger, A.P. Young (1988) J. Phys. A 21:2775-2797

[55] D. Chazan, W. Miranker (1969) Lin. Alg. Appl. 2:199

[56] G.M. Baudet (1978) J. Assoc. Compo Mach. 25:226

[57] D. Mitra (1987) SIAM J. Sci. Stat. Comput. 8:43-58

[58] P. Tseng, D.P. Bertsekas, J.N. Tsitsiklis (1989) Siam J. Control 28:678-710

[59] J.J. Hopfield, D.W. Tank (1985) Bioi. Cybem. 52:141-152

[60] J. Hertz, A. Krogh, R.G. Palmer (1991) Introduction to the Theory of Neural
Computation (Addison-Wesley, Redwood City, CAl

[61] E. Domany, J.L. van Hemmen, K. Schulten (Eds.) Physics of Neural Networks
(Springer-Verlag, Berlin)

[62] J.L. van Hemmen, R. Kiihn (1991) In: Physics 01 Neural Networks E. Domany,
J.L. van Hemmen, K. Schulten (Eds.) (Springer-Verlag, Berlin), pp. 1-106

[63] D.J. Amit, H. Gutfreund, H. Sompolinsky (1985) Phys. Rev. Lett. 55:1530-1533

[64] B.M. Forrest, D.J. Wallace (1991) In: Physics 01 Neural Networks, E. Domany,
J.L. van Hemmen, K. Schulten (Eds.) (Springer-Verlag, Berlin), pp. 121-148

[65] C.M. Marcus, R.M. Westervelt (1989) Phys. Rev. A:347-359

[66] T.A. Burton (1993) Neural Networks 6:677-680

[67] A.V.M. Herz (1992) In: Proceedings, SFB Workshop, Riezlem 1991, U. Kriiger
(Ed.) (SFB 185, Frankfurt), pp. 151-164

[68] N. MacDonald (1989) Biological Delay Systems: Linear Stability Theory (Cam-
bridge University Press, Cambridge)

[69] E. Niebur, H.G. Schuster, D.M. Kammen (1991) Phys. Rev. Lett. 67:2753-2756

[70] D. Kleinfeld (1986) Proc. Natl. Acad. Sci. USA 83:9469-9473

[71] H. Sompolinsky. 1. Kanter (1986) Phys. Rev. Lett. 57:2861-2864

[72] H. Gutfreund, M. Mezard (1988) Phys. Rev. Lett. 61:235-238

[73] D.J. Amit (1988) Proc. Natl. Acad. Sci. USA 85:2141-2145

[74] U. Riedel, R. Kiihn, J.L. van Hemmen (1988) Phys. Rev. A 38:1105-1108

[75] D. Kleinfeld, H. Sompolinsky (1988) Biophys. J. 54:1039-1051

[76] A.C.C. Coolen, C.C.A.M. Gielen (1988) Europhys. Lett. 7:281-285

[77] K. Bauer, U. Krey (1990) Z. Phys. B 79:461-475

[78] M. Kerszberg, A. Zippelius (1990) Phys. Scr. T 33:54-64

[79] M. Bartholomeus, A.C.C. Coolen (1992) Bioi. Cybem. 67:285-290

[80] T.M. Heskes, S. Gielen (1992) Neural Networks 5:145-152

[81] B. de Vries, J.C. Principe (1992) Neural Networks 5:565-576

[82] J.F. Fontanari, R. Koberle (1987) Phys. Rev. A 36:2475

[83] C.M. Marcus, R.M. Westervelt (1990) Phys. Rev. A 42:2410-2417

[84] A.V.M. Herz (1991) Phys. Rev. A 44:1415-1418

54 1. Global Analysis of Recurrent Neural Networks

[85] C. Peterson, J.R. Anderson (1987) Complex Syste7T18 1:995

[86] D.H. Ackley, G.E. Hinton, T.J. Sejnowski (1985) Cognitive Sci. 9:147-169

[87] P. Baldi, F. Pineda (1991) Neural Comput. 3:526-545

[88] E. Gardner (1987) Europhys. Lett. 4:481-485

[89] K. Bauer, U. Krey (1991) Z. Phys. B 84:131-141

[90] G. Mato, N. Parga (1991) Z. Phys. B 84:483-486

[91] M.C. Mackey, L. Glass (1977) Science 197:287-289

[92] J.L. Kaplan, J.A. Yorke (1974) J. Math. Anal. Appl.48:317-324

[93] R.D. Nussbaum (1979) J. Differential Equations 34:25-54

[94] S.-N. Chow, H.-O. Walther (1988) funs. Amer. Math. Soc. 307:127-142

[95] A.V.M. Herz (1995) J. Differential Equations 118:36-53

[96] G.S. Jones (1962) J. Math. Anal. Appl. 4:440-469

[97] J. Mallet-Paret (1988) J. Differential Equations 72:270-315

[98] J.K. Hale (1977) Theory of Functional Differential Equations (Springer-Verlag,
New York)

[99] L.F. Abbott, C. van Vreeswijk (1993) Phys. Rev. E 48:1483-1490

[100] M. Tsodyks, 1. Mitkov, H. Sompolinsky (1993) Phys. Rev. Lett. 71:1280-1283

[101] C. van Vreeswijk, L.F. Abbott (1993) SIAM J. Appl. Math. 53:253-254

[102] R.E. Mirollo, S.H. Strgatz (1990) SIAM J. Appl. Math. 50:1645-1662

[103] L.F. Abbott (1990) J. Phys. A 23:3835-3859

[104] A. Treves (1993) Network 4:259-284

[105] A.V.M. Herz, J.J. Hopfield (1995) Phys. Rev. Lett. 75:1222-1225

[106] J.J. Hopfield, A.V.M. Herz (1995) Proc. Nat!. Acad. Sci. USA 92:6655-6662

[107] C. von der Malsburg (1981) Internal Report 81-2, MPI for Biophysical Chemistry,
Gottingen

[108] M. Usher, H. Schuster, E. Niebur (1993) Phys. Rev. Lett. 71:1280-1283

[109] P. Bush, T. Sejnowski (1994) preprint

[110] D. Hansel, G. Mato, C. Meunier (1995) Neural Computation 7:25-26

[Ill] M. Tsodyks, T. Sejnowski (1994) Network 6:111-124

[112] G. Sawitzki (1989) The NetWork Project, StatLab, Universitiit Heidelberg. Re­
published on Apple Developer CD Series disk IV (1990); G. Sawitzki, R. Kuhn,
J.L. van Hemmen (private communication)

[113] M.W. Hirsch (1989) Neural Networks 2:331-349

[114] E.K. Blum, X. Wang (1992) Neural Networks 5:577-587

[115] T. Poggio, V. Torre, C. Koch (1985) Nature 317:314-319

[116] A.L. Yuille (1989) BioI. Cybern. 61:115-123

[117] C.M. Bachmann, L.N. Cooper, A. Dembo, O. Zeitouni (1987) Proc. Natl. Acad.
Sci. USA 84:7529-7531

[118] M.A. Cohen (1992) Neural Networks 5:83-103

2

Receptive Fields and Maps in
the Visual Cortex: Models of
Ocular Dominance and
Orientation Columns*
Kenneth D. Miller!

with 4 figures

Synopsis. The formation of ocular dominance and orientation columns in
the mammalian visual cortex is briefly reviewed. Correlation-based models
for their development are then discussed, beginning with the models of Von
der Malsburg. For the case of semilinear models, model behavior is well un­
derstood: correlations determine receptive field structure, intracortical in­
teractions determine projective field structure, and the "knitting together"
of the two determines the cortical map. This provides a basis for simple but
powerful models of ocular dominance and orientation column formation:
ocular dominance columns form through a correlation-based competition
between left-eye and right-eye inputs, while orientation columns can form
through a competition between ON-center and OFF-center inputs. These
models account well for receptive field structure but are not completely
adequate to account for the details of cortical map structure. Alternative
approaches to map structure, including the self-organizing feature map of
Kohonen, are discussed. Finally, theories of the computational function of
correlation-based and self-organizing rules are discussed.

2.1 Introduction

The brain is a learning machine. An animal's experience shapes the neu­
ral activity of its brain; this activity in turn modifies the brain, so that

* An earlier and briefer version of this chapter appeared in The Handbook
of Neural Networks (M.A. Arbib, Ed.), The MIT Press, 1995, under the title
"Models of Ocular Dominance and Orientation Columns." Reused by permission.

lDepartments of Physiology and Otolaryngology, W.M. Keck Center for Inte­
grative Neuroscience, and Sloan Center for Theoretical Neurobiology, University
of California, San Francisco, CA 94143-0444, USA.

56 2. Receptive Fields and Maps in the Visual Cortex

Right eye Visual Cortex

Left eye

Fig. 2.1. Schematic of the mature visual system. Retinal ganglion cells from
the two eyes project to separate layers of the lateral geniculate nucleus (LGN).
Neurons from these two layers project to separate patches or stripes within layer
4 of the visual cortex (VI). Binocular regions (receiving input from both eyes) are
depicted at the borders between the eye-specific patches. The cortex is depicted in
cross-section, so that layers 1-3 are above and layers 5-6 below the LGN-recipient
layer 4. Reprinted by permission from [42]. © 1989 by the AAAS.

the animal learns from its experience. This self-organization, the brain's
reshaping of itself through its own activity (reviewed in [7, 14,39, 51]), has
long fascinated neuroscientists and modelers.

The classic example of activity-dependent neural development is the for­
mation of ocular dominance columns in the cat or monkey primary visual
cortex (reviewed in [44]). The cerebral cortex is the uniquely mammalian
part of the brain. It is thought to form the complex, associative represen­
tations that characterize mammalian and human intelligence. The primary
visual cortex (VI) is the first cortical area to receive visual information. It
receives signals from the lateral geniculate nucleus of the thalamus (LGN),
which in turn receives input from the retinas of the two eyes (Fig. 2.1).

To describe ocular dominance columns, several terms must be defined.
First, the receptive field of a cortical cell refers to the area on the retinas in
which appropriate light stimulation evokes a response in the cell, and also
to the pattern of light stimulation that evokes such a response. Second,
a column is defined as follows. VI extends many millimeters in each of
two, "horizontal" dimensions. Receptive field positions vary continuously
along these dimensions, forming a retinotopic map, a continuous map of the
visual world. In the third, "vertical" dimension, the cortex is about 2 mm in
depth and consists of six layers. Receptive field positions do not significantly
vary through this depth. Such organization, in which cortical properties are

Kenneth D. Miller 57

1 mm

Fig. 2.2. Ocular dominance columns from cat VI. A horizontal cut through the
layer 4 of VI is shown. Terminals serving a single eye are labeled white. Dark
regions at the edges are out of the plane containing LGN terminals. Region shown
is 5.3 x 7.9 mm. Photograph generously supplied by Dr. Y. Rata.

invariant through the vertical depth of cortex but vary horizontally, is called
columnar organization and is a basic feature of the cerebral cortex.

Third, ocular dominance must be defined. Cells in the LGN are monoc­
ular, responding exclusively to stimulation of a single eye (Fig. 2.1) . LGN
cells project to layer 4 of VI, where they terminate in alternating stripes
or patches of terminals representing a single eye (Figs. 2.1 and 2.2). Most
or, in some species, alllayer-4 VI cells are monocular. Cells in other layers
of VI respond best to the eye that dominates layer-4 responses at that
horizontal location. Thus, VI cells can be characterized by their ocular
dominance, or eye preference. The stripes or patches of cortex that are
dominated throughout the cortical depth by a single eye are known as
ocular dominance columns.

The segregated pattern of termination of the LGN inputs to VI arises
early in development. Initially, LGN inputs project to layer 4 of VI in an
overlapping manner, without apparent distinction by eye represented. The
terminal arbors of individual LGN inputs extend horizontally in layer 4
for distances as large as 2 mm (for comparison, a typical spacing between
cortical cells is perhaps 20 JLm). Subsequently, beginning either prenatally

58 2. Receptive Fields and Maps in the Visual Cortex

or shortly after birth, depending on the species, the inputs representing
each eye become horizontally confined to the alternating, approximately
I/2-mm wide ocular dominance patches.

This segregation results from an activity-dependent competition between
the geniculate terminals serving the two eyes (see discussion in [44]). The
signal indicating that different terminals represent the same eye appears to
be the correlations in their neural activities [54]. These correlations exist
due both to spontaneous activity, which is locally correlated within each
retina [36, 37, 38, 64], and to visually-induced activity, which correlates
the activities of retinotopically nearby neurons within each eye and, to a
lesser extent, between the eyes [26]. The segregation process is competitive.
If one eye is caused to have less activity than the other during a critical
period in which the columns are forming, the more active eye takes over
most of the cortical territory [25, 52, 60]; but the eye with reduced activity
suffers no loss of projection strength in retinotopic regions in which it lacks
competition from the other eye [15, 16]. In summary, ocular dominance
column formation is a simple system in which correlated patterns of neural
activity sculpt the patterns of neural connectivity.

Orientation columns are another striking feature of visual cortical orga­
nization. Most VI cells are orientation-selective, responding selectively to
light/dark edges over a narrow range of orientations. The preferred orienta­
tion of cortical cells varies regularly and periodically across the horizontal
dimension of the cortex and i3 invariant in the vertical dimension. The
maturation of orientation selectivity is activity-dependent (e.g., [6, 11]).
However, it has not yet been possible to test whether the initial develop­
ment of orientation selectivity is activity-dependent. This is because some
orientation selectivity already exists at the earliest developmental times at
which visual cortical responses can be recorded [1,4,6,20, 61], and it has
not been possible to block visual system activity immediately before this
time. Nonetheless, it has long been a popular notion that the initial devel­
opment of orientation selectivity, like that of ocular dominance, may occur
through a process of activity-dependent synaptic competition.

The inputs from LGN to VI serving each eye are of two types: ON-center
and OFF-center. Both kinds of cells have circularly symmetric, orientation­
insensitive receptive fields and respond to contrast rather than uniform
luminance. ON-center cells respond to light against a dark background, or
to light onset; OFF-center cells respond to dark against a light background,
or to light offset. In the cat, the orientation-selective VI cells in layer 4 are
simple cells: cells with receptive fields consisting of alternating oriented
subregions that receive exclusively ON-center or exclusively OFF-center
input (Fig. 2.3). As shall be discussed, one theory for the development of
orientation selectivity is that, like ocular dominance, it develops through
a competition between two input populations: in this case, a competition
between the ON-center and the OFF-center inputs [41].

Kenneth D. Miller 59

Fig. 2.3. Two examples of simple cell receptive fields (RFs). Regions of the
visual field from which a simple cell receives ON-center (white) or OFF-center
(dark) input are shown. Note: Ocular dominance columns (Fig. 2.2) represent an
alternation, across the cortex, in the type of input (left- or right-eye) received by
different cortical cells; while a simple-cell RF (this figure) represents an alterna­
tion across visual space in the type of input (ON- or OFF-center) received by a
single cortical cell.

2.2 Correlation-Based Models

To understand ocular dominance and orientation column formation, two
processes must be understood: (1) the development of receptive field struc­
ture: under what conditions do receptive fields become monocular (driv­
able only by a single eye) or orientation-selective? (2) the development of
periodic cortical maps of receptive field properties: what leads ocular dom­
inance or preferred orientation to vary periodically across the horizontal
dimensions of the cortex, and what determines the periodic length scales of
these maps? Typically, the problem is simplified by consideration of a two­
dimensional model cortex, ignoring the third dimension in which properties
such as ocular dominance and orientation are invariant.

One approach to addressing these problems is to begin with a hypothe­
sized mechanism of synaptic plasticity, and to study the outcome of cortical
development under such a mechanism. Most commonly, theorists have con­
sidered a Hebbian synapse: a synapse whose strength is increased when pre­
and postsynaptic firings are correlated, and possibly decreased when they
are anticorrelated. Other mechanisms, such as activity-dependent release
and uptake of a diffusible modification factor, can lead to similar dynamics
[42], in which synaptic plasticity depends on the correlations among the
activities of the competing inputs. Models based on such mechanisms are
referred to as correlation-based models [39].

60 2. Receptive Fields and Maps in the Visual Cortex

2.2.1 THE VON DER MALSBURG MODEL OF VI

DEVELOPMENT

Von der Malsburg [57, 59J first formulated a correlation-based model for the
development of visual cortical receptive fields and maps. His model had two
basic elements. First, synapses of LGN inputs onto cortical neurons were
modified by a Hebbian rule that is competitive, so that some synapses were
strengthened only at the expense of others. He enforced the competition
by holding constant the total strength of the synapses converging on each
cortical cell (conservation rule). Second, the cortical cells tended to be
activated in clusters, due to intrinsic cortical connectivity, e.g., short-range
horizontal excitatory connections and longer range horizontal inhibitory
connections.

The conservation rule leads to competition among the inputs to a single
target cell. Inputs that tend to be coactivated - that is, that have cor­
related activities - are mutually reinforcing, working together to activate
the postsynaptic cells and thus to strengthen their own synapses. Differ­
ent patterns that are mutually un- or anticorrelated compete, since the
strengthening of some synapses means the weakening of others. Cortical
cells eventually develop receptive fields that are responsive to a correlated
pattern of inputs.

The clustered cortical activity patterns lead to competition between the
different groups of cortical cells. Each input pattern comes to be associated
with a cortical cluster of activity. Overlapping cortical clusters contain
many coactivated cortical cells, and thus become responsive to overlap­
ping, correlated input patterns. Adjacent, nonoverlapping clusters contain
many anticorrelated cortical cells, and thus become responsive to un- or
anticorrelated input patterns. Thus, over distances on the scale of an ac­
tivity cluster, cortical cells will have similar response properties; while, on
the scale of the distance between nonoverlapping clusters, cortical cells will
prefer un- or anticorrelated input patterns. This combination of local con­
tinuity and larger scale heterogeneity leads to continuous, periodic cortical
maps of receptive field properties.

In computer simulations, this model was applied to the development of
orientation columns [57J and ocular dominance columns [59J. For orien­
tation columns, inputs were activated in oriented patterns of all possible
orientations. Individual cortical cells then developed selective responses,
preferring one such oriented pattern, with nearby cortical cells preferring
nearby orientations. For ocular dominance columns, inputs were activated
in monocular patterns consisting of a localized set of inputs from a single
eye. Individual cortical cells came to be driven exclusively by a single eye,
and clusters of cortical cells came to be driven by the same eye. The final
cortical pattern consisted of alternating stripes of cortical cells preferring
a single eye, with the width of a stripe approximately set by the diameter
of an intrinsic cluster of cortical activity.

Kenneth D. Miller 61

In summary, a competitive Hebbian rule leads individual receptive fields
to become selective for a correlated pattern of inputs. Combined with the
idea that the cortex is activated in intrinsic clusters, this suggests an origin
for cortical maps: coactivated cells in a cortical cluster tend to become
selective for similar, coactivated patterns of inputs. These basic ideas are
used in most subsequent models.

2.2.2 MATHEMATICAL FORMULATION

A typical correlation-based model is mathematically formulated as follows
[57, 27, 40, 42]. Let x, y, . .. represent retinotopic positions in VI, and let
0:, {3, ... represent retinotopic positions in the LGN. Let SI-'(x,o:) be the
synaptic strength of the connection from 0: to x of the LGN projection
of type j1., where j1. may signify left-eye, right-eye, ON-center, OFF-center,
etc. Let B(x, y) represent the synaptic strength and sign of connection
from the cortical cell at y to that at x. For simplicity, B(x, y) is assumed
to take different signs for a fixed y as x varies, but, alternatively, sepa­
rate excitatory-projecting and inhibitory-projecting cortical neurons may
be used. Let a(x) and al-'(o:) represent the activity of a cortical or LGN
cell, respectively.

The activity a(x) of a cortical neuron is assumed to depend on a linear
combination of its inputs:

a(x) = II (L SP-(x, o:)al-' (0:) + L B(x, y)a(y)) . (2.1)
P-,Q y

Here, II is some monotonic function such as a sigmoid or linear threshold.
A Hebbian rule for the change in feedforward synapses can be expressed

as
ASP-(x,o:) = AP-(x, o:)h [a(x)] fa [al-'(o:)]. (2.2)

Here, A(x, 0:) is an arbor function that expresses the number of synapses of
each type from 0: to Xj a minimal form is A(x, 0:) = 1 if there is a connection
from 0: to x, and A(x, 0:) =0 otherwise. A typical form for the functions h
and fa is f(a) = (a - (a)), where (a) indicates an average of a over input
patterns. This yields a covariance rule: synaptic change depends on the
covariance of postsynaptic and presynaptic activity.

Next, the Hebbian rule must be made competitive. This can be accom­
plished by conserving the total synaptic strength over the postsynaptic cell
[57], which in turn may be done either subtractively or multiplicatively
[43]. The corresponding equations are

ftSP-(x,o:) = ASI-'(x, 0:) - f(x)A(x, 0:)

ftSP-(x,o:) = ASP-(x, 0:) -1'(x)SI-'(x, 0:)

(Subtractive)

(Multiplicative) ,

(2.3)

(2.4)

62 2. Receptive Fields and Maps in the Visual Cortex

where

I:" a fl.S"(x, a)
and 'Y(x)= I:' S"(). ".a X, a

Either form of constraint ensures that I: .a(djdt)SI-'(x, a) =0. Alternative
methods have been developed to force Hebbian rules to be competitive [43].

Finally, synaptic weights may be limited to a finite range, sminA(x, a) ~
SI-'(x,a) ~ smaxA(x, a). Typically, Smin = 0 and Smax is some positive
constant.

2.2.3 SEMILINEAR MODELS

In semilinear models, the 1's in Eqs. (2.1) and (2.2) are chosen to be linear.
Then, after substituting for a(x) from Eq. (2.1) and averaging over input
patterns (assuming that all inputs have identical mean activity, and that
changes in synaptic weights are negligibly small over the averaging time),
Eq. (2.2) becomes

fl.SI-'(x, a) = AA(x, a) [L I(x - y) [CI-'''(a - (3) - k2] S"(y, (3) + kll.
fI.P."

(2.5)
Here, l(x - y) is an element of the intracortical interaction matrix

1== (1 - B)-l = 1 + B + B2 +"',

where the matrix B is defined in Eq. (2.1). This summarizes intracorti­
cal synaptic influences including contributions via 0, 1, 2, ... synapses. The
covariance matrix

CI-'''(a - (3) = (al-'(a) - a) (a"({3) - a»

expresses the covariation of input activities. The factors A, kl' and k2 are
constants. Translation invariance has been assumed in both cortex and
LGN.

When there are two competing input populations, Eq. (2.5) can be simpli­
fied further by transforming to sum and difference variables: S8 == SI + S2 ,
SD == Sl - S2. Assuming equivalence of the two populations (so that
C11 = C22, C12 = C21), Eq. (2.5) becomes

fl.Ss(x, a) = AA(x, a) {L1(X - y) [Cs(a - (3) - 2k2] SS(y,{3) + 2kl}
fI,P

(2.6)
fl.SD(x, a) = AA(x, a) L1(x - y)CD(a - (3)SD(y,(3). (2.7)

fI.P

Kenneth D. Miller 63

Here, eS == ell + e12 , eD == ell - e12 . Subtractive renormalization
[Eq. (2.3)] alters only Eq. (2.6) for SS, by subtraction of 2€(x)A(x - 0:),
while leaving Eq. (2.7) for SD unaltered. Multiplicative renormalization
[Eq. (2.4)] alters both Eqs. (2.6) and (2.7), by subtraction of ')'{x)SS(x,o:)
and ')'(X)SD{X, 0:), respectively.

2.2.4 How SEMILINEAR MODELS BEHAVE

Linear equations like (2.6) and (2.7) can be understood by finding the
eigenvectors or "modes" of the operators on the right side of the equations.
The eigenvectors are the synaptic weight patterns that grow independently
and exponentially, each at its own rate. The fastest growing eigenvectors
typically dominate development and determine basic features of the final
pattern, although the final pattern ultimately is stabilized by nonlinearities
such as the limits on the range of synaptic weights or the nonlinearity
involved in multiplicative renormalization [Eq. (2.4)].

We will focus on the behavior of Eq. (2.7) for SD (for analysis of Eq.
(2.6), see [34, 35]). SD describes the difference in the strength of two com­
peting input populations. Thus, it is the key variable describing the de­
velopment of ocular dominance segregation, or development under an ON­
center/OFF-center competition. In many circumstances, Eq. (2.7) can be
derived directly from Eqs. (2.1) and (2.2) by linearization about SD == 0
[40] without need to assume a semilinear model. The condition SD ~ 0 cor­
responds to an initial condition in which the projections of the two input
types are approximately equal. Thus, study of Eq. (2.7) can lend insight
into early pattern formation in more general, nonlinear correlation-based
models.

Equation (2.7) can be solved simply in the case of full connectivity from
the LGN to the cortex, when A(x,o:) == 1 for all x and 0:. Then modes
of SD(x,o:) of the form eikxeila grow exponentially and independently,
with rates proportional to i(k)CD{l), where i and CD denote the Fourier
transforms of I and eD, respectively (for a description of the modes as real
rather than complex functions, see [44]). The wavenumber k determines
the wavelength 211" /Ikl of an oscillation of SD across cortical cells, while
the wavenumber 1 determines the wavelength 211"/111 of an oscillation of SD
across geniculate cells. The fastest growing modes, which will dominate
early development, are determined by the k and 1 that maximize i(k) and
CD{l), respectively. The peak of a function's Fourier transform corresponds
to the cosine wave that best matches the function, and thus represents the
"principal oscillation" in the function.

To understand these modes (Fig. 2.4), consider first the set of inputs
received by a single cortical cell, that is, the shape of the mode for a fixed
cortical position x. This can be regarded as the receptive field of the corti­
cal cell. Each receptive field oscillates with wavenumber l. This oscillation
of SD == SI - S2 is an oscillation between receptive field subregions domi-

64 2. Receptive Fields and Maps in the Visual Cortex

nated by 8 1 inputs and subregions dominated by 8 2 inputs. Thus, in ocular
dominance competition, monocular cells (cells whose entire receptive fields
are dominated by a single eye) are formed only by modes with 1 = 0 (no
oscillation). Monocular cells thus dominate development if the peak of the
Fourier transform of the CD governing left/right competition is at 1 = o.
Now, instead, consider an ON/OFF competition: 8 1 and 8 2 represent ON­
and OFF-center inputs from a single eye. Then the receptive fields of modes
with nonzero 1 resemble simple cells: they receive predominantly ON-center
and predominantly OFF-center inputs from successive, alternating subre­
gions of the visual world. Thus, simple cells can form if the CD governing
ON/OFF competition has its peak at a nonzero l.

Now consider the arborizations or projective fields projecting from a sin­
gle geniculate point, that is, the shape of the mode for a fixed geniculate
position a. These oscillate with wavenumber k. In ocular dominance compe­
tition, this means that left- and right-eye cells from a project to alternating
patches of the cortex. When monocular cells form (l = 0), these alternat­
ing patches of the cortex are the ocular dominance columns: alternating
patches of the cortex receiving exclusively left-eye or exclusively right-eye
input, respectively. Thus, the width of ocular dominance columns - the
wavelength of alternation between right-eye- and left-eye-dominated cor­
tical cells - is determined by the peak of the Fourier transform of the
intracortical interaction function I. In ON/OFF competition, with 1 :f 0,
the identity of the cortical cells receiving the ON-center or OFF-center part
of the projection varies as a varies, so individual cortical cells receive both
ON- and OFF-center inputs, but from distinct subregions of the receptive
field.

In summary, there is an oscillation within receptive fields, with wavenum­
ber 1 determined by the peak of CD; and an oscillation within arbors, with
wavenumber k determined by the peak of j (Fig. 2.4). These two oscil­
lations are "knit together" to determine the overall pattern of synaptic
connectivity. The receptive field oscillation, which matches the receptive
field to the correlations, quantitatively describes von der Malsburg's find­
ing that individual receptive fields become selective for a correlated pattern
of inputs. Similarly, the arbor oscillation matches projective fields to the
intracortical interactions, and thus to the patterns of cortical activity clus­
ters. This quantitatively describes the relationship between activity clusters
and maps. Note that the factor eikx can be regarded as inducing a phase
shift, for varying x, in the structure of receptive fields. Thus, cortical cells
that are nearby on the scale of the arbor oscillation have similar receptive
fields, while cells 1/2 wavelength apart have opposite receptive fields.

An alternative viewpoint on the same pattern is obtained by rewriting
the modes as ei(k+l)xe-il(x-a:). The argument l(x - a) represents the os­
cillation with wavenumber 1 within the receptive field, now expressed in
coordinates relative to the center of the receptive field rather than in an
absolute position across the geniculate. The argument (k + l)x represents

CORRELATION
FUNCTION

\
LATERAL
INTERACTION
FUNCTION

•

•

Kenneth D. Miller 65

RECEPTIVE FIELD

PROJECTIVE FIELD

\ \ I I I

, \ \ I / I " , \ / -" //
........ -'::::::.~--

I
I

\ --"""'"""o:::-:~-----•• ~~))
Fig. 2.4. Schematic of the outcome of semiJinear correlation-based development.
Top: The correlation function (CD) determines the structure of receptive fields
(RFs). White RF subregions indicate positive values of SD; dark subregions,
negative values. When CD does not oscillate, individual cortical cells receive only
a single type of input, as in ocular dominance segregation. If CD oscillates, there is
a corresponding oscillation in the type of input received by the individual cortical
cells, as in simple-cell RFs. Alternative RF structures could form, as in the center­
surround structure shown; but oriented simple-cell-like outcomes predominate
for reasonable parameters [41]. Simple cells then develop with various numbers
of subregions and various spatial phases; only a single example, of a cell with two
subregions and odd spatial symmetry, is pictured. Bottom: The intracortical
interactions (1) similarly determine the structure of projective fields. Here, solid
lines indicate positive values of SD, while dotted lines indicate negative values.
Adapted from [43].

66 2. Receptive Fields and Maps in the Visual Cortex

a shift, for varying x, in the phase of the receptive field relative to the
receptive field center. For the case of ocular dominance, with 1 = 0, this is
just the shift, with wavenumber k, between left-eye dominance and right­
eye dominance of the cortical cells. For ON/OFF competition with 1 :/: 0,
this represents a periodic shifting, with movement across the cortex, as to
which subregions of the receptive field are dominated by ON-center inputs
and which subregions are dominated by OFF-center inputs. Thus, we can
view the results as an oscillation within receptive fields, with wavenumber
1, combined with a shift with cortical position in the spatial phase of recep­
tive fields, this shift occurring with wavenumber k + 1, the vector sum of
the projective field or arbor oscillation and the receptive field oscillation.

The competitive, renormalizing terms [Eqs. (2.3) and (2.4)] do not sub­
stantially alter these pictures, except that multiplicative renormalization
can suppress ocular dominance development in some circumstances [43].2

These results hold also for localized connectivity (finite arbors), and thus
generally characterize the behavior of semilinear models [39, 44]. The major
difference in the case of localized connectivity is that, if k or 1 corresponds
to a wavelength larger than the diameter of connectivity from or to a single
cell, then it is equivalent to k = 0 or 1 = 0, respectively. A good approxi­
mation to the leading eigenvectors in the case of finite connectivity is given
simply by A(x - o:)eikxeila, where k and 1 are determined as above by the
peaks of l(k) and GD(l) (unpublished results).

2.2.5 UNDERSTANDING OCULAR DOMINANCE AND
ORIENTATION COLUMNS WITH SEMILINEAR

MODELS

This understanding of semilinear models leads to simple models for the de­
velopment of both ocular dominance columns [42] and orientation columns
[41] as follows (Fig. 2.4).

Monocular cells develop through a competition of left- and right-eye
inputs in a regime in which GD(l) is peaked at 1 = O. The wavelength of
ocular dominance column alternation then is determined by the peak of
l(k).

2Subtractive renormalization [Eq. (2.3)] has no effect on the development of
SD. Multiplicative renormalization [Eq. (2.4)] lowers the growth rates of all modes
of both SD and SS by the factor ,),(x), which depends only on SS. The result is
that, in order for SD to grow at all, its modes must have larger unconstrained
growth rates than those of SS; that is, the peak of the Fourier transform of CD
must be larger than that of CS • In practice, this condition is met only if there are
anticorrelations between S1 and S2, that is, if C12 is significantly negative. When
this condition is met, then the modes that dominate SD are just as described
above; they are not altered by the constraint term in Eq. (2.4). These and other
effects of renormalizing terms are discussed in detail in [43].

Kenneth D. Miller 67

Orientation-selective simple cells develop through a competition of ON­
center and OFF-center inputs in a regime in which 6D (l) is peaked at
1 ¥= O. The mean wavelength of alternation of ON-center and OFF-center
subregions in the simple cells' receptive fields is determined by the peak of
6 D (1). This wavelength corresponds to a cell's preferred spatial frequency
under stimulation by sinusoidal luminance gratings. In individual modes,
all cortical cells have the same preferred orientation, but their spatial phase
varies periodically with cortical position. The mixing of such modes of all
orientations leads to a periodic variation of preferred orientation across
cortex. The period with which preferred orientations change across cortex
is more complex to determine [41].

This model of ocular dominance column formation is similar to that of
von der Malsburg [59]. The latter model assumed anticorrelation between
the two eyes; this was required due to the use of mUltiplicative renormaliza­
tion [Eq. (2.4)]. With subtractive renormalization [Eq. (2.4)], ocular domi­
nance column formation can occur even with partial correlation of the two
eyes [43]. The model can be compared to experiment, particularly through
the prediction of the relation between intracortical connectivity and ocular
dominance column width.

The model of orientation-selective cell development is quite different
from that of von der Malsburg [57]. Von der Malsburg postulated that
oriented input patterns lead to the development of orientation-selective
cells. The ON/OFF model instead postulates that ON/OFF competition
results in oriented receptive fields in the absence of oriented input patterns;
the circular symmetry of the input patterns is spontaneously broken. This
symmetry-breaking potential of Hebbian development was first discovered
by Linsker [28]. In all of these models, the continuity and periodic alter­
nation of preferred orientation is due to the intracortical connectivity. The
ON/OFF model can be compared to experiment most simply by the mea­
surement of CD, to determine whether it has the predicted oscillation.

2.2.6 RELATED SEMILINEAR MODELS

Linsker [27, 28, 29] proposed a model that was highly influential in two
respects. First, he pointed out the potential of Hebbian rules to sponta­
neously break symmetry, yielding orientation-selective cells given approxi­
mately circularly symmetric input patterns. Second, he demonstrated that
Hebbian rules could lead to segregation within receptive fields, so that a cell
came to receive purely excitatory or purely inhibitory input in alternating
subregions of the receptive field. This model was thoroughly analyzed in
[34,35].

Linsker used a semilinear model with a single input type that could
have positive or negative synaptic strengths (Smin = -smax). He largely
restricted study to the case of a single postsynaptic cell. Because the equa­
tion for a single input type and a single postsynaptic cell [Eq. (2.5), with

68 2. Receptive Fields and Maps in the Visual Cortex

I(x - y) = 8(x - y)J is circularly symmetric,3 its eigenfunctions also are
eigenfunctions of the rotation operator. Thus, the eigenfunctions can be
written in polar coordinates (r, 0) as cos(nO)fnj(r) and sin(nO)fnj(r), where
fnj(r) is a radial function and nand j are integers indexing the eigenfunc­
tions. In quantum mechanics, atomic orbitals are named Nx, where N is
a number representing one plus the total number of angular and radial
nodes, and x is a letter denoting the number of angular nodes (s,p,d,f,g, ...
corresponding to n=0,1,2,3,4, ... angular nodes). Thus, Is is a function with
zero ·nodes, 2s has one node that is radial, 2p has one node that is angu­
lar, 3p has two nodes (one radial, one angular), etc. This naming scheme
can be applied to any rotationally symmetric system, and in particular can
be applied to the eigenfunctions of Linsker's system [34, 35], a fact which
physicists have found amusing. The nature of these eigenfunctions, their
dependence on parameters, and their role in determining the outcomes
Linsker observed in simulations are described in [34, 35].

For our present purposes, the essential results of this analysis are as
follows. Two factors underlay Linsker's results. One factor was that oscil­
lations in a correlation function can induce oscillations in a receptive field,
as was described above. The other factor was a constraint in the model
fixing the percentage of positive or negative synapses received by a cell;
this forced an alternation of positive and negative subregions even when
the correlation function did not oscillate. These two causes were not disen­
tangled in Linsker's simulations, but only the first appears likely to be of
biological relevance.

Tanaka [45, 56J has independently formulated models of ocular domi­
nance and orientation columns that are similar to those described in Sec.
2.2.5. The major difference is that he works in a regime in which each cor­
tical cell comes to receive only a single LGN input. Tanaka defines cortical
receptive fields as the convolution of the input arrangement with the in­
tracortical interaction function. This means that a cortical cell's receptive
field is due to its single input from the LGN plus its input from all other
cortical cells within reach of the intracortical interaction function. Thus,
orientation selectivity in this model arises from the breaking of circular
symmetry in the pattern of inputs to different cortical cells, rather than to
individual cortical cells.

2.3 The Problem of Map Structure

The above models account well for the basic features of the primary visual
cortex. However, many details of real cortical maps are not replicated by

3The assumption is made that the arbor and correlation functions depend
only on distance.

Kenneth D. Miller 69

these models [9, 12, 63]. One reason may be the simplicity of the model
of the cortex: the real cortex is three-dimensional rather than two; it has
cell-specific connectivity rather than connectivity that depends only on dis­
tance; and it has plastic rather than fixed intracortical connections. Another
reason is that the details of the map structure inherently involve nonlinear­
ities, by which the fastest growing modes interact and compete; whereas
the semilinear framework only focuses on early pattern formation, in which
the fastest growing modes emerge and mix randomly without interacting.

Some simple models that focus on map development rather than re­
ceptive field development strikingly match the map structures observed
in monkeys [9]. One such model [46] uses the self-organizing feature map
(SOFM) of Kohonen [24, 48], in which only a single cluster of cortical cells
is activated in response to a given input pattern. This is an abstraction of
the idea that the cortex responds in localized activity clusters. The single
activated cluster is centered on the cell whose weight vector best matches
the direction of the input activation vector. Hebbian learning then takes
place on the activated cells, bringing their weight vector closer to the input
activation vector. The size of an activity cluster is gradually decreased as
the mapping develops; this is akin to annealing, helping to ensure a final
mapping that is optimal on both coarse and fine scales.

Except for the restriction to a single activity cluster and the gradual
decrease in cluster size, the SOFM is much like the correlation-based mod­
els. However, an abstract representation of the input is generally used. In
correlation-based models, the input space may have thousands of dimen­
sions, one for each input cell. In the SOFM model of the visual cortex,
the input space instead has five dimensions: two represent retinotopic posi­
tion, and one represents each of ocular dominance, orientation selectivity,
and preferred orientation. Each cortical cell receives five "synapses," cor­
responding to these five "inputs." Assumptions are made 88 to the relative
"size" of, or variance of the input ensemble along, each dimension. There
is no obvious biological interpretation for this comparison between dimen­
sions. Under the assumptions that the ocular dominance and orientation
dimensions are "short" compared to the retinotopic dimensions, and that
only one input point is activated at a time, Hebbian learning can lead to
maps of orientation and ocular dominance that are, in detail, remarkably
like those seen in macaque monkeys [9, 46].

The SOFM, and other models based on the "elastic net" algorithm [8,13],
lead to locally continuous mappings in which a constant distance across the
cortex corresponds to a roughly constant distance in the reduced "input
space." This means that, when one input feature is changing rapidly across
the cortex, the others are changing slowly. Thus, the models predict that
orientation changes rapidly where ocular dominance changes slowly, and
vice versa. It may be this feature that is key to replicating the details
of macaque orientation and ocular dominance maps. A model that forces
such a relationship to develop between ocular dominance and orientation,

70 2. Receptive Fields and Maps in the Visual Cortex

while assuring periodic representations of each, also gives a good match to
primate visual maps [55J.

The SOFM also replicates aspects of the retinotopic maps seen in higher
areas of the cat visual cortex [62J. For these studies, the input and output
spaces are each taken to be two-dimensional, representing retinotopic posi­
tions. The input space is taken to be a half-circle, representing a hemiretina,
and the shape of the output space is varied. When this shape is long and
narrow, as in cat cortical areas 18 and 19, the retinotopic map developed by
the SOFM has a characteristic pattern of discontinuities closely resembling
those observed experimentally in those areas [62]. The SOFM achieves maps
in which nearby points in the output space correspond to nearby points in
the input space, while each area of the input space receives approximately
equal representation provided each is equally activated ([48]; see further
discussion of the SOFM below). The success of the SOFM models ofretino­
topic maps suggests that these are constraints that should be satisfied by
any model of cortical maps. One would like to determine more precisely
the constraints on a retinotopic mapping, embodied by the SOFM, that
are sufficient to replicate these results.

It recently has been reported that input correlations can alter the spacing
of ocular dominance columns in the cat visual cortex by perhaps 20-30%
[32]. A smaller ocular dominance column spacing develops when the activi­
ties of the two eyes are correlated by normal vision than when the two eyes'
activities are decorrelated (decorrelation is achieved by inducing divergent
strabismus, which causes the two eyes to see different parts of the visual
world). This effect was anticipated theoretically by Goodhill [12], who ar­
gued essentially that correlation of the activities of the two eyes brings
them "closer together," and so the two eyes should be brought closer to­
gether in their cortical representation by a reduction of the column size.
This effect also could have been anticipated by the SOFM models of oc­
ular dominance, because decorrelation corresponds to an increase in the
variance of ocular dominance and thus an increase in the "size" of the oc­
ular dominance dimension, which results in increased column size [48J. In
semiIinear models, in contrast, the column width does not appear to be
significantly affected by between-eye correlations. Rather, as the degree of
between-eye correlation is increased, more binocular cells form at the col­
umn borders, until at some critical level of correlation ocular dominance
segregation no longer occurs (unpublished results). That is, the two eyes are
brought "closer together" through alteration of the receptive fields rather
than through alteration of the map. One can anticipate several biological
mechanisms that might be added to instead yield a reduction in the column
size, such as nonlinearities that discourage formation of binocular cells, or
nonlinearities in cortical activation that cause the size of activity clusters
to depend on the correlations of the inputs.

Finally, it recently has been noted that cat orientation maps are signifi­
cantly smoother than could be achieved by simple linear considerations [63].

Kenneth D. Miller 71

The analysis in [63] suggests that these maps could result, mathematically,
from a local "diffusion" of preferred orientations. It will be interesting to
develop a biologically interpretable model of such a process.

2.4 The Computational Significance of
Correlation-Based Rules

2.4.1 EFFICIENT REPRESENTATION OF INFORMATION

A simple correlation-based rule for a single postsynaptic cell can, if prop­
erly designed, lead to the development of a receptive field that corresponds
to the principal component of the input data (that is, to the principal
eigenvector of the covariance matrix of the inputs to the cell) [30, 43, 47].
This receptive field in turn maximizes the variance of the postsynaptic
cell's activity, given the ensemble of input patterns. It has been argued
that correlation-based rules thus maximize the information carried in the
postsynaptic cell's activity about the input patterns [30]. Intuitively, by
varying as much as possible in its response to different inputs, the post­
synaptic cell draws the greatest possible distinction between the different
input patterns.

More generally, a number of closely related (and in many circumstances
identical) computational functions have been proposed for brain areas near
the sensory periphery. These include maximization of information about
the inputs [30], minimization of redundancy or correlation in the activities
of output cells [3], statistical independence of the output activities [3], or
encoding of the input information as compactly as possible (for example,
requiring as little dynamic range as possible per neuron) [2]. These func­
tions all involve representing the input information in an efficient way, in
the sense of information theory. These measures of efficiency take into ac­
count the statistics of the input ensemble but disregard the "semantics,"
the meaning or survival value to the animal, of the inputs.

The interpretation that the function of a correlation-based rule is to
yield such an efficient representation is inviting, but it carries two ma­
jor problems. First, the principal component representation achieved by
correlation-based rules is optimally efficient only for a Gaussian distribu­
tion of input patterns, or, in other words, it reflects only the second-order
or two-point statistics (the covariance) of the input data. It is possible
that a great deal of information may reside in higher order statistics, but
a correlation-based rule as conceived above will ignore this information.
Intrator has suggested that a variant of standard Hebbian rules can in­
stead maximize a third-order statistic of the output activity, and argues
that this may be a better statistic for distinguishing among the elements
of real-world ensembles [22, 23]. While one statistic or the other may be
best for characterizing a given set of data, both approaches can suffer from

72 2. Receptive Fields and Maps in the Visual Cortex

the limitation that they are maximizing one particular statistic rather than
maximizing some measure of efficiency.

Second, this interpretation applies only to a single, isolated postsynaptic
cell. Multiple cells viewing the same input ensemble will extract the same
information from it under a given correlation-based rule. This does not
add new information about the input, but only redundantly repeats the
same information. Thus, although a single cell may have a receptive field
that maximizes the information it could carry about the input ensemble,
a group of such cells generally will not improve much on the performance
of a single cell and will not carry the maximal possible information about
the input ensemble.4

One way out of this dilemma is to introduce couplings between the post­
synaptic cells that force them to learn independent parts of the input
ensemble. Unfortunately, excitatory couplings tend to produce correlated
cells, while inhibitory couplings produce anticorrelated cells. The ostensi­
ble goal, however, is to produce uncorrelated cells, cells whose activities
carry independent information about the input ensemble. Thus, biological
couplings will not work. A theoretical way out involves using connections
between the postsynaptic cells that are modified by anti-Hebbian rules: If
two cells have correlated activities, the connection between them becomes
more negative; if two cells have anticorrelated activity, the connection be­
tween them becomes more positive. The result is that the cells become
uncorrelated. Many authors have independently proposed rules that in­
volve such anti-Hebbian learning on lateral connections (e.g., [10, 31, 49])
or related ideas [50]. However, no biological sign of anti-Hebbian synaptic
modification thus far has been observed.

An alternative way out of this dilemna stems from the observation that
biological receptive fields are localized. Thus, nearby cells see overlapping
but not identical sets of inputs. Consider two extreme cases. First, when
each input cell is connected to a single output cell, receptive fields are com­
pletely localized. In the limit of low noise, the output layer replicates the
activity of the input layer, so all information is preserved. However, when
noise is significant, some information is lost by this identity mapping, and
alternative connectivity schemes may yield greater information about the
inputs. Second, when there is global connectivity, so that all input cells are
connected to all output cells, receptive fields are completely delocalized.
Under a correlation-based rule, each output cell learns the same recep­
tive field. Then, in the low-noise limit, most information is being thrown

4For simplicity, in this discussion we will ignore noise. Depending on the
signal-to-noise ratio, one will wish to strike a particular balance between variety
(carrying more independent components of the input ensemble) and redundancy
(e.g., see [2, 30)). However, except in the extreme case of high noise, where com­
plete redundancy is called for, multiple components always will be needed to
maximize the information, given multiple output cells.

Kenneth D. Miller 73

away - only one dimension of the input pattern is being distinguished.
However, suppose that this dimension is the most informative dimension
about the input ensemble. Then, in the high-noise limit, this redundant
representation of the most information-rich dimension will maximize the
information carried about the input ensemble.

Thus, given a correlation-based learning rule, a completely localized rep­
resentation can maximize information in the low-noise limit, while a com­
pletely delocalized representation can maximize information in the high­
noise limit. Intermediate levels of localization should be appropriate for
intermediate signal-to-noise ratios (this has recently been demonstrated
quantitatively [21]). It seems likely that biology, rather than designing an
anti-Hebbian learning rule, has used its own correlation-based rules and
has made use of its natural tendency to form partially localized receptive
fields in order to ensure efficiency of representation.

2.4.2 SELF-ORGANIZING MAPS AND

ASSOCIATIVE MEMORIES

The above ideas about efficiency consider only the summed information
in the responses of the postsynaptic cells, without regard for location
or connectivity. Alternative ideas about the computational significance of
correlation-based rules focus on the spatial arrangement of postsynaptic
response features and the connectivity between the postsynaptic cells.

One such set of ideas stem from the study of the self-organizing feature
map (SOFM) of Kohonen [24, 48] and of related dimension-reducing map­
pings [8]. As was previously described, the SOFM corresponds to a Hebbian
rule with a nonlinear lateral intracortical interaction, such that each input
pattern leads to a single, localized cluster of cortical activity. The SOFM
and related algorithms lead to a mapping that matches the topology and
geometry of the output space to that of the input space, despite a possible
dimensional and/or shape mismatch between the two [8, 24, 48]. That is,
nearby points in the output space correspond via the mapping to nearby
points in the input space, and input patterns that occur more often develop
a larger representation than those that occur less often.

A number of possible functions have been assigned to, such mappings.
One is the minimization of wiring length, assuming that cortical points
representing "nearby" input patterns need to be connected to one another
[8]. Another is to represent the input data in a compressed form while
minimizing reconstruction error [33, 48]. A specific form of the latter idea
is as follows. Suppose that there is noise in the output layer that is distance­
dependent, so that the probability of a response being centered at a given
output point falls off with its distance from the point that is "correct" for
that input. Suppose also that there is a metric on the input space, and
that the error in mistaking one input pattern for another is assigned as the

74 2. Receptive Fields and Maps in the Visual Cortex

distance between the two patterns. Then the SOFM can be interpreted,
approximately, as achieving the input-output mapping that minimizes the
average error in reconstructing the input pattern from the output responses
[33].

The major problem in applying these ideas to biology is the difficulty
in assigning biological meaning to the topology and geometry of the non­
retinotopic dimensions of the input space. Given an ensemble of visual
input patterns on the retina, for example, how large is the corresponding
ocular dominance or orientation dimension relative to the retinotopic di­
mensions? Without a clear prescription for answering this question, it is
difficult to make biological predictions from these ideas. Nonetheless, the
computational functions of self-organizing maps, their close connection to
correlation-based models, and their ability to replicate many features of
cortical maps are intriguing.

Another well-known set of ideas concerns the role of correlation-based
rules in establishing an associative memory. Suppose one wishes to learn a
set of N input-output pairs, (uG, vG), where uG and vG are the ath input
and output vectors, respectively. Let vG = MuG for some synaptic matrix
M. If the input patterns are orthonormal, uG . u b = 8Gb, then the input­
output association is achieved by setting M = EG VG(UG)T (e.g., [24]). This
relation will be learned by a Hebbian rule, (d/dt)Mij = -Mij/N + ViUj,

provided there is a "teacher" to clamp the output to vG whenever uG is
presented. A fully connected network with activity states v similarly will
develop the activity states, or "memories," vG, as stable attracting states
if the connection matrix between the cells is determined by the Hebbian
prescription M = EG vG(vG)T (e.g., [18, 19]). Again, to learn a specific
set of memories, a "teacher" is required to clamp the network into the
appropriate activity states during learning. Given simple nonlinearities in
neuronal activation, the stored memories need not be orthogonal to one
another, provided the memories are randomly chosen (uncorrelated) and
their number is sufficiently small relative to the number of cells (e.g., [17]).
It is of biological interest to explore how associative properties can develop
through correlation-based rules in the absence of a teacher as well as in the
presence of correlated input patterns (for which, see [17]).

2.5 Open Questions

This brief review can only point to a small sample of the rich literature on
this topic. Among the many open questions in the field are: How can bio­
logically interpretable models replicate the details of cortical maps? Might
orientation selectivity arise from early oriented wave patterns of retinal ac­
tivity [38, 64] or other mechanisms, rather than through ON/OFF competi­
tion? Might the initial development of orientation selectivity occur through
the patterning of intracortical connections, rather than through the pat-

Kenneth D. Miller 75

terning of LGN connections to the cortex?5 How might intracortical plas­
ticity affect receptive field and map development [53]? How might input
correlations affect column size [12]? How will development be altered by
the incorporation of more realistic cortical connectivity, and more realistic,
nonlinear learning rules? For example, might input correlations help de­
termine the self-organization of plastic intracortical connections or the size
of nonlinearly determined cortical activity clusters, each of which in turn
would shape the pattern of input synapses including column size? How can
we characterize the computational function of the correlation-based rules
used biologically? These and other questions are likely to be answered in
the coming years.

Acknowledgments. K.D. Miller is supported by grants from the National
Eye Institute, the Searle Scholars' Program, and the Lucille P. Markey
Charitable Trust. The author thanks Ed Erwin, Sergei Rebrik, and Todd
Troyer for helpful comments on the manuscript.

REFERENCES

[1) K. Albus, W. Wolf (1984) Early post-natal development of neuronal function in
the kitten's visual cortex: A laminar analysis. J. PhysioL 348:153-185

[2) J.J. Atick (1992) Could information theory provide an ecological theory of sen­
sory processing? In: Princeton Lectures on Biophysics, W. Bialek (Ed.) (World
Scientific, Singapore), pp. 223-289

[3] H.B. Barlow (1989) Unsupervised learning. Neural Compo 1:295-311

[4] B.O. Braastad, P. Heggelund (1985) Development of spatial receptive-field organi­
zation and orientation selectivity in kitten striate cortex. J. Neurophysiol. 53:1158-
1178

[5] E.M. Callaway, L.C. Katz (1990) Emergence and refinement of clustered horizontal
connections in cat striate cortex. J. Neurosci. 10:1134-1153

[6] B. Chapman, M.P. Stryker (1993) Development of orientation selectivity in ferret
visual cortex and effects of deprivation. J. Neurosci. 13:5251-5262

[7) M. Constantine-Paton, H.T. Cline, E. Debski (1990) Patterned activity, synaptic
convergence and the NMDA receptor in developing visual pathways. Ann. Rev.
Neurosci. 13:129-154

5See [41] for arguments that the early oriented waves of retinal activity are too
large to drive the development of simple cells, i.e., their wavelength is much wider
than the set of LGN inputs to a single simple cell; but see [58] for an argument that
the waves nonetheless might drive the development of orientation selectivity by
determining the patterning of intracortical connections rather than of connections
from the LGN to the cortex. The patterning of horizontal connections may take
place slightly later than the development of orientation selectivity [1, 5], but both
occur sufficiently early that their order remains unclear.

76 2. Receptive Fields and Maps in the Visual Cortex

[8] R. Durbin, G. Mitchison (1990) A dimension reduction framework for understand­
ing cortical maps. Nature 343:644-647

[9] E. Erwin, K. Obermayer, K. Schulten (1995) Models of orientation and ocular
dominance columns in the visual cortex: A critical comparison. Neuml Compo
7:425-468

[10] P. Foldiak (1989) Adaptive network for optimal linear feature extraction. In: Pro­
ceedings, IEEE/INNS International Joint Conference on Neuml Networks, Vol. 1
(IEEE Press, New York), pp. 401-405

[11] Y. Fregnac, M. Imbert (1984) Development of neuronal selectivity in the primary
visual cortex of the cat. Physiol. Rev. 64:325-434

[12] G.J. Goodhill (1993) Topography and ocular dominance: A model exploring posi­
tive correlations. Bioi. Cybern. 69:109-118

[13] G.J. Goodhill, D.J. Willshaw (1990) Application of the elastic net algorithm to the
formation of ocular dominance stripes. Network 1:41-59

[14] C.S. Goodman, C.J. Shatz (1993) Developmental mechanisms that generate precise
patterns of neuronal connectivity. Cell 72(Suppl):77-98

[15] R.W. Guillery (1972) Binocular competition in the control of geniculate cell
growth. J. Compo Neurol. 144:117-130

[16] R.W. Guillery, D.J. Stelzner (1970) The differential effects of unilateral lid closure
upon the monocular and binocular segments of the dorsal lateral geniculate nucleus
in the cat. J. Compo Neurol. 139:413-422

[17] J.A. Hertz, A.S. Krogh, R.G. Palmer (1991) Introduction to the Theory of Neuml
Computation (Addison-Wesley, Reading, MA)

[18] J.J. Hopfield (1982) Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA 79

[19] J.J. Hopfield (1984) Neurons with graded responses have collective computational
properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81

[20] D.H. Hubel, T.N. Wiesel (1963) Receptive fields of cells in striate cortex of very
young, visually inexperienced kittens. J. Neurophysiol. 26:994-1002

[21] M. Idiart, B. Berk, L.F. Abbott (1995) Reduced representation by neural networks
with restricted receptive fields. Neuml Compo 7:507-517

[22] N. Intrator (1992) Feature extraction using an unsupervised neural network. Neuml
Computation 4:98-107

[23] N. Intrator, L.N. Cooper (1992) Objective function formulation of the BCM theory
of visual cortical plasticity: Statistical connections, stability conditions. Neuml
Networks 5:3-17

[24] T. Kohonen (1989) Self-Organization and Associative Memory, 3rd ed. (Springer­
Verlag, Berlin)

[25] S. LeVay, T.N. Wiesel, D.H. Hubel (1980) The development of ocular dominance
columns in normal and visually deprived monkeys. J. Compo Neurol. 191:1-51

[26] Z. Li, J.J. Atick (1994) Efficient stereo coding in the multiscale representation.
Network 5:157-174

Kenneth D. Miller 77

[27] R. Linsker (1986) From basic network principles to neural architecture: Emergence
of spatial-opponent cells. Proc. Natl. Acad. Sci. USA 83:7508-7512

[28] R. Linsker (1986) From basic network principles to neural architecture: Emergence
of orientation-selective cells. Proc. Natl. Acad. Sci. USA 83:839<H!394

[29] R. Linsker (1986) From basic network principles to neural architecture: Emergence
of orientation columns. Proc. Natl. Acad. Sci. USA 83:8779-8783

(30) R. Linsker (1988) Self-organization in a perceptual network. Computer 21:105-117

(31) R. Linsker (1992) Local synaptic learning rules suffice to maximize mutual infor­
mation in a linear network. Neural Comput. 4:691-702

(32) S. Lowel, W. Singer (1993) Strabismus changes the spacing of ocular dominance
columns in the visual cortex of cats. Soc. Neuro. Abs. 19:867

(33) S. Luttrell (1994) A Bayesian analysis of self-organizing maps. Neural Compo
6:767-794

(34) D.J.C. MacKay, K.D. Miller (1990) Analysis of Linsker's applications of Hebbian
rules to linear networks. Network 1:257-298

(35) D.J.C. MacKay, K.D. Miller (1990) Analysis of Linsker's simulations of Hebbian
rules. Neural Comput. 2:173-187

(36) L. Maffei, L. Galli-Resta (1990) Correlation in the discharges of neighboring rat
retinal ganglion cells during prenatal life. Proc. Nat. Acad. Sci. USA 81:2861-2864

[37] D.N. Mastronarde (1989) Correlated firing of retinal ganglion cells. 7Tends Neu­
rosci. 12:75-80

[38] M. Meister, R.O.L. Wong, D.A. Baylor, C.J. Shatz (1991) Synchronous bursts of
action-potentials in ganglion cells of the developing mammalian retina. Science
252:939-943

(39) K.D. Miller (1990) Correlation-based models of neural development. In: Neuro­
science and Connectionist Theory, M.A. Gluck, D.E. Rumelhart, (Eds.) (Lawrence
Erlbaum, Hillsdale, NJ), pp. 267-353

[40] K.D. Miller (1990) Derivation of linear Hebbian equations from a nonlinear Heb­
bian model of synaptic plasticity. Neural Comput. 2:321-333

[41] K.D. Miller (1994) A model for the development of simple cell receptive fields
and the ordered arrangement of orientation columns through activity-dependent
competition between ON- and OFF-center inputs. J. Neurosci. 14:409-441

(42) K.D. Miller, J.B. Keller, M.P. Stryker (1989) Ocular dominance column develop­
ment: Analysis and simulation. Science 245:605-615

(43) K.D. Miller, D.J.C. MacKay (1994) The role of constraints in Hebbian learning.
Neural Comput. 6:100-126

(44) K.D. Miller, M.P. Stryker (1990) The development of ocular dominance columns:
Mechanisms and models. In: Connectionist Modeling and Brain F'unction: The
Developing Inter/ace, S.J. Hanson, C.R. Olson (Eds.) (MIT Press/Bradford, Cam­
bridge, MA), pp. 255-350

[45] M. Miyashita, S. Tanaka (1992) A mathematical model for the self-organization of
orientation columns in visual cortex. NeuroReport 3:69-72

78 2. Receptive Fields and Maps in the Visual Cortex

[46] K. Obermayer, G.G. Blasdel, K. Schulten (1992) A statistical mechanical analysis
of self-organization and pattern formation during the development of visual maps.
Phys. Rev. A 45:7568-7589

[47] E. Oja (1982) A simplified neuron model as a principal component analyzer. J.
Math. BioI. 15:267-273

[48] H. Ritter, T. Martinetz, K. Schulten (1992) Neural Computation and Sel/­
Organizing Maps: An Introduction (Addison-Wesley, Reading, MA)

[49] J. Rubner, K. Schulten (1990) Development of feature detectors by self­
organization. Bioi. Cybern. 62:193-199

[50] T.D. Sanger (1989) An optimality principle for unsupervised learning. In: Advances
in Neural In/ormation Processing Systems, Vol. 1, D. Touretzky (Ed.) (Morgan
Kaufmann, San Mateo, CA), pp. 11-19

[51] C.J. Shatz (1992) The developing brain. Scientific Am. 267:60-67

[52] C.J. Shatz, M.P. Stryker (1978) Ocular dominance in layer IV of the cat's visual
cortex and the effects of monocular deprivation. J. Physiol. 281:267-283

[53] J. Sirosh, R. Mikkulainen (1995) A unified neural network model for the self­
organization of topographic receptive fields and lateral interactions. Neural Com­
put. (to appear)

[54] M.P. Stryker, S.L. Strickland (1984) Physiological segregation of ocular dominance
columns depends on the pattern of afferent electrical activity. Inv. Opthal. Supp.
25:278

[55] N.V. Swindale (1992) A model for the coordinated development of columnar sys­
tems in primate striate cortex. BioI. Cyb. 66:217-230

[56] S. Tanaka (1991) Theory of ocular dominance column formation: Mathematical
basis and computer simulation. BioI. Cybern. 64:263-272

[57] C. von der Malsburg (1973) Self-organization of orientation selective cells in the
striate cortex. Kybernetik 14:85-100

[58] C. von der Malsburg (1993) Network self-organization in the ontogenesis of the
mammalian visual system. Internal Report 93-06, Ruhr-Universitat Bochum, In­
stitut fUr Neuroinformatik, 44780 Bochum, Germany

[59] C. von der Malsburg, D.J. Willshaw (1976) A mechanism for producing continuous
neural mappings: ocularity dominance stripes and ordered retina-tecta! projections.
Exp. Brain Res. (Supp.) 1:463-469

[60] T.N. Wiesel, D.H. Hubel (1965) Comparison of the effects of unilateral and bilateral
eye closure on cortical unit responses in kittens. J. Neurophysiol. 28:1029-1040

[61] T.N. Wiesel, D.H. Hubel (1974) Ordered arrangement of orientation columns in
monkeys lacking visual experience. J. Compo Neurol. 158:307-318

[62] F. Wolf, H-U. Bauer, T. Geisel (1994) Formation offield discontinuities and islands
in visual cortical maps. Bioi. Cyb. 70:525-531

[63] F. Wolf, K. Pawelzik, T. Geisel, D.S. Kim, T. Bonhoeffer (1994) Optima! smooth­
ness of orientation preference maps. In: Computation in Neurons and Neural Sys­
tems (Kluwer, Boston), pp. 97-102

[64] R.O. Wong, M. Meister, C.J. Shatz (1993) Transient period of correlated bursting
activity during development of the mammalian retina. Neuron 11:923-938

3

Associative Data Storage and
Retrieval in Neural Networks
Gunther PalmI and Friedrich T. Sommer2

with 9 figures

Synopsis. Associative storage and retrieval of binary random patterns in
various neural net models with one-step threshold-detection retrieval and
local learning rules are the subject of this chapter. For different heteroas­
sociation and autoassociation memory tasks specified by the properties of
the pattern sets to be stored and upper bounds on the retrieval errors, we
compare the performance of various models of finite as well as asymptoti­
cally infinite sizes. In infinite models, we consider the case of asymptotically
sparse patterns, where the mean activity in a pattern vanishes, and study
two asymptotic fidelity requirements: constant error probabilities and van­
ishing error probabilities. A signal-to-noise ratio analysis is carried out for
one retrieval step where the calculations are comparatively straightforward
and easy. As performance measures we propose and evaluate information
capacities in bits/synapse which also take into account the important prop­
erty of fault tolerance. For autoassociation we compare one-step and fixed­
point retrieval that is analyzed in the literature by methods of statistical
mechanics.

3.1 Introduction and Overview

With growing experimental insight into the anatomy of the nervous sys­
tem as well as the first electrophysiological recordings of nerve cells in the
first half of this century, a new theoretical field was opened, namely, the
modeling of the experimental findings at one or a few nerve cells, leading
to very detailed models of biological neurons [1]. But, different from most
biological phenomena, where the macroscopic function can be understood
by revealing the cellular mechanism, the function of the nervous system as

1 Abteilung Neuroinformatik, Fakultat fiir Informatik, Universitat Ulm,
Oberer Eselsberg, D-89081 Ulm, Germany.

2Institut fiir Medizinische Psychologic und Verhaltensneurobiologic der Uni­
versitat Tiibingen, Gartenstr. 29, D-72074 Tiibingen, Germany.

80 3. Associative Data Storage and Retrieval in Neural Networks

a whole turned out to be constituted by the collective behavior of a very
large number of nerve cells, and the activity of a large fraction of cells, a
whole activity pattern, had to be considered instead.

The modeling had to drop the biological faithfulness at two points: on
the cellular level, the models had to be simplified such that a large number
of nerve cells could be described; and on the macroscopic level, the function
had to be reduced to simple activity pattern processing like pattern com­
pletion, pattern recognition, or pattern classification, allowing a theoretical
description and quantification.

McCulloch and Pitts [2] argued that, due to the all-or-none character
of nervous activity, the neurophysiological findings can be reproduced in
models with simple two-state neurons, in particular, in associative memory
models which exhibit binary activity patterns.

In the 1950s and 1960s small feedforward neural nets were suggested
for simple control tasks, among them the associative memory [3], [4] and
the simple perceptron [5]. All of these models employ one-step retrieval,
which means that in one parallel update step the initial or input pattern is
transformed to the output pattern. Such models which contain no feedback
loops will be the main subject of this chapter.

Little, who introduced the Ising-spin analogy of the neural states3 [6],
opened the door to analyzing the feedback retrieval process in neural nets
with methods of statistical mechanics. The analysis that was developed
during the 1970s [7] for lattices of coupled spins with randomly distributed
interactions to describe spin glasses could be applied successfully to fixed­
point retrieval in an associative memory [8].4 In fixed-point retrieval, the
retrieval process is iterated until a stable state is reached. This method has
been described in several recent books, e.g., van Hemmen and Kiihn [9],
Amit [10], and Hertz, Krogh, and Palmer [11].

This chapter takes as its starting point a larger class of simple processing
tasks: the association between members of binary pattern sets. Depending
on the properties of the randomly generated pattern sets, we will charac­
terize different memory tasks (Sec. 3.1) and concentrate on the question of
how a neural model has to be designed to yield optimal performance.

We consider feedforward neural associative memory models with one-step
retrieval (Sec. 3.2). To keep our model as variable as possible, Ising-spin
symmetry of the neural states is not assumed, and arbitrary local learning

3The two states of a binary neuron are identified with up and down states
of a spin particle in the Ising model; the synaptic couplings correspond to the
spin-spin interactions.

4Pattern completion with fixed-point retrieval in a neural net can be treated
like relaxation in a solid, once the storage process has determined the dynamics.
The macroscopic observables of the system (corresponding to specific heat, con­
ductivity, or magnetization in solids) are then the overlaps to stored patterns or,
equivalently, the recall errors.

Gunther Palm and Friedrich T. Sommer 81

rules are admitted to form the synaptic connections. One-step retrieval can
be analyzed by elementary probability theory, and it is compatible with a
larger class of memory tasks, not only pattern completion. On the other
hand, as we will discuss, in cases of pattern completion, a feedback re­
trieval model is preferable. Section 3.3 contains the detailed signal-to-noise
ratio analysis, where we have included most of the calculations because the
intention of this work is to provide not only results, but also the methods.

Another important question concerns the judgement of the perfor­
mance of different memory models. Unfortunately, in the literature, many
different measures are used. Instead of staying with the mean retriev­
al errors obtained from the analysis, we apply elementary information
theory to the memory process, leading us to the definition of information
capacities, which allow us to compare models with different memory tasks
(Sec. 3.4).

In Sec. 3.5 we evaluate these performance measures for the various mod­
els. The last section resumes the previous sections and points out the re­
lations to the literature. It compares one-step and fixed-point retrieval,
taking advantage of the works based on methods of statistical mechanics.
The results of the different approaches, which seem to be quite incoherent
at first sight, turn out to be not only comparable but also consistent.

3.1.1 MEMORY AND REPRESENTATION

A memory process often can be considered as a mapping from one set of
events into another set of events; as a trivial example, one may think of the
problem as how to establish a phone line to a friend. To solve the problem,
one has to map the friend's name to his phone number. For the construction
of a memory device like a phonebook, which helps you with this problem,
one first has to map or to code the events ''the friend's name" and "his
phone number" into symbols, in this case strings of letters and numbers,
which can be written and read by a user. This mapping will be called the
representation of the events. The memory device has to store these pairs
of strings in some way. It can solve the problem if the representation maps
the events into unique data strings. Thus, a given set of patterns specifies
the memory task that a memory device has to solve.

Without loss of generality, we focus on binary patterns as data strings.
A binary pattern is a string containing only two types of elements, for
instance, "B" and "W" (for black and white pixels). We restrict ourselves
to such pattern sets where every member has approximately the same ratio
p between the number of "B" and "W" digits. We call a pattern distributed
if both fractions of pixels have more than one member. Throughout this
chapter we distinguish between three different patterns types:

1. A singular pattern with m digits has only a single "B" digit and m - 1
"W" digits. A singular pattern is, by definition, not distributed.

82 3. Associative Data Storage and Retrieval in Neural Networks

2. A sparse pattern is distributed, but the ratio p between the number of
"B" and "w" digits satisfies p «: 0.5. In the infinite model m -t 00,

we will consider the sparse limit p -t 0 with mp -t 00, which leads
to nontrivial distributed patterns.

3. In a nonsparse pattern, the fraction p between the number of "B" and
"w" digits has to be away from O. In the infinite model, p = const
as m -t 00.

3.1.2 RETRIEVAL FROM THE MEMORY

The memory device has to store a set of patterns in such a way that a
desired pattern can be selectively recalled at the output port. In memory
retrieval a desired output pattern is selected by applying a pattern at the
input port of the device. We denote the set of output patterns as the
content patterns SC. An input pattern that selects a content pattern is
called its address pattern, or simply its address. The set of address patterns
is denoted by SA. Thus, in the retrieval, the memory device has to map
from an address pattern to its corresponding content pattern. This map is
defined by the set of pairs consisting .of address and content patterns:

{(1 1) (M M). k sA k SC} x,y, ... ,x,y .xE ,yE .

3.1.3 FAULT TOLERANCE IN ADDRESSING

Between two patterns x and X, the number of different bits h(x, x) de­
fines a natural distance relation called the Hamming distance. Via this dis­
tance a whole set of input patterns may specify one desired content pattern
uniquely: all patterns x with the property h(x,x) < h(x,xk) for all xk:f x
and x, xk E SA. We call a memory retrieval fault-tolerant if it allows input
noise in the sense that many input patterns which have a unique closest
address are mapped on the content pattern belonging to this address.

For a set of singular address patterns, normally no x ft SA has a unique
closest address and, therefore, fault tolerant retrieval is impossible. Thus,
fault-tolerant retrieval can only be expected if the address patterns are
distributed.

3.1.4 VARIOUS MEMORY TASKS

We call heteroassociation the general memory task where the set of address
patterns SA and the set of content patterns SC can be chosen arbitrarily.

The following special cases of heteroassociation will be considered:

• If the address patterns are singular patterns, the memory task is
called the look-up-table task. Then the singular pixel of an address

Gunther Palm and Friedrich T. Sommer 83

pattern points into a table of content patterns like the usual access
in a look-up table.

• For singular content patterns, we identify each bit of the content pat­
tern with a class in the set of address patterns. This memory task
can be interpreted as pattern classification, which separates the set
of address patterns in disjunct classes. This task (with one-bit con­
tent patterns) has been executed by the classical simple perceptron
models; see [5].

• A utoassociation is the case of heteroassociation where the address
and content patterns are identical; therefore, it also may be denoted
as content addressability. Only for fault-tolerant retrieval does the
autoassociation task make sense; then, the memory performs pattern
completion from a distorted version xk as an input pattern to the
error-free content pattern xk; see also Forrest and Wallace in [9].

3.1.5 RETRIEVAL ERRORS

A memory that allows errors in the addressing perhaps also will recall
erroneously the wrong content pattern or put at least some errors in the
output.

In the retrieval of binary patterns there may occur two types of flip errors
in a digit of the output pattern il: a "W" of the content pattern yk may be
turned into a "B" , and a "B" in the content pattern yk may be turned into
a "W". Of course, with increasing addressing noise these errors also will
increase. But again via the distance relation it is possible that a memory
output containing errors in some digits still will specify the event coded
by the original content pattern. A given memory task together with the
sets SA and SC will fix the maximal mean errors that can be tolerated in
the retrieval. These upper bounds, which have to be satisfied by the error
probabilities, will be called the fidelity requirement.

3.2 Neural Associative Memory Models

The typical ingredients of an artificial neural network model are a large
number of similar processor units called neurons, which obtain signals
through adjustable connections from a large number of input fibers and/or
other neurons. In this model the adjustable connections, the synapses, con­
nect an input port to each neuron (see Fig. 3.1).

The two different types of calculations in the model, the processing of
the neural input signal in the retrieval, on the one hand, and the synaptic
adjustment according to the data in the storage phase, on the other, are
separated in time in this model; we distinguish the storage process and the
retrieval process.

84 3. Associative Data Storage and Retrieval in Neural Networks

i
- - - r- - - r- ID

/
J

- I- - f- - c- I-

0

Fig. 3.1. Schematic view of a neural associative memory: i-retrieval input
fibers, 0 - retrieval output fibers (axons), ID - modifiable synaptic connection
between neuron and input fiber. The horizontal lines are wires that propagate
the input signals to the synapses. Each column represents one neuron. The larger
upper section where the synaptic connections access corresponds to the dendritic
tree, and the lower section the cell body. The arrow pointing below from the cell
body corresponds to the axon.

To perform the calculations the pixel types "B" and "w" in the input
patterns have to be translated into signals that can propagate through
the network. Two different values, 1 and a E [-1,0], will be assigned to
the pixel types "B" and "W", respectively. Each pattern is identified with
an n-vector x E {a, l}n, and we will use synonymously the expressions
pattern and {a, 1}-vector. Of course, we are free to exchange "w" and "Bn
in the assignment; the flip transformation F applied to all components in
the data will not change the memory problem. Here, F(Xi = W) := B
and F(Xi = B) := W. Therefore, we can always assign the value 1 to the
smaller pixel fraction so that

p = #{i: Xi = 1}/(n - #{i: Xi = I}) ~ 0.5.

Such models already have been proposed and analyzed many years ago,
e.g., Uttley [12J, Steinbuch [3], Rosenblatt [5], Longuett-Higgins et al. [13J,
Amari [14J, Gardner-Medwin [15], and Kohonen [16J.

3.2.1 RETRIEVAL PROCESS

In the retrieval phase an address pattern is applied to the input port of
the memory. The input signals are propagated via a synaptic connection
strength matrix Mij to all neurons. In one-step retrieval every neuron j
actualizes its state, the axonal activity ih, according to this input, and the
vector fj is the retrieval output pattern.

Each neuron has to form the dendritic potential dj , the sum over all its

Gunther Palm and Friedrich T. Sommer 85

incoming activities,
(3.1)

and then to determine the new activity value in the neural update equation

Yj = f(dj - 9). (3.2)

The output signal of a biological neuron is a train of short electric pulses,
the neural spikes. It is the spike rate and not the amplitude or the duration
of a spike that grows with increasing dendritic potential. These properties
have been modeled in the so-called spike coding models; cf [17, 18, 19, 20].
Here we focus on rate coding models, where the neural transfer function
f(x) describes only the spike rate. In almost all of these models, f(x) is a
monotonously increasing function and 9 is the threshold value, which can
be adjusted globally for all neurons in each retrieval step.

Models with linear transfer functions, as, for instance, those proposed
in Kohonen [16] or Anderson [21, 22], lead for large networks to quasi­
continuous-valued output patterns.

Binary output patterns are obtained if the neural transfer function is
a two-valued stepfunction: f(x) = 1 for x ~ 0, f(x) = a otherwise. The
neural state Yj = 1 is called firing or active, Yj = 0 silent or passive. The
retrieval error probabilities for on errors and off errors, respectively, are
expressed by the conditioned probabilities

el := Prob [yj = alyj = 1] , ea := Prob [yj = 11yj = a] . (3.3)

Such models have been treated in Willshaw et al. [4], Palm [23], and Nadal
and Toulouse [24]. In one-step retrieval the output pattern is evaluated
from the input pattern after one synchronious parallel calculation of all
neurons.

Step-shaped neural transfer functions also have been used in the spin­
glass literature on autoassociation, e.g., in [25, 8, 26, 27]. These works con­
sider an iterative retrieval procedure where, via a feedback loop, the signal
flow through the system is iterated until a stationary state, a fixed point,
is reached. Such fixed-point retrieval has been considered for two different
ways of performing the iteration. In models with parallel update, the com­
plete one-step retrieval process is iterated in the manner that the output
is fed back as new input; see, for instance, [6, 15,28,29,30,31]. In models
with sequential random update, only one neuron, randomly selected, is up­
dated [Eq. (3.2)] in one iteration step, leading to the new input, which only
deviates in one component from the preceding one; see again [25, 8, 26, 27].
The improvement due to iterated retrieval for the pattern completion task
obtained in simulations can be observed in Fig. 3.9.

86 3. Associative Data Storage and Retrieval in Neural Networks

3.2.2 STORAGE PROCESS

In this process, which is also called the learning process, the synaptic ma­
trix, or the storage medium, is formed from the set of patterns to be stored.

During the storage process, each pair (Xl, yl) of patterns to be learned is
applied at the in- and output ports of the memory. This provides pre- and
postsynaptic values for every synapse Mij.

Learning Rules

For a given pair (x, y) of pre- and postsynaptic activity values, the local
synaptic rule R(x, y) determines explicitly the amount of synaptic connec­
tivity change. For binary patterns, there are only four different constella­
tions possible for pre- and postsynaptic activities, viz., (a, a), (1; a), (a, 1),
and (1,1). Thus, a synaptic rule is determined by four numbers:

(3.4)

The following two famous local learning rules will be focused on in the
subsequent analysis:

• The Hebb rule, or asymmetrical coincidence rule, H := (0,0,0,1)
increases the synaptic matrix element for coinciding pre- and post­
synaptic firings only. In his neurophysiological postulate Hebb [32J
proposed this type of synaptic modification between pairs of firing
nervous cells.

• The agreement rule, or Hopfield rule or symmetrical coincidence rule,
A := (1, -1, -1, 1) increases the synaptic matrix element for agreeing
pre- and postsynaptic states and decreases the synaptic weight for
disagreeing states. This rule was used in the original Hopfield model
[25J.

The above rules are both product rules: R(x, y) = xy. For a = ° we obtain
the Hebb rule, and for a = -1 the agreement rule, and, sometimes, for
instance in [33J, both are considered as Hebbian learning. We retained the
distinction because in the original formulation of his postulate Hebb clearly
talks of the influence of synchronously firing neurons on their interconnect­
ing synapses. The psychologist Hebb claimed this postulate to be inspired
by physiological and psychological findings, while the symmetry between
firing and silence in the agreement rule is biologically very implausible.

Storage Procedures

We consider one-step learning, which means that, after one single presen­
tation of every pair, the formation of the synaptic matrix is finished. Two
different types of storage procedures will be examined:

Gunther Palm and Friedrich T. Sommer 87

• The incremental storing procedure, where the synaptic matrix is given
by

M

M = (Mij):= LR(xf,yj). (3.5)
k=l

• The binary storage procedure, where the synaptic matrix ..M is ob­
tained from M by another highly nonlinear operation:

(3.6)

with sgn(O) := O.

Storage procedures can be strictly local (as in most of the papers cited
here) or nonlocal (as, for example, in Personnaz et al. [34,35]). Depending
on the sign of the average connectivity change, they can be productive,
destructive, or balancing for the total network connectivity (cf. [36, 37]).
Local storage procedures can make use of two (probably the majority),
three (supervised learning with additional teacher signal, e.g., Barto et al.
[38]), or more terms to compute a synaptic change (compare Palm [36]
again). In this chapter we concentrate on storage procedures employing
strictly local two-term learning rules.

The most common synaptic arrangement in biological neural nets as in
the cerebral cortex (and the hippocampus) is the simple dyadic synapse. It
connects just two neurons: the presynaptic and the postsynaptic; therefore,
there are just two natural, locally available activity signals: the presynaptic
and the postsynaptic.

3.2.3 DISTRIBUTED STORAGE

One reason for the big comeback of systems with neural architecture in
the last decade is the fact that, in computer science, distributed process­
ing turned out more and more to be an indispensable goal. How do the
simple memory models introduced in this section display the properties of
distributed storage?

For heteroassociation, local rules store second-order correlations between
address and content pattern activities; for instance, with the Hebb rule,
each pair of active neurons (xf, yj) affects one synapse Mij.

The storage is called distributed if the storage of one single pattern pair
causes nonlocal changes in the storage medium. More than one element
of the synaptic matrix is affected if at least one pattern in the pair is
nonsingular, that is, if either set of address or content patterns contains
nonsingular patterns.

Here we define distributed storage in a stricter sense: we require that
many matrix elements carry information about more than one pattern pair.

88 3. Associative Data Storage and Retrieval in Neural Networks

In this sense distributed information storage for arbitrary local rules is pro­
vided only if both pattern sets, address and content patterns, contain non­
singular and overlapping patterns. Then, the storage of several pattern pairs
will affect the same synapses, so that each entry in the synaptic connectiv­
ity matrix M may contain the superposition of several memory traces; i.e.,
for most index pairs (i, j) the sum L:k R(xf, yf) should have more than one
nonzero contribution. Like in holography, an accessible content segment (a
pattern pair) is written widely spread in the storage medium and different
content segments will overlap.

In the case of autoassociation, local rules store the second-order auto­
correlation of the pattern activity; with the Hebb rule, each pair of active
neurons in a learning pattern causes a change in one synapse. Distributed
storage requires the patterns to be nonsingular and overlapping.

3.3 Analysis of the Retrieval Process
The aim of the present section is the analysis of one-step retrieval in the
associative memory after learning, i.e., after the storage process has formed
the memory matrix for a given memory task (SA, SC). In Sec. 3.1.5 and
by Eq. (3.3) we have introduced the quantities of interest in the analysis of
this feedforward system, viz., the mean retrieval error probabilities in an
output pattern for a given input pattern.

We already mentioned in the introduction that different spatial scales
can be distinguished in the treatment of neural nets, the microscopic scale
of synapses and model neurons, and the macroscopic scale of the collective
behavior of all neurons. What we presume about the model is on the mi­
croscopic scale (neuron model, learning rules, etc.); what we would like to
know from a theory is on the macroscopic scale, the collective behavior of
the whole set of neurons (retrieval errors). In physics it is quite usual to
deal with separable scales, for instance, in thermodynamics the molecular
versus the macroscopic scale. Physical mean-field theories that originally
have been developed for spin glasses5 yield asymptotic results for the re­
trieval errors6 in the limit of infinite system size: m, n -+ 00, which often

5Spin glasses are magnetic solids with two different competing fractions of spin
couplings. One fraction favors parallel and the other anti parallel spin alignment,
which causes irregular (glasslike) stable spin configurations. The mean-field the­
ory provides values for the mean magnetization as macroscopic order parameters.

6The order parameters of a mean-field theory treating neural networks are the
M overlaps {m/, 1 = 1, ... , M}, where each overlap m/ counts the number of com­
mon pixels between the retrieval output and the content pattern y/. If we apply
a (distorted) address pattern !i;k as an input pattern, particularly, one overlap is
important for the retrieval quality, namely, the overlap mk corresponding to the
input pattern. The theory provides a mean value < mk >, averaged over a large
number of retrieval events, which is equivalent to the retrieval error probabilities
in Sec. 3.5.

Gunther Palm and Friedrich T. Sommer 89

is called the thermodynamic limit of fixed-point retrieval in the associative
memory after learning.

We will consider memory tasks with different mean ratios p between
the elements 1 and a in the pattern sets in the finite model and in the
thermodynamic limit, i.e., m -+ 00. Curiously, memory tasks with sparse
patterns, as defined in Sec. 3.1.1., will turn out to yield optimal asymptotic
performance.

3.3.1 RANDOM PATTERN GENERATION

To apply probability theory for the estimation of mean retrieval error prob­
abilities, we have to assume the following properties of the memory data
and of the distortion of the input patterns.

Content and Address Patterns

In the memory tasks we assume the simplest model of the data to be stored,
namely, sets of randomly generated patterns. The value of each of the n
digits in a pattern xk E S is chosen independently with the probability
p := Prob[xf = 1]. A set of randomly generated patterns is fixed by three
parameters: the probability p, the dimensionality of a pattern n, and the
number of patterns M. We will use the following notation for address and
content patterns: SA := S(p,m,M),SO := S(q,n,M). For heteroassocia­
tion, the sets SA and SO will be generated mutually independently.

Input Patterns

The signal detection problem will be treated in three different cases of
addressing:

1. A perfect address pattern as an input pattern xk, with nl := #{ i :
xf = I} being the number of 1 components.

2. An ensemble of perfect input patterns, where now the number of ones
in the input pattern nl also becomes a random variable. It is a bino­
mially distributed variable and, for large m, the fraction ndm will
be close to its expectation value p because of the strong law of large
numbers [39]. In the analysis, the average input activity J.t of the en­
semble will become an important quantity which, for large m, equals

J.t:= [nl + (m - nl)aJlm = p+ (1- p)a. (3.7)

3. An ensemble of noisy input patterns SA, which is generated by a
second random generation process from the set of address patterns
SA used for learning. Here we concentrate on noisy input patterns,
where xk E SA is a "part" of an address pattern xk in the following
sense: Prob [xf = O\xf = 0] = 1 and Prob [xf = l\xf = 1J =: p'. As

90 3. Associative Data Storage and Retrieval in Neural Networks

for the faultless ensemble, we describe the input activity for large m
by the average input activity of the address ensemble

Ii := pp' + (1 - pp')a. (3.8)

In the analysis that follows we will use the prime to indicate the
results for the noisy input ensemble.

3.3.2 SITE AVERAGING AND THRESHOLD SETTING

Depending on its dendritic potential [Eq. (3.1)] and the threshold value aj ,

each neuron j "decides" in the update process [Eq. (3.2)] whether it should
be active or silent. This can be regarded as a signal detection problem on
the random variable dj that every neuron has to solve.

To find the probabilities for on and off errors in Eq. [3.3] we have to
consider the neurons separated in two fractions: the on-neurons, which
should be active in the original content pattern yk, and the off-neurons,
which should not be active. In our model, the threshold of each neuron is set
to the same value depending only on the total activity of the input pattern.
Therefore, it is sufficient to analyze the averaged dendritic potentials in
each of the fractions. We will use the notation d1 =< dj > jE{j:y~=l} and

3

da =< dj >jE{j:y'!:=a}' With the assumptions of the last subsection these
3

averaged quantities can be treated as random variables.
Of course, the synapses - randomly generated in the storage process

- are "quenched" in the retrieval so that dendritic potentials at different
on-sites or off-sites will behave differently. This suggests a memory model
where the threshold is adjusted separately for each neuron, which has been
treated in [49] and will be discussed in Sec. 3.6.3.

3.3.3 BINARY STORAGE PROCEDURE

For binary storage, the dendritic potential at neuron j is dj = Ei x~ Jiit ij ,

where the values of the binary Hebb matrix Jiit are distributed on {O, I}.
The probability that a matrix element is 0 can be easily calculated:

Po := Prob[Mij = 0] = (1 _ pq)M. (3.9)

We discuss the three cases of addressing in Sec. 3.3.1 separately.

1. Given xk as an input pattern, the expectation E(d1-da) = nl(l-po)
is independent of the value a but the variance 0'2 (dj) is minimal
for a = O. So, optimally we choose a = O. Then we obtain for the
dendritic potential at an on-neuron d1 = nl' Thus we maximally can
put e = nl to obtain el = O.

Gunther Palm and Friedrich T. Sommer 91

The second error probability is determined from the dendritic po­
tential at an off neuron:

ea = Prob[da > 8] = Prob [IT Mij = l1Y~ = 0] ~ (l-po)n1 •

iE{i::J:~=l}

(3.10)

2. If we average over an ensemble of perfect patterns, where we adjust
the threshold individually for each input to 9 = nl, then the thresh­
old also becomes a random variable. Now consider the fixed threshold
setting 8 = Enl for all input patterns. For this threshold choice we
simply have to insert the expectation of nl into Eq. (3.10):

ea ~ (1 - po)mp • (3.11)

This fixed threshold setting leads to el(E9) > 0 because of patterns
with nl < Enl and to ea(E8) < Eea(9) because of the concavity of
the function ea (8). We will use Eq. (3.11) as approximation for the
retrieval error ea with the individual threshold adjustment.

3. Finally, for noisy addressing we obtain for the same fixed threshold
setting 8 = p' E(nl)

I ()pl
eal = ea . (3.12)

Strictly speaking, the above calculation requires independence of
the entries Mij' Although this is not the case, it is shown Appendix
3.1 that at least for sparse address patterns with m2/ 3p -+ 0 the
entries Mij become asymptotically independent for large m.

3.3.4 INCREMENTAL STORAGE PROCEDURE

In incremental storage, the contribution of each pattern pair is simply
summed up in the synaptic weights; and we can divide the dendritic po­
tential into two parts: the signal part 8, which is the partial sum coming
from the storage of the pattern pair (xk,yk), and the noise part N, the
remaining partial sum that contains no information about yj. From Eqs.
(3.1) and (3.5) we obtain

dj = N +8:= LxfMij = LLxfR(xLy~)
I

= LLxfR(xLy~) + LxfR(xf,y~).
I

The dendritic potential and its signal part have to be regarded separately
at an on-neuron (yj = 1) and at an off-neuron (yj = a):

81 := Lxf R(xf, 1), 8a := 2:xfR(xf, a).
i i

92 3. Associative Data Storage and Retrieval in Neural Networks

We now assume that, for the noise parts, E(N1) = E(Na) holds and that
it is the variance of the noise u(N), which determines the mean facility
to solve the neural detection problem. Inspired by engineering methods
we introduce the signal-to-noise ratio as a threshold setting independent
retrieval quality measure:

r := E(Sl - sa)/u(N). (3.13)

The motivation to do so is quite intuitive: the threshold detection problem
can be solved for many neurons for the same value e if E(Sl - sa) is large
and u(N) is low.

The fidelity requirement that ea and e1 should be small is equivalent to
the corresponding requirement that the signal-to-noise ratio r should be
large. How the retrieval errors are balanced between the two possible types
of retrieval errors is governed by the threshold setting. If both retrieval error
probabilities have to be below 0.5, the threshold has to satisfy Eda ~ e ~
Ed1, Eda being the expectation of the dendritic potential at an off-site.
Thus we put e = Eda + -ou(N)r = Ed1 - (1 - -o)u(N)r with -0 E [0.1].

For large m the noise term N can be considered as sum of a large number
of independent random variables and the central limit theorem holds. Then
we can estimate the error probabilities using a normal distribution and get

e1 = Prob[d1 - e < 0] ~ G[-E(d1 - e)/u(N)] = G[-(l- -o)r] (3.14)
ea = Prob[da - e > 0] ~ G[--or] (3.15)

with the normal or Gaussian distribution G[x] := (1/$) J~oo e-z2/2dx.
To obtain explicit values for the error probabilities we now have to ana­

lyze the signal and noise term in Eq. (3.13) for the different ensembles of
input patterns and different learning rules (Sec. 3.2).

For input ensembles we are interested in the mean retrieval errors where,
for every input, the threshold has been set in the optimal way according
to the number of active input digits n1. We insert the signal-to noise ra­
tio averaged over an input ensemble into Eq. (3.14) and consider a fixed
threshold setting that is equal for all input patterns. For binary storage,
we take this result as an approximation for the individual threshold adjust­
ment, which is equivalent to an exchange of the expectations of the pattern
average and the input average in the calculation.

Signal-to-N oise Calculation

Again we discern the three cases of addressing described in Sec. 3.3.1.

1. For the faultless address xk as input the signal is sharply determined
as

Sl - Sa = nl(r4 - ra) - (m - n1)a(r2 - r1).

The noise decouples into a sum of (M - 1) independent contribu­
tions corresponding to the storage of the pattern pairs (xl, yl) with

Gunther Palm and Friedrich T. Sommer 93

l =/: k. For every pair the input xk generates a sum of n1 random vari­
ables R(x, y) and of (m - n1) random variables aR(x, y) at a neuron
j. The variable R(x,y) = R(xLY~) is the four-valued discrete ran­
dom variable [Eq. (3.4)] with the distribution (1- p)(1- q),p(1- q),
(1 - p)q,pq.
With E(R) and (J'2(R) denoting expectation and variance of R(x, y),
a simple [but for (J'2(N) tedious] calculation yields

E(N) = (M - 1)[n1 + (m - n1)a]E(R) (3.16)
(J'2(N) = (M -1){Q1(J'2{R) + Q2Cov[RiRh]}, (3.17)

where we have used the abrevations

Q1 := n1 + (m - n1)a2

Q2 := n1(n1 -1) + 2an1(m - n1) + a2(m - n1)(m - n1 -1)

COV[RiRh] = q(1 - q)[p(r4 - ra) + (1 - p)(r2 - r1)j2.

The covariance term COV[RiRh] := Cov[R(xLyj)R(x~, y~)] measures
the dependency between two contributions in the ith and hth places
of the column j on the synaptic matrix.

2. If we average over the ensemble of perfect input patterns, we can
use again for large m the approximations ndm ~ {n1 - 1)/m ~
(n1 + 1)/m ~ p and (M -1)/m ~ M/m and obtain

E(Sl - sa) = m[p(r4 - ra) - (1 - p)a(r2 - r1)] (3.18)
E{N) = (M - l)mp.E{R)

In Eq. (3.17) we have to insert

Q1 = m[p + (1 - p)a2], (3.19)

3. Finally, we consider the ensemble of noisy address patterns. In this
case,

E(s~ - s~) = m[p(p' + (1- p')a)(r4 - ra) - (1- p)a{r2 - r1)]. (3.20)

In the description of the noise we only to replace p by pp' and p. by
p.' in (3.18) and (3.19).

Signal-to-Noise Ratios for Explicit Learning Rules

Regarding Eqs. (3.17) and (3.18), we observe that the signal-to-noise ratio
is the same for the rules R and bR + c, where c is an arbitrary number and
b is a positive number. Two rules that differ only in this way will be called
essentially identical. Thus we may denote any rule R as

(3.21)

94 3. Associative Data Storage and Retrieval in Neural Networks

The following formulas are written more concisely if we introduce instead
of r2, r3, r4 the mutually dependent parameters

"':= r3 +,,(q.

In this notation, the variance of the rule becomes

(12(R): = E(R2) - (E(R»2

= ",2p(1 - p) + 1\:2q(1 - q) + "(2p(1 - p)q(1 - q).

In the description of the input ensemble we transform from the parameters
p, a to the quantities p, J.L, see Eq. (3.7).

The signal-to-noise ratio averaged over perfect address patterns (2) is
then obtained from Eq. (3.13) as

(3.22)

Averaged over noisy address patterns (c) we obtain equivalently

with the definition for J.L' taken from Eq. (3.8).

Optimal Learning Rule

The expression (3.22) invites optimization of the signal-to-noise ratio in
terms of the three parameters ,,(, 1\:, and", so as to yield the optimal learning
rule Ro.

The parameter", appears only in (12(R) in the denominator. We first
minimize (12(R) with", = ° and obtain

(3.24)

The (large) factor m in the second term of the denominator in Eq. (3.24)
makes this term dominating unless at least one of the other factors I\: or J.L
vanishes.

At first sight we have two distinct cases that differ with respect to the
average activity J.L of the input patterns:

1. Either J.L stays away from 0, and then it is optimal to choose I\: = 0
(case 1);

Giinther Palm and Friedrich T. Sommer 95

2. or J.L -+ 0 fast enough to make the second term negligible in the sum
of the denominator in Eq. (3.24) (case 2). However, if we insert J.L = 0
in Eq. (3.24), again'" = 0 turns out to be the optimal choice.

Thus, both cases leave us with", = 0 and 'fJ = 0 and yield the covariance
rule as general optimal rule:

Ro = (pq, -p(1 - q), -q(1 - p), (1 - p)(1 - q)). (3.25)

The condition J.L = 0 will occur several times in the sequel, and will
be referred to as the condition of zero-average input activity. In partic­
ular, for p = 0.5 it implies a = -1, and for p -+ 0 this implies a -+ O.
This condition, which is equivalent to a = -p/(I-p) or to p = -a/(I- a),
fixes the optimal combination between input activity and the model para­
meter a.

For arbitrary p and a in the input patterns, and for arbitrary J.L, the
optimal signal-to noise ratio is evaluated by inserting Ro into Eq. (3.24),

r2 - (m/M) (1 - J.L)2p (326)
0- q(l-q)[P+(J.L-p)2/(I-p)](I-p)' .

Transforming back from J.L to a, we obtain

2 M p(l-p)(I-a)2
ro = (m/) [P + (1 _ p)a2]q(1 _ q)' (3.27)

Insertion of the zero-average input condition J.L = 0 into Eq. (3.26) yields
the optimal signal-to-noise ratio,

2 m
ro ~ M q(1 _ q) . (3.28)

Optimizing the signal-to-noise ratio for noisy addresses 3, Eq. (3.23) leads
to the same optimal rule [Eq. (3.25)]. Then the signal-to-noise ratio value
for perfect addressing is reduced from the noise in the input patterns. For
the optimal rule Ro with J.L = 0, it is given by

(1 _ p)pl2
r'2 '" r2 o pi _ 2pp' + pO' (3.29)

For learning rules with '" -::f. 0, which have a nonzero covariance term
only, J.L = 0 can suppress the m2 term in the variance of the noise. There­
fore, '" =1= 0 and J.L -::f. 0 lead to vanishing r as m -+ 00. A little algebra
shows that learning rules with J.L -::f. 0 and finite 'Y also yield a vanishing
r. In conclusion, all suboptimal rules need J.L = 0 to achieve a nonvanish­
ing r.

96 3. Associative Data Storage and Retrieval in Neural Networks

Table 3.1. Squared signal-to-noise ratios r2 (m, M, p, q) for p, = O.

Optimal Rule Ro Hebb Rule H Agreement Rule C

r2 = m m(l- p) Bmp(l- p)
Mq(l- q) Mq(l- pq) M(P(1 - q) + (1 - p)q]

Hebb and Agreement Rule

If we compare the Hebb rule and the agreement rule to the optimal learn­
ing rule Ro, we realize that, in general, both rules are suboptimal. But
nevertheless, for p = q = 0.5 the optimal rule becomes equal to the agree­
ment rule, Ro = (0.25, -0.25, -0.25,0.25), and for p, q -+ 0 the Hebb rule
is approximated by the optimal rule, Ro -+ H.

By Eq. (3.22) one can compute the signal-to-noise ratio for these rules,
the results of which for J1. = 0 may be found in Table 3.1.

As expected, the Hebb rule becomes essentially identical to Ro for p, q -+

O. In the a = 0 model, where the parameter a is not adjusted to guarantee
J1. = 0, we need a stricter sparseness in the address patterns, mp2 -+ 0, to
provide J1. -+ 0 fast enough to preserve the essential identity between H
and Ro.

By comparing the r 2-values corresponding to the different rules in Table
3.1, we will derive the performance analysis of the Hebb and agreement
rules (see Sees. 3.5.2 and 3.5.4) from the analysis of Ro carried out in this
section.

Summary

With incremental storage procedures the signal-to-noise ratio analysis of
one-step threshold-detection retrieval led to the following results:

• If a rule R yields the signal-to-noise ratio r, then any rule bR + c,
with b positive, yields the same signal-to-noise ratio. We call these
rules essentially identical.

• For any rule R, the best combination of the parameters p and a is
given by the zero-average input condition JI. = p + (1 - p)a = O.

• The maximal signal-to-noise ratio ro is always achieved for the covari­
ance rule Ro [Eq. (3.25)]. For increasing JI., the value ro continuously
decreases and reaches ro = 0 at JI. = 1.

• Every rule essentially different from Ro has a 0 asymptotic signal-to­
noise ratio, if the condition JI. = 0 is violated.

Giinther Palm and Friedrich T. Sommer 97

• The Hebb rule becomes essentially identical to Ro for memory tasks
with q -+ 0 and p -+ 0, i.e., for sparse address and content patterns.

• The agreement rule is equal to Ro for p = q = 0.5.

• Stomge of extensively many patterns, i.e., M/m > 0 as m -+ 00: In
this case, Ro and H achieve asymptotically vanishing errors (r -+ 00)

for memory tasks with sparse content patterns: q -+ 0 as m -+ 00.

The agreement rule A only achieves r = const as m -+ 00.

3.4 Information Theory of the Memory Process

How can the performance of an associative memory model be measured? In
our notation, a given memory task specifies the parameters p, q, M,p', ea ,

el. From the signal-to noise ratio analysis we can determine for randomly
generated patterns the maximal number of pattern pairs M* for which
the required error bounds ea , el are still satisfied. Then the first idea is to
compare the M* to the number of neurons used in the memory model. This
quotient of patterns per neuron 0: = M* In is used in many works, but this
measure disregards the parameter q used in the random generation of the
content patterns as well as the whole process of addressing.

In the following we use the description of elementary information theory
to find performance measures for the memory task and compare them with
the size of the storage medium, viz., the number of synaptic connections
nxm.

3.4.1 MEAN INFORMATION CONTENT OF DATA

Every combination of a memory problem and a coding algorithm will lead to
a set of content patterns that exhibit in general very complicated statistical
correlations.

For a set of randomly generated patterns 8, which we have used to carry
out the signal-to-noise ratio analysis, each digit was chosen independently.
The mean information contained in one digit of a pattern is then simply
given by the Shannon information [40] for the two alternatives with the
probabilities p and 1 - p,

i(p) := -plog2P - (1- p) log2(1- p),

and the mean information content in the set of randomly generated content
patterns 8 c is 1(8C) = Mni(q), where q is the ratio between 1- and a­
components in each content pattern. The pattern capacity compares the
mean information content of the content patterns with the actual size m x n
of the storage medium and is defined as

P(m,n):= max{I(8c)}/nm = M*i(q)/m. (3.30)
M

98 3. Associative Data Storage and Retrieval in Neural Networks

(SA,~""e L M
Retrie~

Adres- 1:::s.~1
memo task I r-:-m. matrix sing ret. output

Fig. 3.2. Output capacity: Information channel of storage and retrieval; (mem.
= memory, ret. = retrieval).

Here, M* equals the maximum number of stored patterns under a given
retrieval quality criterion. The definition (3.30) is an adequate measure of
how much information can be put in the memory, but not at all of how
much can be extracted during the retrieval. A performance measure should
also consider the information loss due to the retrieval errors.

3.4.2 ASSOCIATION CAPACITY

The memory can be regarded as a noisy information channel consisting
of two components (see Fig. 3.2): The channel input is the set of content
patterns So, and the channel output is the set of recalled content patterns
SO afflicted with the retrieval errors. The two components correspond to
the storage process, where the sets SA and SO are transformed into the
synaptic matrix and to the retrieval process where the matrix is transformed
into a set of memory output patterns So. The retrieval error probabilities
specify the deviation of SO from SO and thus the channel capacity.

The capacity of an information channel is defined as the transinformation
that is contained in the output of the channel about the channel's input.
The transinformation between SO and SO can be written as

(3.31)

where the conditional information [(SOISO) is subtracted from the infor­
mation content in So. It describes the information necessary to restore the
set of perfect content patterns SO from the set So. For random generation
of the data we obtain

with the contribution of one digit

[(yf I yf = ProbfYf = l]i(Prob[yf = 0 I yf = 1])

+ Prob[yf = O]i(Prob[yf = 1 I yf = 0])

= [q(l - ed + (1 - q)ea]i (q(l _ ~~)-+q~~a_ q)ea)

(3.32)

Gunther Palm and Friedrich T. Sommer 99

T(SC,SC)

Storage M Retrieval ~
~

memo task memo matrix ret. output

":(s~ic) - - h-tMI.-/--T-(S--C-'S-C-~)_T(SC'SC)
Addressmg

Fig. 3.3. Completion capacity: Information balance for autoassociation. (mem.
= memory, ret. = retrieval).

+ [qel + (1 - q)(l - ea)Ji (qel + (1 ~e~)(l _ ea)) . (3.33)

Now we define the association capacity as the maximal channel capacity
per synapse:

- M* A(m,n):= maxT(Sc,Sc)/mn = P(m,n) - -I(yf I yf).
M m

(3.34)

The capacity of one component of the channel is an upper bound for the
capacity of the whole channel: The capacity of the first box in Fig. 3.2
will be called storage capacity (discussed in [41]). The maximal memory
capacity that can be achieved for a fixed retrieval procedure (i.e., fixing
only the last box in Fig. 3.2) will be called the retrieval capacity.

3.4.3 INCLUDING THE ADDRESSING PROCESS

The defined association capacity is a quality measure of the retrieved con­
tent patterns, but the retrieval quality depends on the properties of the
input patterns and on the addressing process. Of course, maximal associa­
tion capacity is obtained for faultless addressing; and with growing address­
ing faults (decreasing probability pI) the association capacity A decreases
because the number of patterns has to be reduced to satisfy the same re­
trieval error bounds. To include judgement of addressing fault tolerance for
heteroassociation, we have to observe the dependency A(P/).

For autoassociation where SA = SC, we will consider the information
balance between the information already put into the memories input and
the association capacity (see Fig. 3.3).

This difference gives the amount of information that is really gained dur­
ing the retrieval process. We define the completion capacity for autoassocia­
tion as the maximal difference of the transinformation about SC contained

100 3. Associative Data Storage and Retrieval in Neural Networks

in the output patterns and contained in the noisy input patterns SA,

C{n) := ~~ {T(SC I SC) - T{SC I SC)} /n2.

From Eq. (3.31) we obtain

C{n) = ~~ {1(SC I Sc) - 1(Sc I Sc) } In2

= max {M*[1(yf I yf) - 1(yf I Iif)]} In.
pi

(3.35)

(3.36)

In Eq. (3.36) we have to insert again the maximum number of stored pat­
terns M* and the conditioned information to correct the retrieval errors;
cf. Eq. (3.33). In addition, the one-digit contribution of the conditioned
information necessary to restore the faultless address patterns SA from the
noisy input patterns SA is required. It is given by

(3.37)

Note that, for randomly generated content patterns, i.e., with complete
independence of all of the pattern components yf, one usually reaches the
optimal transinformation rates and thus the formal capacity.

3.4.4 ASYMPTOTIC MEMORY CAPACITIES

In Sec. 3.3 we analyzed the model in the thermodynamic limit, the limit
of diverging memory size. For asymptotic values of the capacities in this
limit we not only will examine memory tasks where the fidelity require­
ment remains constant; we also will examine the following asymptotic fi­
delity requirements on the retrieval which distinguish asymptotically differ­
ent ranges of the behavior of the quantities ea and el with respect to q -+ 0
as m,n -+ 00:

• The high-fidelity or hi-fi requirement: el -+ 0 and ealq -+ O. Note
that for q -+ 0 the hi-fi requirement demands for both error types
the same behavior of the ratio between the number of erroneous and
correct digits in the output: da :::::: d1 -+ 0 with the error ratios defined
by da := ealq and d1 := eI/{l- q) .

• The low-fidelity or lo-fi requirement: el and ea stay constant (but
small) for n -+ 00.

With one of these asymptotic retrieval quality criteria the asymptotic ca­
pacities P, A, and C are defined as the limits for n, m -+ 00 and n -+ 00,

respectively.

Gunther Palm and Friedrich T. Sommer 101

3.5 Model Performance

3.5.1 BINARY STORAGE

Output Capacity

In this memory model the probability Po = Prob(Mij = 0) is decreased if
the number of stored patterns is increased. Since obviously no information
can be drawn from a memory matrix with uniform matrix elements, we
will exclude the cases Po = 1 and Po = 0 in the following.

For faultless addressing, the maximal number M* of patterns that can
be stored for a given limit on the error probabilities can be calculated by
Eqs. (3.9) and (3.10):

M* = In [Po] = In[l - (ea)l/mp]
In[l - pq] In[l - pq]

(3.38)

From Eq. (3.34) we obtain for el = 0 and e := ea « q the association
capacity

A(m,n) ~ (M*/m){i(q) - (1- q)elog2[e(1- q)/q]). (3.39)

In Fig. 3.4 we have plotted a) Q! = M* /m from Eq. (3.38), and b) the
association capacity from Eq. (3.39) against p for q = p and the constant
error ratio d = ea/p = 0.01 for three finite memory sizes. Figure 3.5 shows
simulation results for the error ratio d with the parameters as in Fig. 3.4.
For p-values near the information optima in Fig. 3.4b, the experimental
value dexp is close to the value d used in Fig. 3.4a. For lower and higher p­
values, there are deviations between theory and experiment; see the caption
for Fig. 3.5.

Nonvanishing asymptotic association capacity requires M* /m > 0 as
m -+ 00. In Eq. (3.38) this can be obtained either for Po -+ 0, which we
have already excluded, or for pq -+ O. In this case, we obtain

M* ~ In[po].
-pq (3.40)

The hi-fi requirement leads with Eq. (3.11) to the following condition on p
and q:

ea/q = exp(mpln[l- po]-ln[q]) -+ O. (3.41)

In the case q -+ 0, the requirement (3.41) is satisfied if we put

p = u -In[q] (3.42)
m

with the positive number u > -(In[l - poD-I. Inserting Eq. (3.42) into
(3.40), we obtain the inequality

M* m In[po]ln[l - pol
< -qln[q] , (3.43)

102 3. Associative Data Storage and Retrieval in Neural Networks

30
···m = 512

0.6
- - m = 4096
- m = 1048576

20 0.4 I "-

"
"-a 0 I "-

I \
\

10 - \ 0.2 ,
'\., .. '

....
....... '~'-'; , ---0 I I 0.0

0.000 0.008 0.016 0.000 0.008 0.016

(a) p p (b)

Fig. 3.4. Binary storage in finite memory sizes: Number of stored patterns a
and output capacity A in bits/syn with the lo-fi requirement d = 0.01 for p = q
and n= m.

0.02 -r-----,l'---------.,
I'

dexp 0.01-
J"'.' .•......

... / •......•..
/- .•..
~ m = 512

.. ---. m = 40ge o .00 -+----r---r---,-r---..----r----,----r~
0.000 0.008 0.016 0.024 0.032

p

Fig. 3.5. Retrieval error ratio d = ea/k of simulations along the a-p curves of Fig.
3.4 for dtheor = 0.01. For low p-values, the experimental error is even lower than
predicted because we used learning patterns with a nonfiuctuating activity in the
simulations. For higher p-values, the theoretic values are too small because, in
this range, the effects of statistical dependence between different matrix elements
should not be neglected.

Gunther Palm and Friedrich T. Sommer 103

which can be put into Eq. (3.39), yielding, for Po = 0.5 and m -+ 00, the
maximal association capacity A ~ 0.69 bits/syn.

Note that for autoassociation and heteroassociation with p = q, m = n,
Eq. (3.42) implies that

p ex In[n]/n (3.44)

and

(3.45)

The relation (3.45) already has been obtained in [42, 43] for sparse memory
patterns with arbitrary learning rules by regarding the space of all possible
synaptic interactions; cf. Sec. 3.6.3.

For singular address patterns and arbitrary q = const, however, error-free
retrieval is possible for M* :$ m, which is the combinatorial restriction for
nonoverlapping singular patterns. In this case, with Eq. (3.39), as associa­
tion capacity of A = i(q) :$ 1 bits/synapse is obtained. For constant p, Eq.
(3.42) demands asymptotically empty content patterns, q ex exp(-mp/u) ,
leading to vanishing association capacity. For singular content patterns, the
combinatorial restriction M* :$ m also yields vanishing association capac­
ity.

Fault Tolerance and Completion Capacity

In the case of noisy input patterns [Eq. (3.12)], the hi-fi condition becomes
ea / q = exp(mpp' In[l- po]-ln[q]) -+ O. As in the preceding subsection, we
obtain the maximal number of patterns by M'* = p' M*, where M* is the
value for faultless addressing [Eq. (3.43)]. Thus, for heteroassociation, the
association capacity exhibits a linear decrease with increasing addressing
fault, A(P') = p' A.

For autoassociation with the hi-fi requirement, the retrieval error term in
the completion capacity [Eq. (3.36)] can be neglected as in the association
capacity, and we obtain for p -+ 0

C = max {(M'*/n)(l- pp')i (P(l- PI))}
pi 1-pp'

= {In[Po]ln[l - Po]p'(l - p') } _ 017 b't /
~!pC In[2] -. 1 S syn (3.46)

for Po = 0.5 and p' = 0.5. In Fig. 3.6, the completion capacity is plotted
against p for three finite memory sizes and for the constant error ratios a)
d = ea/p = 0.01, and b) d = 0.05. The optimum is always obtained for
p' = 0.5.

104 3. Associative Data Storage and Retrieval in Neural Networks

0.2 -r---------,
· .. m = 512
- - m = 4096
- m = 1048576

I
C 0.1 I

I , ... "" ,
\.. /..... d= 0.01

O.Q I I

0.000 0.008 0.016
p

0.2 -,---------,

C 0.1

,
···m = 512
--m=4096
- m = 1048576

I ',
, .':>'

, ... ,.:/

d= 0.05
,\...

0.0 ...l.-.1~::r=-__ ---t-.,...--I

0.000 0.008 0.016
p

Fig. 3.6. Binary storage in finite memory sizes: Completion capacity C in
bits/syn for two 10 fi values; the maximum has always been achieved for ad­
dressation with p' = 0.5.

3.5.2 INCREMENTAL STORAGE

Output Capacity

For faultless addressing, zero-average input, and the optimal rule Ro, the
maximal number of stored patterns for a given signal-to-noise ratio value
r is obtained from Eq. (3.28):

M* = m/(r2q(1 - q)). (3.47)

If the threshold setting provides ea/q = ed(l - q) =: d, the association
capacity can be computed for small fixed values of the error ratio d from
Eqs. (3.34) and (3.47):

A'" i(q) + q(l - q)d{log2[qd] + log2[(1 - q)d]} (3.48)
- r 2q(1- q) .

With substitution of r = G-l[qd] + G-l[(l - q)d] in Eq. (3.48) we obtain
the association capacity for the rule Ro for a constant d error ratio, the
10 fi requirement. (G-l[X] is the inverse Gaussian distribution.) In Fig.
3.7 we display the association capacity values for the optimal, Hebb, and
agreement rules, the latter two obtained by comparison of the signal-to­
noise ratios in Table 3.1.

The hi-fi requirement only can be obtained for r -+ 00 as m -+ 00 in
Eq. (3.47), which is possible either for M* /m -+ 0, leading to vanishing
association capacity, or for q -+ 0, the case of sparse content patterns,
which we focus on in the following.

We now choose a diverging signal-to-noise ratio by

r = J-21n[qJl'l9. (3.49)

The threshold has to be set asymmetrically, '19 -+ 1, because for sparse
patterns ea/el -+ ° is demanded. (This implies q = exp[-('I9r)2/2], yielding,

1.2

0.8

0.4

Giinther Palm and Friedrich T. Sommer 105

,
.....

... rule A
- - rule H
- rule Ro

.-' .. ~'''''''''''':.:,::':':'''-

0.4 ~--------,

o 0.2 I\:--
" ~---.".,,,......._l

--
0.0 -+---.---.-----.---.----1 0.0 J J J J

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
p p

Fig. 3.7. Model with incremental storage, fulfilled condition of zero-average in­
put, and m, n -+ 00: Number of stored patterns Q (left) and asymptotic output
capacity A in bits/synapse (right) for p = q with the lo-fi requirement d = 0.0l.
The optimal rule Ro is approached by the agreement rule A for p = 0.5 and by
the Hebb rule for p -+ O. For p -+ 0, the lo-fi output capacity values of the optimal
and Hebb rules reach but do not exceed the hi-fi value of A = 0.72 bits/synapse
(this only can be observed if the p-scale is double logarithmic; see Fig. 5 in [51]).

with Appendix 3.2, ea/q ~ (1l"r2/2)-1/2 O. If the threshold iJ approaches
1 slowly enough that (1- iJ)r 00 still holds, then e1 0 also is true and
the hi-fi requirement is fulfilled.)

With vanishing e/ q, Eq. (3.48) simplifies asymptotically to

A ~ P + 2elo~2[el ~ P.
r

Again, the information loss due to retrieval errors can be neglected due to
the high-fidelity requirement.

Inserting Eq. (3.49) into (3.47) we obtain for zero-average input and the
optimal rule Ro,

M* = m/{-2q{1- q) In[q]) , (3.50)

which, like our result (3.49), can be calculated alternatively with the Gard­
ner method [42, 43]; cf. Sec. 3.6.3.

With Eqs. (3.50) and (3.30) we obtain as asymptotic association capacity
with the hi-fi requirement, A = 0.72 bits/syn.

In contrast to the model with binary storage - where a positive as­
sociation capacity only for sparse content and address patterns has been
obtained - with incremental storage, an association capacity A = 0.72
bits/syn is achieved even for memory tasks with nonsparse address pat­
terns. However, for {O,l}-neurons we again are restricted to sparse address
patterns because, for nonsparse address patterns, the zero-average input
condition cannot be satisfied.

With singular address or content patterns that are not interesting cases
for associative memory, as we will discuss in Sec. 3.6.1, incremental and

106 3. Associative Data Storage and Retrieval in Neural Networks

0.10 ... rule A

0.08 - - rule H
- rule Ro 0.8

0.06
C

0.04 "-

p'
0.7

0.6
,....

0.02 ... 0.5
0.0 0.2 0.4

0.00 .. p
0.0 0.1 0.2 0.3 0.4 0.5

p

Fig. 3.S. Incremental storage for n -+ 00: Completion capacity in bits/syn with
the lo-fi requirement d = 0.01 (left diagram). The optimal p' in the addressing
has been determined numerically (right diagram).

binary storage form the same memory matrix and achieve exactly the same
performance; see the last part of Sec. 3.5.1.

Fault Tolerance and Completion Capacity

For heteroassociation with noisy addressing we obtain the association ca­
pacity for zero-average input and Ro by using Eq. (3.29) (remember that
r2 ()(m/M):

A(p') = (1 - p)p12 A.
p' - 2pp' +p

(3.51)

For p = 0.5 this implies A(p') = pl2 A, and for p -+ 0, as in the binary
case, A(p') = p' A. For autoassociation with the hi-fi requirement we obtain
in a way similar to Eq. (3.46)

C() = {tJ2PI (1 - p')log2[P(1 - pI)]}
n ~~ 2In[p]

{ tJ2p'(1 - p') } .
:::::: ~~ 2In[2] = 0.18 blts/syn.

Again, the maximum is reached for p' = 0.5 and tJ -+ 1.
A similar optimization in p' can be carried out for fixed values of p and

the lo-fi requirement; see Fig. 3.8. In this case, the optimum is reached for
p' larger than 0.5.

Giinther Palm and Friedrich T. Sommer 107

3.6 Discussion

3.6.1 HETEROASSOCIATION

In applications of associative memory, the coding of address and content
patterns plays an important role. In Sec. 3.1 we distinguished three types
of patterns leading to the memory tasks defined in Sec. 3.4: singular pat­
terns with only a single I-component, sparse patterns with a low ratio
between the numbers of 1- and a-components, and nonsparse patterns. To
get a general idea, Table 3.2 shows those memory models which achieve
association capacity values A > 0 under the hi-fi requirement. Note that
only the Hebb and the optimal learning rules in memory tasks with sparse
or singular patterns yield nonvanishing hi-fi association capacities. In the
following, we consider the different types of content patterns subsequently.

Nonsparse Content Patterns

Only in combination with singular address patterns do nonsparse patterns
achieve high association capacity. In this case, qualified in Sec. 3.4 as the
look-up-table task, all rules achieve A = 1. The associative memory works
like a RAM device, where each of the m content patterns is written into one
row of the memory matrix M and, therefore, trivially A = i(q). However,
this is not an interesting case for associative storage because the storage
is not distributed, and in the recall no fault tolerance can be obtained:
A(P') = 0 for p' < 1.

Table 3.2. Models that yield A > 0 for the hi-fi require­
ment in different memory tasks (incr. = incremental stor­
age, bin. = binary storage, incr.Ro, H, for instance, de­
notes the incremental storage model with either optimal
rule or Hebb rule).

Nonsparse Sparse Singular
Content Content Content

Nonsparse - iner. Ro -
address

Sparse - incr. Ro,H -
address bin. H

Singular iner. Ro,H - -
address bin. H

108 3. Associative Data Storage and Retrieval in Neural Networks

Table 3.3. Hi-fi association capacity values of the
different models for sparse content patterns. As a
measure of addressing fault tolerance (cf. Sec. 3.3),
in the second line of each cell the reduction factor
for faulty addressing is displayed. For instance, with
sparse address and content patterns the Hebb rule in
the incremental storage yields A = 0.36 bits/syn if,
in the addressing, p' = 0.5 is chosen.

Binary Incremental
H H Ro

Nonsparse - - A = 0.72
address - - p'2

Sparse A = 0.69 A = 0.72 A = 0.72
address p' p' p'

Sparse Content Patterns

Combined with sparse or nonsparse address patterns, sparse content pat­
terns represent the most important memory task for neural memory models
with Hebb or optimal learning rules, where high capacity together with as­
sociative recall properties are obtained. For optimal association capacity,
many patterns in the set of sparse learning patterns will overlap. Therefore,
in the learning process, several pattern pairs affect the same synapse, and
distributed storage takes place. In Table 3.3, the hi-fi association capacity
values can be compared. For sparse address patterns, the Hebb and optimal
rules achieve exactly the same performances because, with the zero-average
input condition, both rules are essentially identical. Even the binary Hebb
rule shows almost the same performance. At first sight it is striking that
binary storage, using only one-bit synapses, yields almost the same per­
formance as incremental storage, which uses synapses that can take many
discrete values. This fact becomes understandable if we consider the mean
contributions of all of the patterns at one synapse by incremental and by
binary storage: EM = 0.69 for incremental compared with EM = 0.5 for
binary storage. In both cases, the sparseness requirement prevents the ma­
trix elements from extensive growth; also, in incremental storage the vast
majority of synapses take only the values 0, 1, and 2.

For nonsparse address patterns, only the optimal setup, namely, the rule
Ro in the incremental storage, achieves nonvanishing association capacity.
This case is of less importance for applications since implementation is
much more difficult (higher computation effort for a =I- 0, and the determi­
nation of the value of a requires the parameter p of the patterns).

Gunther Palm and Friedrich T. Sommer 109

Relaxing the quality criterion does not enhance the association capacity
value in the sparse limit. The lo-fi association capacity values plotted in
Figs. 3.4 and 3.7 do not exceed the hi-fi values in Table 3.3. With the
agreement rule, finite lo-fi association capacity values can be achieved (see
Fig. 3.7), whereas the hi-fi association capacity always vanishes.

Singular Content Patterns

The neural pattern classifier that responds to a nonsingular input pattern
with a single active neuron often is called the grandmother model or per­
ceptron. Here, the information contained in the content patterns is asymp­
totically vanishing compared to the size of the network: A = O. Again, no
distributed storage takes place.

3.6.2 AUTOASSOCIATION

If content and address patterns are identical in order to accomplish pattern
completion in the retrieval, we have only to regard the cases of sparse and
nonsparse learning patterns.

Asymptotic Results

The amount of information that really can be extracted by pattern comple­
tion with high quality is given by the asymptotic hi-fi completion capacity.
It always vanishes in cases of nonsparse patterns. For one-step retrieval
with sparse patterns, we have determined C = 0.18 and C = 0.17 bits/syn
for the Hebb rule in incremental and binary storage, respectively (Secs.
3.5.1 and 3.5.2).

Using a practically unrealistic fixed-point readout scheme7 and the Hebb
rule, we have found completion capacity values of C = 0.36 bits/syn for
incremental and C = 0.35 bits/syn for binary storage [30, 23]. Thus, one
would expect the performance of one-step retrieval to be improved by fixed­
point retrieval, i.e., starting from a single address pattern and iterating the
retrieval process until the fixed point is reached. Asymptotically, however,
fixed-point retrieval does not improve the one-step capacity results [44,45,
46]. It is a consequence of the fulfilled hi-fi condition that already after only
the first step we get asymptotically vanishing errors for diverging system
size.

Finite-Size Systems

Although Fig. 3.6 illustrates that the asymptotic capacity bounds are only
reached for astronomic memory sizes, even for realistic memory sizes sparse

7Fixed points are patterns that remain unchanged during a retrieval step, i.e.,
input and output patterns are identical.

110 3. Associative Data Storage and Retrieval in Neural Networks

c
0.05 ---------- M = 40000

------- M = 50000
---- M = 60000
--- M= 70000
--M=

0.00 +--...--...--...-'-"'-=-,'=oI..>L.IL.J
o 2 3 4 5

iteration steps

Fig. 3.9. Completion capacity C in bits/syn for iterative retrieval for addressa­
tion with p' = 0.5 which has been achieved in simulations in binary storage with
4096 neurons. Depending on the number of stored patterns M an improvement
up to twenty percent (for M = 60000) can be obtained after the first step through
iteration.

patterns yield better performance than nonsparse patterns. Simulations
and analysis have revealed (again cf. [44, 45]) that iterative retrieval meth­
ods with an appropriate threshold-setting scheme (indicating how the
threshold should be aligned during the sequence of retrieval steps) yield
superior exploitation of the autoassociation storage matrix as compared to
one-step retrieval; see Fig. 3.9. For finite systems, fixed-point retrieval even
improves the performance and capacity values above the asymptotic value;
e.g., for n = 4096, about C = 0.19 bits/syn can be obtained.

For a certain application and a given finite memory size, however, we
cannot reduce the pattern activity ad libitum by modifying the coding
algorithm. Thus we sometimes may be faced with p » In[nJ; cf. Eq. (3.42).
In this case, binary Hebbian storage is ineffective - see Fig. 3.6 - and
incremental storage does not work either.

3.6.3 RELATIONS TO OTHER ApPROACHES

Heteroassociation

The zero-average input condition for memory schemes with nonoptimal
local synaptic rules was first made explicit by Palm [47] but appeared im­
plicitly in some closely related papers. Horner [48J has used it to define the
neural off-value a in his model, and Nadal and Tolouse [24] have exploited
it (through their condition of "safely sparse" coding) as a justification for
their approximations.

The optimization of the signal-to-noise ratio r carried out by Willshaw
and Dayan [37J and independently by Palm [47J already has been suggested

Gunther Palm and Friedrich T. Sommer 111

- though not carried out - by Hopfield [25]. Also, Amit et al. [8] have
proposed the covariance rule Ro.

The signal-to-noise ratio is a measure of how well threshold detection can
be performed in principle, independent of a certain strategy of threshold
adjustment. We have examined the model where the threshold assumes the
same value e for all neurons during one retrieval step and optimized the
response behavior depending on the individual input activity. So we could
lump together the on- and off-fractions of output neurons and calculate the
average signal-to-noise ratio.

In a recent work, Willshaw and Dayan [49] carried out a signal-to-noise
analysis using quite similar methods for a different model. In their model,
the threshold setting e j was chosen individually for each neuron for the
average total activity of input patterns. Thus, the signal-to-noise ratio at
a single neuron was optimized for averaged input activity. Due to this
difference, the results only agree for zero-average input activity and in the
thermodynamic limit; for the same optimal rule, the same signal-to-noise
ratio is obtained. In general, their model is not invariant under the addition
of an arbitrary constant in the learning rule because, for E(R) t= 0, activity
fluctuations in an individual input patterns are not compensated for by
threshold control as in our model.

Most of the results for heteroassociation discussed here can be found in
Peretto [50], Nadal and Toulouse [24], Willshaw and Dayan [37], and Palm
[47, 51]. Some of our results are numerically identical to those of Nadal
and Toulouse, who employ different arguments [e.g., approximation of the
distribution of the noise term, Eq. (3.13), by a Poisson distribution]. In our
framework one also could define a "no fidelity requirement," namely, ea

and el -+ 0.5, which would correspond to the "error-full regime" of Nadal
and Toulouse. This leads to the same numerical result, A = 0.46, which,
however, is not very interesting from an engineering point of view since it
is worse than what can be achieved with high fidelity. The result for binary
storage stems from Willshaw et al. [4] for the Hebb rule, and to Hopfield
[25] for the agreement rule. A new aspect is the information-theoretical
view on the trade-off between association capacity and fault tolerance.

Autoassociation

Autoassociation has been treated extensively in the literature; see, for ex­
ample, [8,25,43,26,29]. In two points, our treatment differs from most of
the papers on autoassociation:

• Usually, models with fixed-point retrieval (and only with incremental
storage) have been considered.

• As the appropriate performance measure for pattern completion, we
evaluate and compare the completion capacity which takes into ac­
count the entire information balance during the retrieval.

112 3. Associative Data Storage and Retrieval in Neural Networks

With one exception [48, 52], other authors regard (in our terms) the pat­
tern capacity, i.e., the retrieval starts from the perfect pattern as address.s
Hence, to compare the existing fixed-point results with our one-step re­
trieval for autoassociation, we should take the association capacity or pat­
tern capacity results calculated in Sec. 3.5.2 for heteroassociation in the
case p = q.

For nonsparse patterns with p = 0.5, fixed-point retrieval with the lo-fi
requirement stays below one-step retrieval: For the same fidelity of d =
0.002, the one-step result for the agreement rule (Fig. 3.4) is higher than
the Hopfield bound for the fixed-point retrieval in [10, p. 296]. Here, one­
step retrieval behaves more smoothly with respect to increasing memory
load because the finite retrieval errors after the first step are not increased
further by iterated retrieval. If the lo-fi fidelity requirement is successively
weakened, a smooth increase of the one-step association capacity can be
observed, and no sharp overload breakdown of the capacity (the Hopfield
catastrophy) takes place, as would be the case for fixed-point retrieval at
the Hopfield bound Q c [25,8,29].

The pattern capacity for the binary agreement rule has been estimated
by a comparison of the signal-to-noise ratios for binary and nonbinary ma­
trices in [25] and has been exactly determined in [26] as Ab = (2/1r)A. For
nonsparse learning patterns, binary storage is really worse than incremental
storage.

Again, as for heteroassociation, only for sparse patterns can nonzero
values for the asymptotic hi-fi capacities can be achieved. For one-step re­
trieval with a = 0, we have found a hi-fi pattern capacity of P = 0.72
bits/syn. For fixed-point retrieval, it has been possible to apply the sta­
tistical mechanics method to sparse memory patterns; cf. for instance [53,
27]. In [27] just the same value P = 0.72 bits/syn has been obtained. Bya
combinatorial calculation we also have obtained this pattern capacity value
for fixed-point retrieval [30]. One-step and fixed-point retrievals yield the
same pattern capacities because, for sparse patterns, the hi-fi condition is
satisfied. It guarantees that almost all learned patterns are preserved in the
first retrieval step and hence are fixed points.

Quite a different way to analyze the storage of sparse and nonsparse
patterns through statistical mechanics has been developed by Gardner [42,
43]. In the space of synaptic interactions, she has determined the subspace
in which every memory pattern is a stable fixed point. For sparse patterns
this method yields the same pattern capacity value.

8To obtain the pattern capacity, it is sufficient to study the properties of the
fixed points as a static problem. In evaluating the completion capacity, one has
to study how the system state evolves from a noisy input pattern in order to
determine the properties of the output pattern with a given address. This is a
dynamic problem which is in fact very difficult.

Gunther Palm and Friedrich T. Sommer 113

3.6.4 SUMMARY

The main concerns of this chapter can be summarized as follows:

• The statistical analysis of a simple feedforward model with one-step
retrieval provides the most elementary treatment of the phenomena
of distributed memory and associative storage in neural architecture.

• The asymptotic analytical results are consistent with the literature.
For autoassociation, most of the cited works consider fixed-point re­
trieval, which allows us to compare one-step with fixed-point retrieval.

• Our information-theoretic approach introduces the capacity defini­
tions as the appropriate performance measures for evaluating for
the different memory tasks the information per synapse which can
be stored and recalled. Note that nonvanishing capacity values im­
ply that the information content is proportional to the number of
synapses in the model.

• For local learning rules, sparse content patterns turn out to be the best
possible case, cf. [54]. High-capacity values and distributed storage
with fault-tolerant retrieval are provided by the Hebb rule and {O, I}
neurons. Here, the number of stored patterns is much higher than the
number of neurons constituting the network. The binary Hebb rule
- much easier to implement - yields almost the same performance
as the incremental Hebb rule. For autoassociation, one-step retrieval
achieves the same asymptotic capacity values as fixed-point retrieval
(for the finite-size model, fixed-point retrieval yields higher capacity
values). The hi-fi condition can always be fulfilled by sparse content
patterns and only by these.

Acknowledgment. We are indebted to F. Schwenker for Fig. 3.9 and for
many helpful discussions. We thank J. L. van Hemmen for a critical reading
of the manuscript. This work was partially supported by the Bundesmin­
isterium fUr Forschung und Technologie.

Appendix 3.1

In this section we show, for the Hebb rule in binary storage, the independ­
ence of two different matrix elements. This is required in Sec. 3.3.2.

114 3. Associative Data Storage and Retrieval in Neural Networks

Proposition 1 For the binary storage matrix M we have, as n - 00,

Prob[Mlj = 1 and M 2j = 1]
-=----:-i'-:--:-=----:;-:::--:-;-:-....::..:!...--';- - 1 and
Prob[Mlj = 1]Prob[M2j = 1J

Prob[Mjl = 1 and M j2 = 1J
Prob[Mjl = 1JProb[Mj2 = 1] - 1,

provided p and q - 0 and x := Mpq stays away from 0 for n - 00.

Proof. Prob[Mij = 1J = 1- (1 _ pq)M:

Prob[Mlj = 1 and M 2j = 1] = Prob[(3k: x~ = x~ = 1 and yj = 1) or

where

(3Z . I I - 0 mOm I ,m. Xl,X2 - ,Xl = ,X2,Yj
= 1,yj = l)J
1 - (P(EI) + P(E2) - p(El n E2»,

EI = ['v'k: not (x~ = x~ = 1 and yj = 1) and not (x~ = 1,x~ = O,yj = 1)]

and

E2 = ['v'k : not (x~ = x~ = 1 and yj = 1) and not (x~ = 0, x~ = 1, yj = 1)].

Thus, Prob(EI) = Prob(E2) = (1- pq)M and Prob(EI n E2) = (1- q(2p­
p2»M. Therefore, we obtain

Prob[Mlj = 1 and M2j = 1J - Prob[Mlj = 1J· Prob[M2j = 1]

= (1 - 2qp + qp2)M - (1 - pq)2M = (1 _ 2qp + qp2)M
-(1 - 2pq + p2q2)M

= e-M(2pq-p2q) _ e-M(2pq_p2q2) = e-2pqM (eMp2q _ eMp2q2).

Thus we find

Prob[Mlj = 1 and M 2j = 1]- Prob[Mlj = 1J· Prob[M2j = 1]
Prob[M1j = 1]· Prob[M2j = 1J

e-2x (ePx _ eqpX)
= -0 (1 - e-x)2 '

since px - 0 and pqx - O.
This proposition shows the asymptotic pairwise independence of the en­

tries Mij in the memory matrix M, since entries which are not in the same
row or column of the matrix are independent anyway.

In order to show complete independence, one would have to consider
arbitrary sets of entries Mij' In this strict sense, the entries cannot be

Gunther Palm and Friedrich T. Sommer 115

independent asymptotically. For example, if one considers all entries in one
column of the matrix, then Prob[Mij = 0 for all iJ = (1 - q)M ~ e-Mq ,
which is with Eq. (3.9) in general not equal to p;f = (1-pq)Mn ~ e-Mmpq .

Thus independence can at best be shown for sets of entries of the matrix
M up to a limited cardinality L(n). The worst case, which is also important
for our calculations of storage capacity, is again when all entries are in
the same column (or row) of the matrix. This case is treated in the next
proposition, which gives only a rough estimate.

Proposition 2

Prob[Mij = 1 for i = 1, ... , lJ --+ 1
Prob[Mij = IJI for n --+ 00

as long as pl2 --+ 0 and x = Mpq stays away from 0 for n --+ 00.

Proof.

Prob[Mij = IJ :$ Prob[Mlj = IIMij = 1 for i = 1, ... , l- IJ

:$ Prob[Mlj = 11 there are at least 1- 1 pairs (xk, yk) with y7 = IJ
= 1 - (1 _ p)l-l(1 _ pq)M-I+1.

Therefore,

o < log P[Mij = 1 for i = 1, ... , lJ < ~ log 1 - (1 - p)i(1 - pq)M-i
- p[Mij =IJI -~ 1-(I-pq)M

~ 1-(l.:-:qrpo ~ 1-(I-ip)Po = L...-Iog :$ L...-Iog ,
i=O 1 - Po i=O 1 - Po

since

since

(I_P)i .
1 _ pq ~ (1 - p)' ~ 1 - ip,

1-1

< ~. Po
- L...-ZP--'

i=O I - Po

log(l + x) :$ x,

p. Po l2 2 < -- . - --+ 0 for p . 1 --+ 0
-I-po 2 '

and if Po = (1 - pq)M ~ e-Mpq = e-Z 1. For Eq. (3.10) we need
the independency of 1 = mp matrix elements; thus, for sparse address
patterns with m2/ 3p --+ 0, the requirement of Proposition 2 is fulfilled and
the independence can be assumed.

116 3. Associative Data Storage and Retrieval in Neural Networks

Appendix 3.2

The following estimation of the Gauss integral G(t) is used in Sec. 3.5.2.

Proposition 3

(27l't2)-1/2e-t2 /2(1_ t2) ::;; G(-t) = 1- G(t)::;; (27l't2)-1/2e-t2 /2

Proof. Since x2 = t2 + (x - t)2 + 2t(x - t), we have

From this and with e-z2/ 2 ::;; 1, we obtain the second inequality directly
since 1000 e-ztdx = lit and the first one after partial integration because
1000 xe-ztdx = lit.

REFERENCES

[1] Hodgkin, A.L., Huxley, A.F. {1952} A quantitative description of membrane current
and its application to conduction and excitation in nerve. J. Ph1lsiol. (Lond.)
117:500-544

[2] McCulloch, W.S., Pitts, W. (1943) A logical calculus of the ideas immanent in
neural activity. Bull. Math. Bioph1ls. 5

[3] Steinbuch, K (1936) Die Lernmatrix. Kybernetik 1:36

[4) Willshaw, D.J., Buneman, O.P., Longuet-Higgans, H.C. (1969) Nonholographic
associative memory. Nature (London) 222:960-962

[5] Rosenblatt, F. (1962) Principle of Neurod1lnamics (Spartan Books, New York)

[6] Little, W.A. (1974) The existence of persistent states in the brain. Math. Biosci.
19:101-120

[7] Kirkpatrick, S., Sherrington, D. (1978) Infinite-ranged models of spin-glasses. Phys.
Rev. B 17:4384-4403

[8] Amit, D.J., Gutfreund, H., Sompolinsky, H. (1987) Statistical mechanics of neural
networks near saturation. Ann. Phys. 173:30-67

[9] Domany, E., van Hemmen, J.L., Schulten, K. (1991) Models of Neural Networks
(Springer-Verlag, Berlin)

[10] Amit, D. J. (1989) Modelling Brain Function (Cambridge University Press, Cam­
bridge)

[11] Hertz, J., Krogh, A., Palmer, R. G. (1991) Introduction to the Theory of Neural
Computation (Addison Wesley, Redwood City, CAl

[12] Uttley, A.M. (1956) Conditional probability machines and conditional reflexes. In:
An. Math. Studies 34, Shannon, C.E., McCarthy, J. (Eds.) (Princeton Univ. Press,
Princeton, NJ), pp. 237-252

Gunther Palm and Friedrich T. Sommer 117

[13] Longuett-Higgins, H.C., Willshaw, D.J., Buneman, D.P. (1970) Theories of asso­
ciative recall. Q. Rev. Biophys. 3:223-244

[14] Amari, S.I. (1971) Characteristics of randomly connected threshold-element net­
works and network systems. Proc. IEEE 59:35-47

[15] Gardner-Medwin, A.R. (1976) The recall of events through the learning of associ­
ations between their parts. Proc. R. Soc. Lond. B. 194:375-402

[16) Kohonen, T. (1977) Associative Memory (Springer-Verlag, Berlin)

[17] Caianiello, E.R. (1961) Outline of a theory of thought processes and thinking
machines. J. Theor. Bioi. 1:204-225

[18) Holden, A.V. (1976) Models of the Stochastic Activity of Neurons (Springer-Verlag,
Berlin)

[19) Abeles, M. (1982) Local Cortical Circuits (Springer-Verlag, Berlin)

[20) Buhmann, J., Schulten, K. (1986) Associative recognition and storage in a model
network of physiological neurons. Bioi. Cybem. 54:319-335

[21) Anderson, J.A. (1968) A memory storage model utilizing spatial correlation func­
tions. Kybemetik 5:113-119

[22) Anderson, J.A. (1972) A simple neural network generating an interactive memory.
Math. Biosci. 14:197-220

[23) Palm, G. (1980) On associative memory. Bioi. Cybem. 36:19-31

[24) Nadal, J.-P., Toulouse, G. (1990) Information storage in sparsely coded memory
nets. Network 1:61-74

[25] Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Sci. 79:2554-2558

[26] van Hemmen, J.L. (1987) Nonlinear networks near saturation. Phys. Rev. A: Math.
Gen. 36:1959-1962

[27] Tsodyks, M.V., Feigelman, M.V. (1988) The enhanced storage capacity in neural
networks with low activity level. Europhys. Lett. 6:101-105

(28) Amari, S.I. (1989) Statistical neurodynamics of associative memory. Neural Net­
works 1:63-73

(29) Fontanari, J.F., Koberle, R. (1988) Information processing in synchronous neural
networks. J. Phys. France 49:13-23

[30) Palm, G., Sommer, F. T. (1992) Information capacity in recurrent McCulloch-Pitts
networks with sparsely coded memory states. Network 3:1-10

[31) Gibson, W.G., Robinson, J. (1992) Statistical analysis of the dynamics of a sparse
associative memory. Neural Networks 5:645-{)62

[32] Hebb, D.O. (1949) The Organization of Behavior (Wiley, New York)

[33] Herz, A., Sulzer, B., Kuhn, R., van Hemmen, J.L. (1988) The Hebb rule: Storing
static and dynamic objects in an associative neural network. Europhys. Lett. 7:663-
669; (1989) Hebbian learning reconsidered: Representation of static and dynamic
objects in associative neural nets. Bioi. Cybem. 60:457-467

(34) Personnaz, L., Dreyfus, G., Toulouse, G. (1986) A biologically constrained learning
mechanism in networks of formal neurons. J. Stat. Phys.43:411-422

118 3. Associative Data Storage and Retrieval in Neural Networks

[35] Personnaz, L., Guyon, I., Dreyfus, G. (1986) Collective computational properties
of neural networks: New learning mechanisms. Phys. Rev. A: Math. Gen. 34:4217-
4228

[36] Palm, G. (1982) Neural Assemblies (Springer-Verlag, Berlin)

[37] Willshaw, D.J., Dayan, P. (1990) Optimal plasticity from matrix memories: What
goes up must come down. Neural Compo 2:85-93

[38] Barto, A.G., Sutton, R.S., Brouwer, P.S. (1981) Associative search network: A
reinforcement learning associative memory. Bioi. Cybern.40:201-211

[39] Lamperti, J. (1966) Probability (Benjamin, New York)

[40] Shannon, C., Weaver, W. (1949) The Mathematical Theory of Communication
(University of Illinois Press, Urbana, IL)

[41] Palm, G. (1992) On the information storage capacity of local learning rules. Neural
Compo 4:703-711

[42] Gardner, E. (1987) Maximum storage capacity in neural networks. Europhys. Lett.
4:481-485

[43] Gardner, E. (1988) The space of interactions in neural network models. J. Phys.
A: Math. Gen. 21:257-270

[44] Schwenker, F., Sommer, F.T., Palm, G. (1993) Iterative retrieval of sparsely coded
patterns in associative memory. Neuronet'93 Prague

[45] Sommer, F.T. (1993) Theorie neuronaler Assoziativspeicherj Lokales Lernen und
iteratives Retrieval von Information. Ph.D. thesis, Diisseldorf

[46] Palm, G., Schwenker, F., Sommer, F.T. (1993) Associative memory.and sparse
similarity perserving codes. In: From Statistics to Neural Networks: Theory and
Pattern Recognition Applications, Cherkassky, V. (Ed.) (Springer NATO ASI Se­
ries F) (Springer-Verlag, New York)

[47] Palm, G. (1990) Local learning rules and sparse coding in neural networks. In:
Advanced Neural Computers, EckmiIIer, R. (Ed.) (Elsevier, Amsterdam), pp. 145-
150

[48] Horner, H. (1989) Neural networks with low levels of activity: Ising VB. McCulloch­
Pitts neurons. Z. Phys. B 75:133-136

[49] Willshaw, D.J., Dayan, P. (1991) Optimizing synaptic learning rules in linear as­
sociative memories. Bioi. Cybern. 50:253-265

[50] Peretto, P. (1988) On learning rules and memory storage abilities. J. Phys. Prance
49:711-726

[51] Palm, G. (1991) Memory capacities of local rules for synaptic modification. Con­
cepts in Neuroscience 2:97-128

[52] Horner, H., Bormann, D., Frick, M., Kinzelbach, H., Schmidt, A. (1989) Transients
and basins of attraction in neural network models. Z. Phys. B 16:381-398

[53] Buhmann, J., Divko, R., Schulten, K. (1989) Associative memory with high infor­
mation content. Phys. Rev. A 39:2689-2692

[54] Palm, G. (1987) Computing with neural networks. Science 235:1227-1228

4

Inferences Modeled with
Neural Networks
H.-O. Carmesin1

with 8 figures

Synopsis. We study changes of synaptic couplings as a consequence of re­
ceived inputs and of an internal mechanism. We adopt three approaches.
First, we study the relation between formal logic and networks using the
McCulloch-Pitts mapping from formulas to networks. We observe that
transformations of logical formulas correspond to internal changes in a net­
work, which in turn correspond to deductive inferences. In contrast, induc­
tive inferences correspond to learning in networks and to the "guessing of
axioms." Thus, formal logic does not address learning. This deficit is re­
flected in Wittgenstein's paradox (unique learning of counting by children),
which can be "solved in terms of networks." Second, under appropriate
conditions, the Hebb rule causes the minimization of complexity (num­
ber of couplings) during learning, and this makes the learning of counting
unique. The minimization also supports the view that, in psychological ex­
periments, test persons solve transitive and more complicated inferences in
a parallel rather than a sequential fashion. Third, a mechanism for inter­
nal changes in networks is studied that achieves both proofs by complete
induction and an axiom system for any given consistent task.

4.1 Introduction

You want to catch a cat. It runs into a small room. You follow, and when you
enter the door, the cat has hidden. You know that there are only two places
to hide: behind the chest or on the cupboard. If you approach the wrong
place, the cat will escape through the door. You remember that the cat has
played this game with you quite often, and it always hid behind the chest.
So you infer that the cat is behind the chest. But before you approach the
chest, you consider additionally: Most likely, my brother forgot his suitcase
behind the chest. Thus, there is insufficient space left for the cat. Hence,

lInstitut fUr Theoretische Physik, Universitat Bremen, D-28334 Bremen,
Germany.

120 4. Inferences Modeled with Neural Networks

you infer that the cat is on top of the cupboard. After you have caught your
cat, you sit in your armchair and wonder how your nervous system, which
presumably is organized according to the Hebb rule [1 J, provided you with
such useful inferences. Traditionally, inferences have been studied mainly
by logicians [2-5J, computer scientists [6J, cognitive psychologists [7J, and
philosophers [8, 9J. Here, we will model inferences with neural networks
and work out essential relations to the traditional approaches.

As is illustrated in the above example, the inference is caused by inputs
that are taken at different times and in different contexts. From all of the
inputs taken, relatively few relevant inputs are selected and coordinated
to an appropriate inference. Accordingly, we will propose a framework in
which a network takes inputs in a first phase, reorganizes internal states in
a second phase, and performs an action in a third phase.

For the sake of a clear understanding of inferences, we concentrate our
attention on three efficient approaches, each of which is possible in the
proposed framework. First, we use mappings [lOJ from logical formulas to
networks. Second, we model the counting ability [8J. Although this ability
may appear trivial, it provides the basis for most infinite procedures2 and
allows the study of learning. Third, we establish a cognitive system that
generates to a given task a corresponding axiom system in terms of net­
works. Thus, we model the formation of axioms from experience. Now that
we have characterized these three approaches, we begin our investigation
with definitions.

4.1.1 USEFUL DEFINITIONS

By inference we mean the combination of inputs by a neural network. In
our example, the nervous system combines remembered and actually per­
ceived inputs. The problem with generating such combinations of inputs
is the binding problem in its full generality, because here the combined
inputs are taken at different times and in different contexts. What are
these combinations or coordinations of inputs? Combinations occur dur­
ing the performance of the network. The performance includes changes
of neural activity and of couplings. Consequently, combinations occur ei­
ther directly through neural activities, or indirectly through changes of
(synaptic) couplings. Such changes are described by differences between
full network state; N/ull(t), which are characterized by the couplings and

2The counting ability is the guideline along which intuitionistic logic was built
[11-13). To support an orientation in the literature, we note that the functions
that exist in intuitionistic logic are all general recursive. The general recursive
/unctions are the same [13) as those studied by Turing (computable /unctions),
and Church (A-definable /unctions).

3 Geometrically, the full network states are elements (of a subset) of the N + N 2_

space, which has as subspaces the N-space of the neuronal states and the N 2_

space of the synaptic states.

H.-O. Carmesin 121

the neurons. In order to study changes of couplings, we call two network
states N(ta) and N(tb) at times ta and tb synaptically equal if they have
the same couplings. A network is permanently changing its network state,
or N(t) - N(t + 1) for short. A network is in fact a sequence of network
states, N(ti), or Ni for short. Bya master mechanism we mean any rule
that determines the changes of couplings. For instance, the Hebb rule is a
master mechanism.

4.1.2 PROPOSED FRAMEWORK

We separate the combinations of inputs into the following three phases.

Learning: First, the network receives inputs and achieves its first network
state, N1 . We describe this first network state in terms of synapses, basins
of attraction, rules, etc.

Internal change: Second, the network state Nl may be active without
receiving inputs, whereby it changes internally to become N2. For sim­
plicity, in this second phase we allow only such changes that leave invari­
ant the output generated to a given input in the third phase, but which
possibly will speed up (or slow down) the third phase. That is, Nl and
N2 combine the same inputs to the same outputs. We call such internal
changes conservative. Two network states that differ only by a conserva­
tive internal change are called cognitively equivalent. If N2 is faster than
Nb then N2 can predict the behavior of N1• The study of non conservative
internal changes is beyond the scope of this chapter. For instance, inter­
nal changes might have been involved in the above example of recalling
the suitcase.

Action: Third, the network state N2 receives other inputs and combines
them. The retrieval of a pattern [14] can be such an action; if inputs
during the learning phase define the couplings through the Hebb rule,
then these training inputs are in effect combined with those inputs that
are received during retrieval. For simplicity, we neglect the change of
couplings in this phase. In the following, it is clear from the context which
phase we are discussing and which network state we are considering.

By inductive inference we denote a coordination of the first phase (learn­
ing phase), while by deductive inference we denote one of the second phase
(internal change). The third phase (retrieval) finishes inductive and deduc­
tive inferences and leaves the full network state synaptically equal. Alto­
gether, we expect this framework to be especially appropriate for the mod­
eling of inferences, because it contains inductive inference in the first phase
and deductive inference in the second phase. In full generality, the second
phase of internal change includes changes of neuronic values. However, it is
expected that the changes of couplings are more important, because there
are far more couplings than neurons.

122 4. Inferences Modeled with Neural Networks

(tl f, ... , tl f)
! T

M{p} +- p
!
tlf

(±, ... ,±)
r !
---+ N {p}

!
±

Fig. 4.1. Middle: A formula p is mapped via T and r. Left: A mapping M {p}
maps ,3 tupel of tf f to one tf f. Right: A network N {p} maps a tupel of + f - to
one +f-.

4.1.3 How FAR CAN WE Go WITH THE

FORMAL-LOGIC ApPROACH?

McCulloch and Pitts [10] studied this question by an ingenously simple and
effective mapping:

1. The calculus of propositions [2-5] is the (ancient) starting point4 :

2. Model: So far, the calculus contains meaningless sequences. This is
changed by the original "interpretation" [5]: We define [10] a mapping
T, which maps each p to its Boolean function M {p}: That is, each
variable q takes one of the values tf f, "true" or "false." The formula
P determines the number d of input variables q. Each M{p} maps d
such q to one r. This "interpretation" is called a "model" (according
to [5]), since PI == P2 if and only if M{Pl} = M{P2}, M{-,p} = t if
and only if M{p} = f, and M{pl V P2} = t if and only if M{Pl} = t
or M {P2} = tj see Fig. 4.1.

3. The mapping r (McCulloch-Pitts mapping) maps each formula ponto
a feedforward network (dynamics defined in Sec. 4.2) N{p} , which
performs as M{p}j see Fig. 4.1, whereby a unique N{p} is achieved
by some convention.

4. The mapping r- maps each feedforward network N to a formula p,
such that M{p} performs as Nj cf. Fig. 4.2.

5. Transformation TN: To a given N we form the corresponding P via r- .

4Primitive connections are -. (negation) and V (disjunction); they combine
variables or formulas; the formulas are the possible combinations. Popular abbre­
viations are p -+ q for -.p V q (implication), p /\ q for -.(-.p V -.q) (conjunction),
and p == q for (p -+ q) /\ (q -+ p) (equivalence). The axioms are (1) p V P -+ p, (2)
P -+ pV q, (3) p V q -+ q V p, and (4) (p -+ q) -+ (r V p -+ rV q), where p, q, and r
can be variables, or formulas. A formula r is called an immediate consequence of
p and q if p is the formula q -+ r. The class of derivable formulas is defined to be
the class of formulas that contains the axioms and all' immediate consequences
of derivable formulas.

p
! logic
q

T

T

N
! TN(p,q)

N{q}

H.-D. Carmesin 123

Fig. 4.2. Upper part: N is mapped to p. Middle left part: p is transformed to the
equivalent q. Lower part: q is mapped to N{q}. Middle right part: Altogether, N
is mapped to N{q}.

We transform p to an equivalent q through the application of axioms
and the immediate consequence. We map q to the respective N{q}
via T (Fig. 4.2). We observe that TN is a candidate for a conservative
internal change.

6. Consistency problem: If the axiom system (see footnote 3) of the
calculus of propositions were inconsistent, then .p == p would be
derivable. Then, the corresponding induced transformation TN would
transform a network Nl into a network N2 that maps to the output
+ if Nl maps to the output -. We conclude that, through T the
consistency problem is mapped to networks (i.e., the induced trans­
formations TN are conservative if and only if the axiom system is
consistent) .

7. Logical operations V and.: The logical operations by which formulas
are connected are p V q and 'Pi corresponding operations are possible
for networks.

8. Networks as models: To each network we define the class of equally
deciding networks, i.e., of networks that map identically. These classes
of networks are another model for the calculus.

9. Discussion: The above items characterize the relation between the
calculus of propositions and feedforward neural networks5 . In par­
ticular, the axioms of the logical calculus describe "generally valid"
relations. Specific knowledge is expressed in additional axioms. For in­
stance, the knowledge about classical mechanics is contained in New­
ton's three axioms. However, the process of establishing the axioms
(i.e., the above first phase of learning) is not addressed. Newton had
to "learn" his axioms, possibly by observing the famous apple falling

5By a feedback network we mean a network that contains at least one loop of
couplings. Analogous items 1-8 establish a similar relation between the calculus
of predicates with natural numbers as individuals and feedback neural networks
[15].

124 4. Inferences Modeled with Neural Networks

from the tree. The formulas provided by logic address the second
phase of internal changes. The third phase of action is established
through an interpretation of the formulas. Finally, with regard to an
application of the above considerations to neural network models,
we identify two problems that occur in the second phase of internal
change. The first one is to make internal changes conservative, be­
cause otherwise they are not reliable, and the second is to search for
such sequences of applications of axioms and immediate consequences
that speed up the network.

Facts About the Two Problems

The calculus of propositions is consistent [2-5]; thus, we can generate con­
servative internal changes in feedforward networks through T. In neurobi­
ology, recursive networks occur as well. In order to generate conservative
internal changes in them, we have two alternatives: Either we limit the
allowed transformations of formulas [11-13, 16] and, as a consequence, ob­
tain conserved internal changes only, but at the same time the number of
internal changes is limited; or we have to make a hypothesis [4] (e.g., trans­
finite induction [17]) (for a detailed analysis of such questions see [18]) from
which we can conclude that the induced internal changes are conservative.

For instance, two pupils, Mary and Bob, have learned how to calculate
with variables. In the afternoon, they both derive new formulas. The next
day they compare their results. Most of the formulas Mary derived do not
occur in Bob's derivations, and some have been derived by Bob, too. But
for one formula F derived by Mary, Bob derived the negation ,F. Both are
puzzled and confirm that they made no mistakes in their derivations. Is this
possible? (There are four possibilities: Mary and Bob made an error, only
Bob made an error, only Mary made an error, or neither Mary nor Bob
made an error. In the latter case, the transformations of formulas are not
consistent.) This example also illustrates the goal of deductive inference,
namely, to make predictions about the domain of (if the domain contains
one element only, then a single activity is predicted) future activities of
nervous systems, here about those of Mary and Bob.

The history: At the beginning of the century, logicians were looking for a
consistency proof (Hilbert's program [19]) for a system with natural num­
bers as individuals (Peano arithmetic) and a logical calculus like that ofthe
Principia Mathematica [2]. A change was initiated by the logician Godel [4],
who argued that within such a calculus there are propositions U that can
neither be proven nor disproven. First, this result gave rise to consistency
proofs which rely on additional hypotheses [17] (first of the above problems
treated with the second of the above alternatives). Second, this result was
used pragmatically by Turing, who proposed quite a general class of com-

H.-D. Carmesin 125

puting machines, which now are called TUring machines6 [6], and showed
that, for a given proposition U, there is no general procedure from which
a Thring machine could decide whether U is provable (second of the above
problems). We address these two problems for the particular case of net­
works (Sec. 4.6): (1) How do conservative internal changes emerge in neural
networks? (2) Which internal changes are especially effective in networks?

Limitation of the Formal-Logic Approach

Formal logic does not address learning, although learning precedes internal
change. This limitation becomes especially apparent when logic generates
statements about infinite sequences. How can finite, "mechanically gen­
erated" formulas predict anything about possibly infinite processes, like
counting or forming sequences of primes? Consequently, it is not satisfac­
tory to neglect the study of learning or of the link between learning and
internal change. This link was studied by intuitionistic logicians who or­
ganized consistency proofs along the idea that counting already has been
learned [11]. Wittgenstein [8, 9, 20] went one step further toward basic
mechanisms and asked: How can counting be learned? To solve the above
problems, we focus our whole study on counting7 and in particular on
Wittgenstein's question. If we explain in some terms how to count, we
have to explain these terms through other terms, etc., and we would end
up with an infinite regress. Accordingly, we consider pupils who learn count­
ing from examples, e.g., 1, 2, 3, ... , 121. A pupil who can count up to 121
(i.e., who adapted this) can usually continue to 122, ... How is this possi­
ble? Wittgenstein was not able to answer this question, because the answer
requires knowledge about the nervous system [20]. We will give an expla­
nation in terms of a self-organization process that begins with the Hebb
rule [1]. So, the used key knowledge is the Hebb rule.

Hebb's Rule

Hebb's neurophysiological postulate says that a synaptic efficiency
increases, if the pre- and postsynaptic neurons fire simultaneously, and
that this increase is due to some metabolic process. Recently, a roughly
similar metabolic process has been observed [21].

6 A Turing machine consists of a head and a tape. The head contains state­
ments that establish its performance. The tape is a linear sequence of sections,
called fields. In each field there is a symbol out of a finite set of symbols. At each
instant of time, the head is at a field. It reads the respective symbol and maps it
to the pair (symbol to be written to the field, move to be performed). The move
is either to the left, to the right, no move, or the end of processing.

1Together with calculating, counting covers all three phases of combinations,
is a possible basis for analysis and geometry with all transformations, and can
be studied efficiently.

126 4. Inferences Modeled with Neural Networks

Synapses from Correlations

By its nature, the Hebb rule transforms correlations among neural activ­
ities into synaptic efficiencies. This motivated Hebb to speculate that cell
assemblies emerge as a consequence of the Hebb rule. The Hopfield rule
is highly related to the Hebb rule [14] and transforms (input) patterns
into synaptic efficiencies. Legendy [22] explained observed correlations in
spike patterns by "unspecified synapse forming mechanisms," which occur
according to postulated principles that form synapses from correlations.

Synapses from Successful Correlations

Legendy was fully aware that synapses from correlations are too simple;
in his third section, his 14th remark is: "Presumably template formation
is, in certain systems, biologically censored when correlations are 'too per­
fect,' for, the alternative would be the unchecked formation and boundless
proliferation of useless templates. One may speculate that the notorious
difficulties in eliciting plasticity in physiological experiments and the rela­
tive scarcity of successes might come from such a censorship mechanism."
Thorndike [23] formulated such a censorship mechanism before neural net­
works were invented: "When a modifiable connection between a situation
and a response is made and is accompanied or followed by a satisfying state
of affairs, that connection's strength is increased."

The presented mechanism that solves Wittgenstein's paradox is the Hebb
rule with success, i.e., with some censorship mechanism (see below). As a
further result, cell assemblies of few synapses emerge. Accordingly, we ide­
alize the postulate: The couplings will be chosen such that a given task
is performed and the number of couplings (complexity) is minimized [20,
24]. Then, we show that counting is learned with that postulate. We study
properties and further consequences of this postulate: How can inductive
inference be performed most effectively? Is the experimental evidence in
favor of parallel rather than sequential processing? Altogether, the mecha­
nism presented here shows under which conditions Hebb's and Legendy's
speculations are confirmed.

4.2 Model for Cognitive Systems and for
Experiences

4.2.1 COGNITIVE SYSTEMS

All cognitive systems considered here consist of networks, master mecha­
nisms, and peripheral processors. The latter provide a perfect transfer of

H.-O. Carmesin 127

signals8 and symbols to and from the cognitive system and are not dis­
cussed in detail, while the master mechanism is a rule (see below) for the
change of couplings. The neurons Si of the network take values Si = ±1 at
discrete time steps. Their dynamics is determined by the neuronic equa­
tions [25] Si(t+ 1) = sgn(~jJijSj(t) - Ai), where sgn is the signum function,
Ai is a threshold parameter, and the Jij are the couplings.

4.2.2 EXPERIENCE

For the case of inductive inference, data or experience are given. Thus, in
addition to the model of the cognitive system, we need a model of these
experiences. Here, experiences are modeled in terms of elementary tasks
and tasks as follows.

We use a trainer,9 like in studies on the committee machine [26]. The
trainer generates questions qi with uniquely determined answers ai = M
(qi)' Both qi and ai are sequences of symbols, each of which is taken from a
finite set of symbols. The pair (qi' ai) is called an elementary task. By a task
we mean a set of elementary tasks. For a consistent task we additionally re­
quire that to each question qi there be only one answer ai. The mapping M
can be evaluated by a finite Turing machine, i.e., a Turing machine with a
finite tape that stores up to a symbols and a finite number of statements in
its program. Each statement consists of a finite number of elementary op­
erations. Thereby, elementary operations are either elementary motionslO

or reading or writing a symbol from or to the actual field of the tape or
elementary mappings. An elementary mapping is a mapping from a finite
set of elements to another finite set of elements; e.g., the logical OR and
NOT can be elementary mappings, and the combinations thereof are suffi­
cient to determine any function from configurations of two-valued variables
to other configurations of two-valued variables [3]. The set Q of possible
questions and the set A of possible answers are the sets of sequences of up
to a symbols. So, a mapping that is evaluated by a finite Turing machine
is such a mapping M.

The trainer begins a dialogue by asking ql, the cognitive system replies
ih, and the trainer answers with VI = yes if ih = ai, otherwise with
VI = no but al. The dialogue continues analogously. The triple (qi' ai, Vi)
is called the ith training situation. The cognitive system is adapted to the
dialogue consisting of i elementary tasks if the cognitive system generates
only correct answers iij = a; for j ;:; i. The mapping M is called induced
by the trainer to the network if, for any Qj, the answer of the cognitive

8Most generally, anything that can be transformed to symbols by peripheral
processors is included.

9We also include the case without a trainer but with experiences in an
environment.

lOElementary motions are single moves to the right or to the left.

128 4. Inferences Modeled with Neural Networks

system is correct. The number of nonzero couplings of the network is called
the complexity c(N). The principle of minimization of complexity is the
following postulate.

Postulate: After the ith training, the master mechanism determines the
couplings such that the dialogue consisting of i elementary tasks of a con­
sistent task is adapted to the network Nand c(N) is minimized.

4.2.3 FROM THE HEBB RULE TO THE POSTULATE?

1. Basic Considerations

We now study the conditions under which networks of minimal complexity
emerge from the Hebb rule. For this purpose we formulate and then analyze
an appropriate class of network models [27-30]. A network has S sensor, I
inner, and M motor neurons. We define for each elementary task J.I.

rl-' = {I,
0,

if the network was successful at J.l.j
otherwise.

(4.1)

The Hebb rule shall be applied with a learning rate a, a decay rate b, and
under the condition of success. So the change of a coupling is

(4.2)

The Si assume values +1 (firing) and -1 (not firing). For each elementary
task, the configuration of sensor neurons is given by the question qw The
network generates an answer al-' at its motor neurons. By {sn we denote a
neuronal configuration so that the values of the sensor neurons are given by
qw The inner neurons and motor neurons take their values according to a
corresponding Boltzmann distribution pl-'. For the change of the couplings
only configurations with rl-' = 1 are relevant, so that

The sum over {sn is the sum over all 2I+M states of the inner and motor
neurons. The network is permanently stimulated by its environment. This
is taken into account through an adiabatic approximation as follows. To
compute ll.Jij that occurs after performing all 28 elementary tasks, we
sum over all configurations of the 21 inner neurons and the 2M motor
neurons taken with their probability,

28 2I +M 28 2I +M

ll.Jij = 2: 2: Pl-'({s~}) (asrsr - bJij)=a 2: 2: srsr PI-'({8~})-b28 Jij.
I-' {8~} I-' {8~}

(4.4)

H.-O. Carmesin 129

Accordingly, each coupling matrix Jij can be written

25 21+M

Jij = L L A~({8~})8t8j. (4.5)
I-' {s~}

We call the above Atj ({ 8~}) amplitudes and insert them into Eq. (4.4) so
as to obtain

25 2I+M

tlJij = L L (aPI-' ({s~}) - b28 Atj ({8~}))stsj. (4.6)
I-' {sn

New stimuli steadily come in through the sensory neurons and, since the
set of input patterns is finite (28), the network cannot continue learning
indefinitely. We therefore look for stationary coupling matrices, i.e., tlJij =
O. To this end, it suffices that each term in the sum (4.6) vanishes so that

with Ao = b;8' (4.7)

This is a fixed-point equation for the amplitudes. As a result, the ampli­
tudes do not differ for different ij, i.e., A~ ({8n) = AI-' ({8~}).
Fixed-Point theorem: All solutions of the fixed-point equation are sta­
tionary networks (Eq. (4.7)}.
So the fixed-point equations are sufficient for J to be stationary.

Generating Function

We insert Eqs. (4.3) and (4.7) into Eq. (4.5) to get the equivalent fixed-
5

point equation for couplings 0 = Jij - Ao L:~ (oFI-' /oJij) with FI-' =

Tln(L:{:;~ 71-' exp(-f3H)). We express it with a generating function W:

25

with W = ~ LJfl- AO LFI-'.
kl I-'

(4.8)

A linear stability analysis shows that each local minimum, maximum, and
saddle point is a stable fixed point [31]. In order to obtain networks with
minimal complexity, we modify the neural dynamics so that the motor
neurons have no noise (zero temperature), which gives the new value of a
motor neuron as 8i = sgn(L:j Jij8j).

Illustrative Example

In order to study the emergence of a small network with inner neurons and
minimal complexity, we model one sensor neuron Sb one motor neuron 82,

and two inner neurons 83 (necessary) and 84 (redundant). We consider the

130 4. Inferences Modeled with Neural Networks

0.8

0.6

0.4

0.2

o

o 1 2 3 4 5

Fig. 4.3. Network emerging after training the negation task. x-axis: temperature,
y-axis: coupling times bla, solid lines: solutions of fixed-point equation (4.7).
The data have been obtained by computer simulation. The upshot is that above
T=2 only necessary couplings (0; upper branch) are present, near T=2 hysteresis
occurs, and below T=2 redundant couplings (0; lower branch) appear.

negation task S2 = -SI' We require the condition J 12 = J21 = 0 so that an
inner neuron becomes necessary. As a result, above a critical temperature
2, the couplings with the necessary neuron S3 are 1 while the others are
O. That is, there occurs a spontaneous breaking of the symmetry so that
one inner neuron is taken to form a network of minimal complexity. Below
T = 2, the couplings with the unnecessary neuron are nonzero; cf. Fig. 4.3.

In biological terms, the condition J 12 = J 21 = 0 means that there happen
to be no synapses J 12 and J21, the weight of which could be modified by
the Hebb mechanism. Consequently, the task is performed via inner neu­
rons. The used neurons become coupled with large weights; this emerging
structure may be regarded as a cell assembly.

2. Analysis of Symmetry Breaking

In the above example the solutions J of the fixed-point equation exhibit a
spontaneous breaking of symmetry. As a consequence, there occurs a net­
work of minimal complexity. To understand symmetry breaking for three
learning procedures (2a-c below), we study fluctuations. For detailed argu­
ments, see [27]. So we consider the fixed-point equation at {3 = 0 [see Eq.
(4.8)],

25 ,,2I+M JI. JI. JI.

J \ '" L.J{s~} " Si Sj (4.9)
ij = "0 L...J 2I+M

JI. L:{sn "JI.

(2a) By chance, one of the couplings h3 and J24 is larger, say it is J23'

Then S4 does not influence S2, that is, "JI. does not depend on S4, i.e.,

H.-O. Carmesin 131

S4 is not necessary for success. Consequently, the couplings with S4

vanish [see Eq. (4.9)]. This is not so for sa. So small networks emerge,
because neurons that are necessary for success become coupled.

(2b) If the correct answer is fixed at S2 (supervised learning), then no
neuron is necessary for success; thus, no neuron becomes coupled at
f3 = o.

(2c) If S2 fluctuates, then 'TI-' depends on S2 only. Then, at f3 = 0, success
is achieved only randomly; so, no inner neuron becomes necessary for
success; thus, no inner neuron becomes coupled.

4.3 Inductive Inference

Under what conditions does inductive inference occur? What is necessary,
sufficient, and optimal for inductive inference?

Lemma: For a given mapping M, a network NM of finite complexity c(NM)
exists that maps each qi correctly to ai = M(qi).

Two proofs will be outlined. The first is a direct construction, the second
is an application of [10] and is stated only briefly.

First Proof: By definition, M can be generated by a finite Turing machine.
The proof is performed by constructing a finite network that simulates a
given finite Turing machine. Without restriction of generality, we assume
that, at each field of the finite tape of the Turing machine, either a -1
or a 1 is stored. Each such field can be simulated in the network by a
neuron that is coupled to itself by a positive coupling, has zero threshold,
and thus stores the value once given to it. There is a network Nc of finite
complexity c that counts up to the number of fields of the tape [20,30]. Nc
can simulate the actual position of the head of the Turing machine. It also
can be modified such that it can count forward or backward selectively [32].
Thus, the elementary motions can be simulated by Nc . To each neuron that
simulates a field one can associate a neuron that takes the value 1 if and only
if the respective number is represented by Nc . A simple network Nrw can be
constructed that reads and writes if desired and if the respective associated
neuron takes the value 1. Hence, reading and writing can be simulated
by Nrw • Finally, any elementary mapping can be simulated by a network
of finite complexity c since the logical OR and NOT, and combinations
thereof, can be simulated by a network. Altogether, the Turing machine
can be simulated by the network constructed above.

Idea of Second Proof: Since the Turing machine is finite, its tape is finite;
hence, the set of questions Q and answers A is finite and accordingly the
number of mappings M is finite. Furthermore, such mappings are realizable
in a finite network according to [10].

132 4. Inferences Modeled with Neural Networks

The first proof is applicable more generally to 'lUring machines with
unlimited tape and networks with unlimited external memory (see Sec.
4.4). Both proofs are applicable to dialogues in which some symbols are
hidden.

Straightforward consequences of the lemma demonstrate under which
conditions a mapping M is established by a network. Among all networks
that map each qi correctly, there are one or more networks No of smallest
complexity c(No). By construction, any network generated by the master
mechanism has a c smaller than or equal to c(No). The number mo of
dynamically nonequivalentll networks of c smaller than or equal to c(No)
is finite [33J. Thus, the number me of errors (iij ::j: aj) that the network
can make is me :5 mo. After a finite time to, the network makes no more
errors. Let us call a question qi to which the network answers incorrectly
instructive (in a given dialogue). If at time to + 1 the mapping M has not
yet been induced to the network, then the trainer failed12 to ask at least
one additional instructive question. We define: A trainer who does not fail
to ask an instructive question is called instructive. By a rule we mean a set
of 1 Q 1 different questions, each with its answer. We call a rule reducible, 13

if 1 Q I> mo. As an immediate consequence, we obtain Theorem 1.

Theorem 1:14 An instructive trainer induces a given mapping M to the
network in a finite dialogue. To a consistent task the network incorporates a
rule that depends on the task. To each reducible rule there is an instructive
trainer that provides a dialogue consisting of less than I Q I elementary
tasks.

4.3.1 OPTIMAL INDUCTIVE INFERENCE

We now turn to the comparison of alternative master mechanisms J-L and
networks II. Now a "generalized" cognitive system consists of peripheral
processors, a master mechanism J-L, and a network II that is made up of in­
terconnected elements (e.g., neurons, couplings, wheels, tubes, pipes) and
performs according to a dynamics dv • The elements belong to K types
Ek, k = 1, ... , K, the number of elements of type k is nk (elementary com­
lexity). The master mechanism provides a coordination of these elements.
For each such coordination the cognitive system establishes a mapping from

llDynamically equivalent networks generate the same dynamics.
12Even if the trainer was instructive and the cognitive system identified the

mapping, it could not be aware of it; thus, an ambiguity remains.
13Most rules of practical interest are reducible because they have relatively low

complexity.
14This theorem holds for recursive networks, feedforward networks, attractor

networks, and essentially also for networks made of wheels, tubes, pipes, etc.; see
below.

H.-O. Carmesin 133

each input (and possibly from initial values) to a corresponding output. A
generalized complexity is any linear combination cg = ~kaknk with posi­
tive coefficients ak. We require that the generalized complexity be bounded,
cg ~ C.

Because cg ~ c, only a finite number of elements is contained in the
network. Consequently, only a finite set Mmaz of mappings M can be in­
corporated by the network. The cardinality of Mmaz is called the creative
capacity Kc of the network, because the answers need to be created by
the network. By inductive capacity Ki we denote the number of mappings
that can be incorporated by a given cognitive system. During the training,
the master mechanism provides realizations of mappings Mj E Mmaz. The
master mechanism that realizes adaptation of the dialogue and minimiza­
tion of complexity with the generalized complexity cg is called 1-£1. We call
1-£1 optimal because Ki = Kc for 1-£1. In general, Ki ~ Kc 15 (it would be in­
teresting to observe the ratio KdKc for various animals). There are other
master mechanisms that are optimal as well,16 e.g., master mechanisms
that adapt to any dialogue are optimal.

4.3.2 UNIQUE INDUCTIVE INFERENCE

A master mechanism 1-£ provides unique inductive inference if it identifies
each reducible rule through an appropriate dialogue consisting of less than
I Q I elementary tasks. The minimization of 1-£1 is important for the unique­
ness of inductive inference. According to Theorem 1, 1-£1 provides unique
inductive inference. In contrast, a master mechanism 1-£' that adapts to any
dialogue and gives the first answer of the dialogue in a novel elementary
task does not identify each reducible rule through a dialogue with I Q I -1
questions.

4.3.3 PRACTICABILITY OF THE POSTULATE

Typically, the minimization of complexity [35] requires much computing
time if a general or random set of elementary tasks is considered [36]. For
the special case of a feedforward network, the time required for minimizing
the number of neurons of the network grows faster than polynomially with
the number of the hidden units, i.e., it is NP-complete. However, this is
of little relevance for many important and nonrandom tasks. For example,
the minimization of complexity in networks has been successfully applied
to the modeling of transitive inference in pigeons [23], learning orthography

15For instance, the Hebb rule is a master mechanism which does not provide
adaptation if the network contains neurons that do not take inputs. As a con­
sequence, Ki < Kc for the Hebb rule and such a network. (In the human brain,
most neurons do not take inputs.)

16For a game simulating inductive inference, see [34].

134 4. Inferences Modeled with Neural Networks

[37], electrostatics [38], geometry [39], counting [20], and calculating [32].
Furthermore, inductive inference works essentially in the same manner if
the minimization of complexity either is used in a statistical procedure with
finite computing time or emerges from a statistical network model [27-30].
Finally, in certain applications, decoupling into modules is possible [32].

4.3.4 BIOLOGICAL EXAMPLE

A pigeon in a Skinner bOX17 had to choose between two stimuli; this is the
elementary task [40, 24]. The stimuli were A, B, C, D, E. To each pair we
designate the answer qi; and the correct answer is rewarded. In the training
phase, the dialogue consisted of four elementary tasks (arrow to rewarded
stimulus): (A f- B), (B f- C), (C f- D), (D f- E). After the pigeons learned
to respond correctly, (B f- D) was given as a novel, fifth elementary task,
but without reward. 87.5% of the answers were correct, i.e., the pigeons
inferred transitively.

The network model shows that transitive inference is of minimal com­
plexity. However, a TUring machine likewise requires minimal complexity,
i.e., program length, for transitive inference. In order to decide whether the
pigeon's performance was sequential or parallel, we suggest considering the
following dialogue:

(A f- B), (B f- 0), (0 f- D), (D f- E), (E f- A),

(A f- 0), (B f- D), (0 f- E), (D f- A), (E f- B).

Altogether, essentially 12 dialogues exist in this framework. Among these,
the suggested dialogue is relatively complex for a network, but not for a Tur­
ing machine. Meanwhile, experiments with humans have been performed
with this dialogue. The suggested task was relatively difficult for humans
and pigeons [41]. This supports the assumption that humans dealt with this
situation in a parallel fashion, i.e., that they performed "network-like." The
point is that the "system of that task" is obvious to the reader, because here
the elementary tasks are ordered systematically. However, the test persons
received the same elementary tasks in terms of a computer game without
useful order, could not reorganize, and hence performed "network-like."

4.3.5 LIMITATION OF INDUCTIVE INFERENCE IN TERMS
OF COMPLEXITY

Complexity measures are likewise used for inductive inference in frame­
works (e.g., parameters for fits to data, coding data, approximate repre­
sentaion of data in relatively low dimension) without networks; see, e.g., [42,

17 A Skinner box is an experimental device, in which the response of an animal
to a stimulus is studied.

H.-O. Carmesin 135

43]. In particular, if inductive inference is addressed, then the formation of
scientific theories is addressed as well [38]. First, we ask: Is a network with
the minimizing master mechanism J1.1 a reasonable tool for the formation
of scientific theories from "isolated phenomena"? We consider the following
examples: pattern formation in clouds, the crystalline structure of a dia­
mond, and a cobweb. Although these examples exhibit significant geometric
structures (which would be detected through J1.t), they are explained dif­
ferently. The structure in clouds is explained as a result of the mechanical
motion of many molecules, the crystalline structure is explained as a result
of quantum mechanical interactions, while the coweb is explained by its
purpose - a tool for catching insects. Hence, the answer is no. Second, we
ask: Is a network with the minimizing master mechanism Ji.l a reasonable
tool for the formation of scientific theories from "sufficiently large sets of
isolated phenomena"? Because there exist so many phenomena, we cannot
even study, let alone answer, this question.

4.3.6 SUMMARY FOR INDUCTIVE INFERENCE

An a priori principle is necessary for inductive inference and is provided
by the minimizing master mechanism J1.1. The postulate is an optimal a
priori principle. Among all complexities, only Cu is asymptotically relevant
and is, therefore, considered in the following, i.e., the complexity is the
number of couplings. The master mechanism minimizes c under certain
conditions, which we treat as modifications of the model developed so far.
Consequently, the results can be interpreted as solutions of a minimization
problem with additional conditions.

This minimization is specified as follows. If the cognitive system needs a
certain amount of complexity, it generates that complexity only for the time
it is needed, and it deletes the respective couplings as soon as possible. This
final deletion of synapses is in agreement with the above self-organization
mechanism, in which couplings to unnecessary neurons are destabilized.

4.4 External Memory

How does a cognitive system with external memory perform its tasks, and
what is its relation to a Turing machine? To answer these questions, we
consider two modifications of the theory developed so far.

First modification. The cognitive system shall have access to external
memory,18 the elementary units of which are called locations. The periph-

l8In a biological cognitive system, external memory might be realized by neu­
rons or assemblies of neurons. In particular, the formatio reticularis performs
primarily operational tasks, while other parts of the brain perform primarily
memorizing tasks.

136 4. Inferences Modeled with Neural Networks

eral processor guarantees reading from and writing to locations.19 Because
the complexity c is minimized, the cognitive system stores questions and
the corresponding answers on locations without using the network. The
dialogue is adapted to the cognitive system and the complexity vanishes,
i.e., c = O. In the case of counting, such a cognitive system will be unable
to generate new numbers and will perform worse than a cognitive system
without locations [20]. If the available locations are unlimited, no inductive
inference is performed by the cognitive system.

Second modification. From now on the locations are limited appropri­
ately. (For the sake of simplicity, we will assume that the cognitive system
applies locations only after it has incorporated M.) The cognitive system
contains several networks Ni . Let us define an instruction to be a set of
symbols on locations that is readable by a peripheral processor and ac­
tivates a specific performance of a peripheral processor. More precisely,
the instruction specifies under which condition a certain symbol is written
on a certain position and at which position the next instruction is to be
read. (The condition is obeyed if certain symbols are at certain positions.)
From now on it also is assumed that the peripheral processor can read and
perform such instructions.2o

The above modification leads to several interesting consequences. First,
by means of inductive inference, a rule in a given set of training situations
will be incorporated into a network. In the following, we denote by Nl the
network that incorporates the rule. Second, the cognitive system becomes21

a Turing machine.22 The application of the incorporated rule can be per­
formed by a finite set of discrete operations on a finite set of symbols on
locations, because the rule has already been incorporated into a finite net­
work. These operations can be handled by the peripheral processor without
any network if appropriate instructions are written on locations. Hence, Nl
is unnecessary if the cognitive system writes appropriate instructions on lo­
cations. Because the above possibility to reduce c to 0 exists, the master
mechanism realizes that possibility, i.e., writes the instructions, and sets c
to O. In that final state, the cognitive system can be understood as a Turing
machine, and, for that purpose, all locations have to be interpreted in a
linear order by some convention. It remains to specify how the cognitive
system generates appropriate instructions.

These instructions need not be guessed; rather, they can be extracted

19These skills can be learned in the sense of Sec. 4.3.
20This can be trained as specified in Sec. 4.3.
21This result generally can be applied to automatic programming. Its real­

ization is straightforward, because only minimization procedures need to be
implemented.

22 Also in the first case of unlimited locations the cognitive system can be in­
terpreted as a (very trivial) 'lUring machine that handles the storage of questions
and answers on its tape.

H.-O. Carmesin 137

from N1 . For this purpose, the cognitive system specifies one location for
each neuron of Nl and records all values of these (two-valued) neurons while
processing the incorporated rule. Then, another network N2 is "trained"
as follows. After every action (reading or writing) of the peripheral pro­
cessor, network N2 is asked: "What is the next action of the peripheral
processor, and by which instruction is it expressed?" Thereby N2 can use
as inputs only signals that are inputs to the peripheral processor. These
signals are transferred by appropriate couplings that are generated by the
master mechanism. Due to the first part of the question, the network N2
will incorporate a rule that allows the prediction of the action of the periph­
eral processor as a function of input signals to the peripheral processor. Due
to the second part of the question, N2 generates the required instructions.

4.4.1 COUNTING

We specify an elementary counting task as follows. Map a natural number
given in its binary representation to its successor. In the final state of
c = 0 (see first modification), the peripheral processor has to perform
an algorithm that finds the successor to a given natural number. In the
following, one such algorithm is given. (1) Write the given number on a
first line. (2) Write a 1 below with corresponding digits one below the
other. (3) Leave a third line free underneath.23 (4) Start with the right­
most digit and, for each digit, do the following. If there is no 1 in the first
three lines, write a 0 on the fourth line at the position of the corresponding
digit. If there is one 1 in the first three lines, write a 1 on the fourth line
at the corresponding digit. If there are two 1 's in the first three lines, write
a 0 on the fourth line at the respective digit and a 1 on the third line, one
digit to the left.

4.5 Limited Use of External Memory

Is it possible to systematically divide a given task into subtasks? What is
the essential subtask of counting? What is its complexity? How can the
cognitive system learn from a finite set of elementary tasks an infinite set
of elementary tasks, namely, to count numbers, i.e., to generate numbers
successively without restriction by a largest number. Once again, we first
treat a modification and then indicate its consequences.

The idea is to make certain texts on locations "taboo," namely, the in­
structions, and thereby to force the cognitive system to incorporate the
mapping corresponding to a subtask: For every question, only empty lo­
cations are given to the cognitive system. These are the only available

23The number to be written on this line can be interpreted as carry.

138 4. Inferences Modeled with Neural Networks

+

Fig. 4.4. XOR: An arrow denotes Jij = ±1. In this figure, all thresholds are 1.
S5 = XOR(Sl, S2) and nee = 6. For counting, nee = 9.

locations to find an answer; thus, no instructions are available. Then, a
question is written on locations. Finally, the cognitive system is asked to
answer. The consequence is that the network will incorporate a rule; see
Theorem 1. Thereby, it will incorporate neither what the rule acts on,
namely, on questions, nor any (including intermediate) results that the
cognitive system generates, because these are on locations. A more gen­
eral modification is the following: One can construct analogous procedures
of presenting locations to the cognitive system with "auxiliary texts" and
questions in order to incorporate any desired aspect in the network while
keeping all other aspects on the locations. The main point of the above
procedure is that a network can be driven selectively. Thus, complexities of
tasks or sub tasks can be investigated selectively.

4.5.1 COUNTING

With this modification, we are prepared to study the incorporation of a
rule for counting by a network. For the neuronic equations, we denote the
complexity by nee and prove the following.

Lemma: In order to map the pair (S1, S2) according to XOR{S1, 82), six
couplings are necessary and sufficient. Here, XOR denotes the "exclusive
or" operation, and feedforward networks are considered.

Idea of the Proof (as presented in (32J). The pair (81, 82) can take four
configurations from which (-1,-1) and (1,1) must be separated. With the
sums (Ja181 + Ja282 + >'a) in the sign, one neuron can separate only one
configuration; in Fig. 4.4, 84 separates (-1,-1) and so does 83 with (1,1).
Both neurons must be connected to 85; hence, nec = 6.

With this lemma, we prove the desired (Sec. 4.1) result about counting.

Proposition: For a network with limited use of locations, and for the task
of mapping a given number onto its successor, nee = 8. For the task of
counting, nee = 9.

H.-O. Carmesin 139

~. ----... +
Fig. 4.5. Cycle of length 4: All thresholds are 0 in this case, and the neurons
take the values (-1,-1), (-1,1), (1,-1), (1,1) cyclically. This network is necessary
for the control of counting and contributes nee = 2.

Idea of the Proof ({92]). In order to control the data to and from the head
(of the Turing machine), four time steps are necessary: (1 & 2) read &
map, (3) write, (4) move. These are provided by the network in Fig. 4.5. A
network performing additions according to the algorithm discussed in Sec.
4.4 is of minimal complexity. Thereby, for two digits a and b the new digit
is XOR(a, b) and the carry is AND (a, b). Thus, six couplings are necessary
for XOR, none for AND because AND(sl' S2) is already realized by S3 (Fig.
4.4), and 2 for control, i.e., 8 for adding a 1 and another one for repeating
this process for counting.

4.5.2 ON WITTGENSTEIN'S PARADOX

As was shown in Sec. 4.3, with the aid of the postulate of minimization of
complexity, counting can be learned from a finite set of elementary tasks.
The above proposition shows that the required complexity is only 9. We
conclude that the identification of the uniquely determined correct way
of counting ad infinitum practically can be performed by a network with
the assumed master mechanism, i.e., with the postulate of minimization
of complexity. This postulate emerges from the Hebb rule under appro­
priate conditions. The result is relevant for Wittgenstein's paradox [8,9].
The essence of this paradox is that pupils practically learn to count from
elementary tasks, although the extension from the given elementary tasks
ad infinitum is not uniquely determined. Our result illustrates how a finite
series, which by itself is not uniquely extendable, is extended uniquely and
adequately ad infinitum. Thus, if one assumes that children act accord­
ing to a master mechanism like that of the principle of minimization of
complexity, which can be provided via the Hebb rule, they learn to count.

Furthermore, such a master mechanism cannot be learned without al­
ready using a similar master mechanism. The application of a master mech­
anism of the proposed kind appears to be a part of the nature of children. In
this manner, the paradox is solved by naturalization, as is modeled through
our cognitive system. More precisely, we have explained how an assumed
property of natural nervous systems solves the paradox. The study shows,
in agreement with Wittgenstein, that the ability to count cannot be trans­
ferred to a cognitive system. But it is constructed by the cognitive system
according to elementary tasks and to the master mechanism.

140 4. Inferences Modeled with Neural Networks

FUrthermore, Wittgenstein's paradox can be interpreted as an example
for the limitations of definability. It is well known that for any mathemat­
ical theory undefined terms must be included. For instance, in the case
of Euclid's geometry, the undefined terms are [44] point, line, extremities
of a line (i.e., points), straight line, surface, extremities of a surface (i.e.,
lines), and plane surface. We already gave a well-defined procedure for en­
abling the cognitive system to learn undefined terms in a unique manner
in Sec. 4.3. Uniqueness requires an instructive trainer who exists according
to the postulate, particularly due to minimization. Finally, this solution of
Wittgenstein's paradox supports the central idea of intuitionistic logics [11]
that humans can count ad infinitum.

4.6 Deductive Inference

How does deductive inference emerge in a cognitive system? In order to
study this question, we first formulate our main framework. A question
qi that can be answered in principle, but not in the required time by the
application of a rule, is called a problem about the rule. Such a problem
requires a prediction about a certain future activity of a network. If the
network performs straightforwardly, then this activity takes place only after
the moment at which the answer is required.

4.6.1 BIOLOGICAL EXAMPLE

The monkey Sultan is in a cage. At the ceiling is the obligatory banana, too
high to reach without a tool. There is a box in the cage; Sultan puts it under
the banana, climbs on the box, and gets the desired fruit. Rana, another
monkey, watches the scene and is exposed to the same situation afterwards.
Rana pulls the box to some place in the cage, climbs on it and fails to get
the banana. Sultan tries again and gets the banana; Rana watches, tries
again, and fails [45]. We interpret this finding as follows: Sultan makes the
"ansatz" to increase his height by putting something under his feet. Rana
observes that Sultan pulls a box, climbs on the box, and gets the banana;
Rana reproduces what she observed. The different actions exhibited by
Sultan and Rana are possibly due to different histories of internal changes.

4.6.2 MATHEMATICAL EXAMPLES

The examples given below are assumed as tasks for a cognitive system.
Later, we will discuss in detail how the cognitive system treats them. Our
first example can be handled by a cognitive system with either inductive
or deductive inference. Consider the question of whether, after a year of

H.-D. Carmesin 141

Fig. 4.6. In the network for hypotheses NH (see text), the relation F(l-l) = F(l)
is incorporated by the above network. This is the essence of the proof by complete
induction. After irrelevant signals are eliminated from the merged network Nm ,

the future events are predicted by one neuron only, and they are all the same.

counting, a counting network would still generate a sequence of numbers
such that the respective sequence of last digits reads ... 0 1 0 1 0 1 This
and the following question are to be answered within a time shorter than
a year, say a day. The second example is the question of whether there is a
largest prime number.

The above cognitive system that performs according to the postulate will
try to answer randomly, and it eventually will correct itself if the answer
is wrong. Apparently, this is not the best strategy because the question is
to be answered within a day, say and there is a chance to generate a more
appropriate answer during that time. An additional master mechanism for
problems (MMP) will be introduced that is able to "make the most out of
its time."

In the following, problems of a certain format (covering a relatively large
set of problems) will be considered. We are given a mapping M : ql -+ al
for I E L that is incorporated in Nl by inductive inference. Let F for any
IE L be another mapping from pairs (ql, all to ±1 that can be performed
by a finite Turing machine in a finite amount of time. The (question of the)
problem is whether F(ql, al) = 1 for alII E L. If this is the case, we will
say that the elementary tasks of (ql, al) have the property PF. In the first
period (learning), F is induced to a network by inductive inferencej i.e., the
problem is induced to the cognitive system. In the following, we denote this
network by NF . In the second period (internal change), an MMP elaborates
an answer. Two MMPs are considered: The inductive MMP picks out a
finite (limited by the available time) subset of L and checks whether F = 1
(for any I in this subset). The deductive MMPmerges Nl with NF such that
the answer al generated by Nl is inserted for al into NF. (For simplicity,
we do not distinguish whether ql is taken from the trainer or generated by
Nl as well.) Then, this MMP will (try to) minimize the complexity of the
merged network called Nm . This minimization yields one of the following
cases. If c(Nm) = 1, then either F does not depend on t or F alternates
with tj see Fig. 4.6. These two cases are discriminated by the MMP through
explicit consideration of the possible values of the neuron(s) at the ends
of the coupling. In the first case and F = 1 for I = 0, the pairs (qt, al)
have the property PF. If one I with F = -1 is found, if F alternates, or if
c(Nm) t= 1, then the property PF is not detected.

142 4. Inferences Modeled with Neural Networks

Fig. 4.1. Relevant signal flow: In our first mathematical example, the equality
of the last digits of numbers that are generated subsequently by Nl is checked
(two lines merge, i.e., two signals flow to the same vertex v); one such last digit
d1 determines the subsequent d2.

4.6.3 RELEVANT SIGNAL FLOW

The act of proving a prediction in this framework is performed by the
act of minimizing complexity. The act of minimization of complexity plays
a key role in the above framework of the deductive MMP and should be
investigated systematically. In its full generality, this is beyond the scope of
the present investigation, but a straightforward "ansatz" will be outlined;
we denote the corresponding MMP as the standard MMP in the following.

The value of a mapping F depends on the values of neurons. These, in
turn, depend on the signals coming from other neurons, and so forth. This
suggests that we consider a signal diagram (Fig. 4.7) that contains all flows
of signals relevant for the prediction. The events that can occur in the
merged network Nm can be described by signals that propagate through
the diagram. This signal-flow ansatz allows us to consider the propagation
of signals in the signal diagram as a mapping MH. The signals at time t
are the questions, and the relevant signals (i.e., all signals that are not yet
identified as irrelevant) at time t + 1 are the answers.

The mapping MH can be incorporated into a third network NH by in­
ductive inference.24 It is sufficient for NH to evaluate those signals that
are relevant for the evaluation of F, i.e., those that ultimately enter the
evaluation of F. This implies that, if there are identifiable rules in the flow
of relevant signals, these will be identified by N H. The rules identified by
NH are called hypotheses. So far, the procedure is inductive and cannot ex­
clude nonconservative internal changes. However, if we now have rules for
the flow of signals incorporated by N H that can be verified by considering
a finite set of configurations of the finite set of involved neurons, such rules
can be verified explicitly by considering this finite set of configurations.

24This type of inductive inference is a straightforward generalization of that
elaborated in Sec. 4.3. Here, several answers are acceptable, viz. all rules about
relevant and also possibly irrelevant signals. The trainer does not provide the
correct answer but just yes or no, i.e., whether or not the hypothesized rule
is empirically correct (for a few tests). Note that it is straightforward for the
deductive MMP to check whether N H failed to predict a relevant signal.

H.-O. Carmesin 143

Let us specify that the standard MMP does consider such finite sets of
configurations explicitly.

The standard MMP yields a network N H of relatively low complexity c
that provides exactly the same signals (which are relevant for the question
under consideration) as Nm . This reduction of complexity is achieved by
inductive inference. The question then is: How do relevant signals flow?
This inductive inference is verified or falsified deductively. Thus, deductive
inference emerges here. The standard MMP provides an analysis of in­
corporated causal relations, because the signals flow deterministically and
already have been incorporated.

4.6.4 MATHEMATICAL EXAMPLES REVISITED

In the first example with inductive inference, N H will find a simple rule
for the signal flow in Nm . One such rule is that the value of F (as defined
above) at time t is a function of the values of the last digits dl and d2 of
two numbers, subsequently generated by NI at times t - tl - t2 and t - tl,
respectively (Fig. 4.7). This mapping F checks whether these digits are
unequal. Furthermore, by inductive inference, N H realizes that the value
of such a last digit d2 at time t - tl depends on the value of the digit dl at
time t - tl - t2' Hence, F only depends on that digit dl at a certain time.
These hypotheses formed by N H can be explicitly checked by the deductive
MMP by considering a finite set of signal configiurations. This is the case
because Nm is finite. Finally, two cases remain to be considered explicitely.
The above last digit dl (at time t - tl - t2) is 1 or - 1. In both cases, F
takes the value 1. Thus, the statement is verified by the cognitive system.

4.6.5 FURTHER ANSATZ

The above characterized signal-flow ansatz is not appropriate for all prob­
lems. Consider our second mathematical example, i.e., the question of
whether there is a largest prime number. There are finite networks that
check whether numbers are prime or not, or which number of a pair of
numbers is larger, or whether for a given prime there is a larger one. How­
ever, the answer to the question apparently cannot be found by using the
signal-flow ansatz. But it can be found if a new ansatz is provided. For
example, one may make a slight increase in complexity of the cognitive
system25 as follows.

One assumes a largest prime and, thus, a finite set of primes, and con-

25S0 far, we have explained how the cognitive system can perform inferences
by using mechanisms like the Hebb rule, the minimization of complexity, or the
signal flow analysis. These mechanisms use data or synapses that are already
present. In contrast, an ansatz is relatively new, see Rana and Sultan and the
conclusion.

144 4. Inferences Modeled with Neural Networks

siders the number x, which is the product of these primes plus 1. This
construction can be made in terms of a network, and with the standard
MMP the cognitive system can conclude that x is prime. The point is that
the construction, and in particular x, has not been found from an analysis
of the signal flow of Nm but must be regarded as a new ansatz in this
framework.

The above discussion suggests that the deductive MMP also can be ap­
plied if further ansatz somehow are provided [15J. In neurobiological terms,
these ansatz have to be provided by an associative memory, i.e., they are
distributed among many synapses. Consequently, it is not expected that
one can adequately measure the difference between Sultan and Rana (see
above) in terms of single neurons.

4.6.6 PROOFS BY COMPLETE INDUCTION

In order to illustrate that the studied MMP is widely applicable, we note
(without proof) the following. Any proof about a sequence of cases Xl, lEN,
that can be performed by complete induction also can be generated by
the standard MMP. In particular, corresponding propositions A(1) and
A(l) - A(l + 1) can be derived within the proof by complete induction.
Hence, the corresponding Nm can be reduced to the network of Fig. 4.6.

4.6.7 ON SIEVES

By a case we denote a configuration of signals that represents a pair (qt, at),
is generated by NI, and is transferred to NF. The network NF that tests
a property PF of a case is metaphorically called a sieve for a case. Those
cases that are in accordance with the property PF fall through the sieve,
while the others do not. Conversely, a property PF that can be checked
by a finite Turing machine in finite time for one single case generated by
Nl can be checked by NF. Alternatively, NF can be interpreted as a sieve
that discriminates networks N 1 , such that those Nl that generate cases in
accordance with the property PF fall through the sieve, while the others
do not. In this context, we call N F a sieve.

A series of properties PFk' k E K, is a unique characterization of certain
mathematical objects, and the series is identified as the format of any axiom
system for these objects.26 The corresponding series of sieves NFk playa
key role27 in the incorporation of axiom systems into networks.

26More generally, these objects need not be mathematical objects [3]. For in­
stance, an object that is yellow, lengthy, curved, and tastes like a banana is a
banana.

27 A practical advantage of a series of sieves is that in cognitive systems trans­
formations and compositions of sieves are possible and essential for deductive
reasoning. The detailed investigation thereof is beyond the scope of this chapter

H.-O. Carmesin 145

How does a cognitive system generate sieves 'I Sieves are generated by
a variant (the signal flow of Nl instead of Nm is analyzed) of the stan­
dard MMP as follows. Rules about the signal flow in Nl are hypothetically
formed by N H and verified afterwards. We generalize the property PF as
follows. F is a function from a case to ±1. If N H works under the constraint
that the identified rules have the format of properties [i.e., these rules tell
us whether a case x ofthe signal flow is generated by Nl (F(x) = 1) or not
(F(x) = -1)], then we identify NH as a sieve.

Axiom Systems in Terms of Sieves

Although the ultimate origin of the contents of the cognitive system is seen
in the elementary tasks, it is possible to begin with the axioms, as is the
case for the axiomatic method [48].

What is an axiom system 'I A sufficient characterization in terms of prop­
erties from which no part can be eliminated, such that the remaining is
still sufficient, is called a minimal sufficient characterization, or an axiom
system. Consequently, a series of sieves is a candidate for an axiom system
because it is it characterization in terms of properties.

What is a useful axiom system'l We call a network Nl and a series of
sieves N Fk ,k E K, self-consistent if the cognitive system can obtain the
series of sieves N Fk' k E K, from N1, and vice versa. Altogether, we are
prepared to show that our cognitive system is able to establish to any
consistent task an axiom system in terms of a series of sieves that is self­
consistent with the corresponding N1 .

Theorem 2: From any consistent task, an axiom system can be gener­
ated by a cognitive system in a self-consistent manner using the postulate,
locations, and the standard MMP.

Proof: Consider any consistent task. There is a network NI that incorpo­
rates a corresponding rule; see Theorem 1. We construct a series of sieves
as follows.

As a first series, we take the trivial set of sieves consisting of one sieve
NFl' which generates the answer to a given question by (a copy of) NI'
If (and only if) the entering answer equals the answer generated by NFu
then the entering answer falls through NFl'

As a second series, we add to the first sieve NFl additional sieves N Fk , k >
1, which we introduced in Sec. 4.6.7.

In order to obtain a third series of sieves N Fj ,j E J, we eliminate from
the second series irrelevant signals via the method introduced in Sec. 4.6.3.

but is given in [15, 46]. The description of such transformations in [10] is regarded
as inconclusive [47] for feedback networks. Furthermore, sieves can be applied to
more than count ably many objects which then are represented in a symbolical
manner (like 71'). This is the basis for novel results about logic [18].

146 4. Inferences Modeled with Neural Networks

I consistent task I I set of axioms I

Fig. 4.8. Axioms obtained by the cognitive system. Left: Nl incorporates a rule
from a consistent task via inductive inference. Upper arrow: The standard MMP
generates an axiom system in tenns of a series of sieves. Conversely, from a series
of sieves the same Nl is reproduced. Thus, Nl and the series of sieves are self­
consistent.

Finally, we show that Nl and the third series of sieves N Fj ,j E J are self­
consistent, i.e., we show that we can reproduce Nl from N Fj ,j E J (Fig.
4.6). For that purpose, we take each question ql of the dialogue and generate
the answer al as follows: We generate answers at random, use N Fj' j E J,
as a sieve, and take the answer al that falls through. This answer al is the
same as that of the dialogue because Nl makes this answer; hence, N H
generates this al, this al falls through the second series of sieves, and then
al also falls through the third series of sieves.

4.7 Conclusion

Learning. The master mechanism that minimizes the complexity estab­
lishes an optimal a priori principle, guarantees that a trainer can be in­
structive to the network, provides unique inductive inference, and emerges
from the Hebb rule. The master mechanism can be understood as follows. It
emerges from the Hebb rule. Its adaptation part guarantees that inductive
inference takes place. Its minimization part guarantees uniqueness. These
three properties together solve Wittgenstein's paradox by naturalization.

Internal change. The goal of conservative internal change is to make
predictions about future activities of (other) networks. Conservative inter­
nal changes are mapped to formal logic as follows. Networks are interpreted
as a model for a logical calculus. Internal changes model transformations of
logical formulas. The consistency problem of logic is mapped to the problem
to provide conservative internal changes.

Links between learning and internal change. A formal logical cal­
culus does not address learning. In contrast, for Brouwer [11] the (learned)
counting ability of humans was the central idea of intuitionistic logic. We
study this link with a learning network that establishes a formal axiom
system to any consistent task.

Second link. As a tool for conservative internal change, a master mecha­
nism is investigated that uses inductive and deductive inference. The master
mechanism extracts possibly relevant signal flows in a hypothetical man­
ner by the former and verifies or rejects these hypotheses by the latter.
This combination is advantageous: First, inductive inference is blind for
nonconservative internal changes but not for rules inherent to signal flows,

H.-O. Carmesin 147

while verification is blind for such rules but detects nonconservative inter­
nal changes. Second, the conservative internal changes cover infinite objects
(Fig. 4.6); this "infinite predictability" is ultimately based on the word
"all" in the sentence: "The neuronic dynamics is valid for all neurons at
any time."

Third link. New ansatz are efficient tools for internal change in the
modeled cognitive systems. Typically, new ansatz are provided by the cul­
tural heritage. The modeled cognitive system is able to learn and to change
these, i.e., to reject, reconstruct, analyze, reorganize, use, modify, combine,
or improve these ansatz.

Acknowledgments. I thank Leo van Hemmen, Gerhard Roth, and Helmut
Schwegler for improvements of my manuscript and stimulating discussions.

REFERENCES

[1] D.O. Hebb (1949) The Organization of Behaviour (Wiley, New York), p. 62

[2] A.N. Whitehead, B. Russell (1925) Principia Mathematica (Cambridge University
Press, Cambridge)

[3] D. Hilbert, W. Ackermann (1938) Grundziige der theoretischen Logik (Springer­
Verlag, Berlin)

[4] K. GOdel (1931) Monatshefte fUr Mathematik und Physik 38:173-198

[5] H.D. Ebbinghaus, J. Flum, W. Thomas (1984) Mathematical Logic (Springer-
Verlag, Berlin)

[6] A. Turing (1937) Proc. London Math. Soc. 42:230-265

[7] J. Piaget (1975) Gesammelte Werke (Klett, Stuttgart)

[8] L. Wittgenstein (1964) In: Remarks on the Foundations of Mathematics, G.H. von
Wright, R. Rhees, G.E.M. Anscombe (Eds.) (Basil Blackwell, Oxford)

[9] W. Stegmuller (1986) Kripkes Deutung der Spatphilosophie Wittgensteins (Kroner,
Stuttgart)

[10] W.S. Mc Culloch, W.H. Pitts (1943) Bull. Math. Biophys. 5:115-133

[11] L.E.J. Brouwer (1919) Jahresb. d. Dt. Mathematiker - Vereinigung 28:203-208

[12] S.C. Kleene (1952) Introduction to Metamathematics (North-Holland, Amsterdam)

[13] S. C. Kleene, R. E. Vesley (1965) The Foundation of Intuitionistic Mathematics
(North-Holland, Amsterdam) pp. 1-18

[14] J.L. van Hemmen, R. Kuhn (1991) In: Models of Neural Networks, E. Domany,
J.L. van Hemmen, K. Schulten (Eds.) (Springer-Verlag, Berlin) pp. 1-105

[15] H.-O. Carmesin (1993) unpublished

[16] K. GOdel (1930) Monatshefte fUr Mathematik und Physik 31:349-360

(17) G. Gentzen (1936) Math. Ann. 112:493-565

148 4. Inferences Modeled with Neural Networks

[18] H.-O. Carmesin (1993) Consistent Calculus (Koster, Berlin)

[19] D. Hilbert (1900) Nachr. v. d. Konigl. Ges. d. Wiss. zu Gottingen, 253-297

[20] H.-O. Carmesin (1992) Science & Education 1:205-215

[21] E.R. Kandel, J.H. Schwarz, T.M. Jessell (1991) Principles of Neural Science (El­
sevier, New York)

[22] C.R. Legendy (1975) Intern. J. Neurosci. 6:237-254

[23] E.L. Thorndike (1913) Educational Psychology, Vol. II (Columbia University, New
York)

[24] H.-O. Carmesin, H. Schwegler (1992) In: Rhythmogenesis in Neurons and Net-
works, N. Elsner, D.W. Richter (Eds.) (Thieme, Stuttgart), p. 702

[25] E.R. Caianiello (1961) J. Theor. BioL 2:204-235

[26] M. Opper (1992) Phys. Bl. 48:569-574

[27) H.-O. Carmesin (1993) Physics Essays 8:38-51

[28) H.-O. Carmesin (1993) In: Gen - Gehirn - Verhalten, N. Elsner, D.W. Richter
(Eds.) (Thieme, Stuttgart), p. 104

[29) M. Kreyscher, H.-O. Carmesin, H. Schwegler (1993) In: Gen - Gehirn - Verhalten,
N. Elsner, D.W. Richter (Eds.) (Thieme, Stuttgart), p. 105

[30] H.-O. Carmesin (1993) Fachberichte Physik 51

[31] J. Stoer, R. Bulirsch 1980) Introduction to Numerical Analysis (Springer-Verlag,
New York)

[32) A. Thoms (1994) Modellierung Ziihlender neuronaler Netzwerke (Diplomarbeit,
Universitiit Bremen)

[33] E.R. Caianiello (1986) In: Brain Theory, G. Palm, A. Aertsen (Eds.) (Springer­
Verlag, Berlin), pp.147-160

[34] M. Gardner (1977) Scientific American 231:18-25

[35] Solomonoff (1964) Inform. and Control 1:1-22, 224-254; M. Thomas, P. Gacs,
R.M. Gray (1989) Ann. of Prob. 11:84D-865

[36) J.H. Lin, J.S. Vitter (1991) Machine Learning 6:211-230

[37) H.-O. Carmesin, E. Brinkmann, H. Briigelmann (1994) In: Am Rande der Schrift,
DGLS-Jahrbuch "Lesen und Schreiben 6", H. Briigelmann, H. Balhorn, I.
Fiissenich (Eds.) (Libelle, Bottighofen), pp. 132-141

[38] H.-O. Carmesin, H. Fischer (1992) In: Didaktik der Physik, DPG (Ed.) (Physik­
Verlag, Weinheim), pp. 197-208

[39) H.-O. Carmesin (1993) In: Bedeutungen erfinden, im Kopf, mit Schrift und
miteinander, H. Briigelmann, H. Balhorn (Eds.) (Ekkehard Faude, Konstanz), pp.
66-70

[40] L. von Fersen, J.D. Delius (1992) Spektrum der Wissenschaft 1/92:18-22

[41] M. Siemann, J.D. Delius (1994) Bioi. Cyb. 11:531-536

[42] R. Sorkin (1983) Int. J. Theor. Phys. 22:1091-1104

H.-O. Carmesin 149

[43) M. Koppel, H. Atlan (1991) Inform. Sci. 56:23-37

[44) J.N. Cederberg (1989) A Course in Modern Geometry (Springer-Verlag, New
York), pp. 26, 201

[45) W. Kohler (1971) Die Aufgabe der Gestaltpsychologie (de Gruyter, Berlin)

[46) H.-O. Carmesin (1994) Theorie neuronaler Adaption (Koster, Berlin)

[47) G. Palm (1986) In: Brain Theory, G. Palm, A. Aertsen (Eds.) (Springer-Verlag,
Berlin), pp. 229-230

[48) R. Carnap (1954) EinfUhrung in die symbolische Logik (Springer-Verlag, Wien)

5

Statistical Mechanics of
Generalization
Manfred Opper and Wolfgang Kinzel1

with 18 figures

Synopsis. We estimate a neural network's ability to generalize from ex­
amples using ideas from statistical mechanics. We discuss the connection
between this approach and other powerful concepts from mathematical
statistics, computer science, and information theory that are useful in ex­
plaining the performance of such machines. For the simplest network, the
perceptron, we introduce a variety of learning problems that can be treated
exactly by the replica method of statistical physics.

5.1 Introduction

Neural networks learn from examples. This statement is obviously true for
the brain, but artificial networks also adapt their "synaptic" weights to a
set of examples. After the learning phase, the system has adopted some
ability to generalize; it can make predictions on inputs which it has not
seen before; it has learned a rule.

To what extent is it possible to understand learning from examples by
mathematical models and their solutions? It is this question that we em­
phasize in this chapter. We introduce simple models and discuss their prop­
erties combining methods from statistical mechanics, computer science, and
mathematics.

The simplest model for a neural network is the perceptron. It maps an
N-dimensional input vector e to a binary variable (1' E {+1, -I}, and the
function is given by an N-dimensional weight vector w:

(1' = sign (w· e) . (5.1)

Motivated by real neurons, the components of w may be called synaptic
weights; i. e., w(i) is a measure of the strength of the influence of the neuron
signal e(i) to the output neuron (1'.

lphysikalisches Institut, Universitlit Wiirzburg, D-97074 Wiirzburg, Germany.

152 5. Statistical Mechanics of Generalization

For a given w this function separates the input space by a hyperplane
into two parts, w . e > ° and w . e < 0, and the hyperplane is normal to
w. But also for a given input e, the space of weights w is divided into two
parts with different outputs 0'. Equation (5.1) gives a very limited class of
all possible functions from RN to ±l. But this limitation is necessary for
a good generalization, as we shall show later.

In the simplest case, the perceptron operates in two ways: in a learning
and in a generalization phase. In the learning process, the network receives
a set of P = aN many examples, i.e., input/output pairs (Uk, ek), k =
1, ... , aN, which were generated by some unknown function Uk = F(ek).
The weight vector w is adapted to these examples by some learning algo­
rithm, i.e., the strengths of the synapses are changed when one or more
examples are shown to the perceptron. Of course, the aim of learning is
to map each pair correctly by Eq. (5.1), and the number of examples for
which the network disagrees with the shown output, Uk =F sign (w· ek),
is the training error E:

aN
E = L 0 (-O'k w . ek) . (5.2)

k=l

o is the step function, O(X) = (sign x + 1) /2. If the examples are generated
by another perceptron with weights Wt, then it is possible to obtain zero
training error, ct = 0, for instance, by using the perceptron learning rule
(see [1]).

After the learning phase, the perceptron has achieved some knowledge
about the rule by which the examples were produced. Therefore, the net­
work can make predictions on a new input vector e that it has not learned
before. Let (0', e) be a new example that the network has not seen be­
fore. Then the probability that the perceptron gives the wrong answer,
0' =F sign (w· e), is given by

c = 0 (-0' W • e) , (5.3)

where the bar means an average over all possible examples (0', E').
The calculation of the generalization error c as a function of the fraction

a of the learned examples is the main subject of this chapter. We call
the learning network student and the example producing rule the teacher.
Hence, c is the probability of disagreement between student and teacher on
a new input e. c(a) depends on the structure of student and teacher, on
the structure of the examples, and on the learning algorithm.

From very general concepts one obtains bounds and relations between dif­
ferent generalization errors. Using methods of statistical mechanics devel­
oped from the theory of disordered solids (spin glasses), one obtains exact
results on c(a) for infinitely large networks (N --+ 00). Section 5.2 intro­
duces general results, while the statistical mechanics approach is presented

Manfred Opper and Wolfgang Kinzel 153

in Sec. 5.3. Section 5.4 discusses scaling ideas, from which the asymptotic
behavior of the generalization error can be understood in some cases. A
variety of applications for perceptrons are reviewed in Sec. 5.5.

This chapter is not supposed to review the new field of generalization
using neural networks. (For a review we recommend the article by Watkin,
Rau, and Biehl [2].) But we want to give an introduction to the field with
an emphasis on general results and on applications of our own group at
Wiirzburg. We apologize for not referring to a large number of interesting
and important results of our colleagues and friends.

5.2 General Results

The theory of learning in neural networks has benefitted from an interplay
of ideas that come from various scientific fields; these include computer sci­
ence, mathematical statistics, information theory, and statistical physics.
In the following, we try to present some of these ideas. We review a va­
riety of general results that can be obtained without specifying a network
architecture.

5.2.1 PHASE SPACE OF NEURAL NETWORKS

In this section we adress the problem of noise-free learning in networks with
binary outputs. We assume that an ideal teacher network, with a vector of
parameters Wt, exists, who will give answers ($ or e) on2 input vectors e
without making mistakes.

Let us now look at the phase space of all teachers Wt, described by a pa­
rameter vector Wt, for fixed inputs el"" ep. Before knowing the teacher's
correct answers to all of these inputs, a learner could partition the phase
space into maximally 2P cells or subvolumes, each cell U corresponding to
one of the 2P possible labelings (= answers) Uk = ±I, k = 1, ... , P. In
general, a given type of neural network will not be able to produce all 2P

outputs on the given inputs. If the teacher network has a very complex
architecture, we can assume that, by suitable choices of its parameters,
more combinations of outputs, in other words, more cells in phase space,
can be realized than for a less complex teacher. As we shall see in the next
section, this number of cells plays an important role for the learner's ability
to understand the teacher's problem.

After the teacher has given the answers, we know to which cell Wt be­
longs. In the so-called consistent learning algorithms, one trains a student
network to respond perfectly to the P training inputs. In the following,

2In general, we do not assume that the dimensions of parameter space and
input space are equal.

154 5. Statistical Mechanics of Generalization

we assume that the student belongs to the same class of networks as the
teacher. Thus, after learning, the student has parameters w s , which belong
to the teacher's cell.

Will the probability of making a mistake on unknown inputs always be­
come small when P grows large, whatever consistent algorithm we choose?

Surprisingly, the answer is yes, if the teacher has a bounded complexity.
As a measure for this complexity, the so-called Vapnik-Ohervonenkis (VO)
dimension, which comes from mathematical statistics, has been introduced
into computer science. We will try to review some of its basic ideas in the
next section.

5.2.2 VC DIMENSION AND WORST-CASE RESULTS

The maximal number of cells in the teacher's space is 2P for P input vectors.
But, due to the teacher's internal structure, the actual number of cells for
a set of inputs may not grow exponentially fast in P. A combinatorial
theorem, independently proved by Sauer [3J and Vapnik and Chervonenkis
[4J, gives an upper bound on this number: If d is the size of the largest set of
inputs realizing all 2d cells, then, for any set of P > d inputs, the number
N(P, d) of cells will only grow like a polynomial in P. d is called the VO
dimension.

Formally, Sauer's lemma states:
P ~ d~ 1:

N(P, d) ~ t, (~) ~ (e:) d (5.4)

A sketch of the proof of Eq. (5.4) is given in Appendix 5.1. Equation (5.4)
shows, that the VC-dimension plays a similar role as the capacity of the
class of teacher networks. For P > > d, only an exponentially small fraction
of input-output pairs can be stored in the net. For the perceptron, one has
exactly d = N, the number of couplings. For general feedforward networks
with N couplings and M threshold nodes, the bound d ~ 2N . log2 (eM)
was found in [5J.

Using Sauer's lemma, Blumer, Ehrenfeucht, Haussler, and Warmuth [6J
showed a worst-case result for the performance of consistent algorithms.
To understand their result, consider the following learning scenario: After
a student has learned a number of P independent random examples per­
fectly, he or she makes a prediction on an unknown input vector e, which
was drawn from the same distribution as the training examples. The stu­
dent's probability of making a mistake on the random input e defines the
generalization error e. Different students (algorithms) will have different
e. In general, their performance will depend on the random training set,
which makes e a random variable. So we can define the probability pee),
that there exists a student, who learns the examples perfectly but makes

Manfred Opper and Wolfgang Kinzel 155

an error larger than c. In [6] it was shown that, for P> 8/c,

p(c) '5:. N(2P, d) . 2-!P/2 '5:. 2 (2e;') d 2-!P/2. (5.5)

Statistical physicists often discuss the thermodynamic limit d, P - 00,

0: = Pld fixed. In this limit, Eq. (5.5) means that no errors larger than

2ln(2eo:)
cma:r: = --'------'-

0:

will occur, whatever consistent student we choose.
Due to lack of space, we cannot sketch the proof of Eq. (5.5) here. A

simpler theorem, which relates errors and the number of cells within the
Bayesian framework of learning, will be proved in Sec. 5.2.4.

The power of the va method lies in the fact that no specific assump­
tion on the distribution of inputs, other than their independence, must be
made. Further, the architecture of the teacher problem to be learned is
characterized by only a single number, the va dimension.

As a drawback of the worst-case results, one often finds that ''typically,''
the error bounds are too pessimistic. In the next two sections, we will
discuss a more optimistic learning scenario. We show what is gained if,
besides the teacher's complexity, more prior knowledge, expressed by a
probability distribution on the teacher's parameters, is available.

5.2.3 BAYESIAN ApPROACH AND STATISTICAL MECHANICS

The statistical mechanics approach to learning is closely related to concepts
established in mathematical statistics and information theory [7, 8, 9, 10,
11]. To explain these connections, let us first briefly remind the reader of
some ideas from density estimation in mathematical statistics.

A common problem in statistics is to infer a probability density, 'Pe(y),
from a sample of P data values, yP == Y1, ... , YP, independently drawn from
this distribution. Here we assume that the class of distributions is known
up to an unknown parameter O. For example, assume 'Pe{y) = (27r)-1/2 .
e-(1/2)(y-II)2, i.e., a Gaussian density, where 0, its mean, is unknown.

One approach to this problem is to estimate the value of 0 first and then
to approximate the unknown density by

'P9(y),

where 0 is the estimate. A well-known method is the maximum likelihood
estimation, which uses a 0 that makes the observed data most likely, i.e.,
which maximizes the likelihood

(5.6)

156 5. Statistical Mechanics of Generalization

For the Gaussian density, this leads to the simple arithmetic mean

P
A -1,",
0= P L..JYk.

k=1

In the so-called Bayesian approach to density estimation, all prior knowl­
edge (or lack of the same) of the unknown parameter is expressed by a prior
distribution p(0). For example, if the (Bayesian) statistician knows that the
unknown mean of the Gaussian will not be too large or too small, say 0
must be between -1 and + 1, he or she could assume that 0 is uniformly
distributed in this interval. Rather than giving a single estimate of 0, as
in the maximum likelihood case, the Bayesian calculates the posterior dis­
tribution p(O/yP), which represents his or her knowledge or uncertainty of
the parameter after having observed the data values. This is derived by the
Bayes Formula, which expresses the joint density P(yP, 0) of the data and
the parameter in two ways using conditional densities:

p

P(yP,O) = p(O) . II P9(Yk)
k=l

P(yP,O) = p(O/yp) . P(yp). (5.7)

The posterior density is then

«()/ p) = p(O) . nf-1 P9(Yk)
P Y P(yP) , (5.8)

with the normalization

P

P(yp) = J dO II P9(Yk) . p(O).
k=1

(5.9)

Note that, for p(0) = const, the maximum of Eq. (5.8) is just the maximum
likelihood estimate.

Then, if the Bayesian is asked to present an estimate of the unknown
density, he or she will return the posterior averaged density

(5.10)

which in general will not belong to the class of densities originally consid­
ered. Besides the most likely value of 0, this estimate includes neighboring
values as well.

It can be shown that, if the parameter is actually distributed according
to p(O), then Eq. (5.10) gives the best approximation to the true density
on average [4].

Manfred Opper and Wolfgang Kinzel 157

The justification of a prior probability for 0 often has been questioned.
Even if it is not satisfied, the posterior density Eq. (5.8) will, under some
mild conditions, be highly peaked around the true value of 0 for P --+ 00.

The dependence on the actual shape of p(0) will disappear asymptotically.
Let us now translate these ideas into the language of supervised learning.

The data observed in a learning experiment are the examples consisting of
P input-output pairs aP == {(al, el)' ... ' (ap, ep)}. In general, we assume
that there is a possibly stochastic relation between the inputs and the
outputs, which can be expressed by a relation of the type

a = F(Wt, e, "noise"). (5.11)

W t is a parameter vector representing an ideal classifier or teacher. In con­
trast to the previous section, we include the possibility that the observations
may contain errors ("noise").

Using a neural network, which can implement functions of the type F
(with "noise"=O!), the task of the learner is to find a student vector Ws that
best explains the observed data. This can be understood as an estimation
of the parameter W for the distribution

(5.12)

where f is the density of the inputs and 1'w(ale) is the probability that,
given an input e, one observes an output a.

The statistical physics approach to learning is closely related to the
Bayesian idea. Based on the pioneering work of Gardner [12], one may
study ensembles of neural networks to capture a "typical" behavior of their
learning abilities. Such ensembles are defined by a Gibbs distribution,

(5.13)

with partition function

z = J dw· p(w). exp (-(3t,E(Wj Uk,ek)) . (5.14)

E is the training energy of the kth example and (3-1 is the learning tem­
perature in a stochastic learning algorithm. In p(w), all constraints on the
possible couplings are summarized.

Equation (5.13) has an interpretation as the posterior distribution [Eq.
(5.8)] of coupling parameters if we identify

p(0) --+

1'8(YP) --+

1'(yp) --+

p(W)

1'w(aP) oc ni=l exp(-(3E(Wj Uk,ek))
1'(aP) oc z.

(5.15)

158 5. Statistical Mechanics of Generalization

As an example, let us consider a perceptron. We assume that the ideal
classification u = sign(N-1/ 2Wt . e) is inverted by output noise, i.e., u =
77·sign(N-l/2Wt ·e), where 77 = -1 with a probability e-fJ /1+e-fJ , and {3-1
is the noise temperature. Fixing the inputs, the probability of observing P
output labels is

'P (uP) = IIP {9(UkN-1/2w. ~k) + e- fJ9(-UkN - 1/2w . ~k)}
W 1 + e-fJ 1 + e-fJ

k=1

= (1 + e-fJ)-p . exp [-{3 t 9(-UkN - 1/ 2w . ~k)l. (5.16)
k=1

A second possibility of misclassification arises when the coupling parame­
ters, or network weights, of the teacher are uncertain to some degree, i.e.,
Wt is replaced by Wt+v, where v is Gaussian with 0 mean and V·V = {3-1.
Now,

P

'Pw(uP) = II H(_{31/2ukN-l/2W . ~k)' (5.17)
k=1

where

H(x) = 100
Dt

and
Dt = dt . (211")-! . exp(-it2)

is the Gaussian measure.
To summarize, we obtain for the training energies

for output noise
for weight noise.

(5.18)

The case of output noise also can be formulated for general neural net­
works and leads to a total training energy that is just the number of inputs,
for which the noisy outputs (1 and the student's answer disagree.

From the Bayesian viewpoint, the posterior distribution could be used
to make predictions on new inputs ~ by calculating the output with the
largest posterior probability. This is the Bayes algorithm, which, for binary
outputs [ef. Eq. (5.1O)J, answers

u = sign [/ dw p(wl(1P)F(w,~, "noise" = 0)] . (5.19)

Unfortunately, this represents a superposition of many neural networks,
each given by a coupling vector w. In general, this output cannot be re­
alized by a single network of the same architecture, but requires a more
complicated machine.

Manfred Opper and Wolfgang Kinzel 159

An algorithm that also uses the entire posterior density is the Gibbs al­
gorithm [9,10, 13J, which draws a a single vector w at random according to
the posterior Eq. (5.13). This is precisely what we would call the "typical"
neural network in statistical physics.

This should be contrasted with a maximum likelihood strategy, which
simply chooses a student vector [for p(w) = constJ that minimizes the
training energy E. In the case of noisy outputs, the student would try
to learn perfectly as many examples as it can, even if a fraction of them
contains wrong classifications.

In general, perfect knowledge of the prior distribution of teachers will
not be available. Nevertheless, the Gibbs distribution [Eq. (5.13)J is a nat­
ural device for defining learning algorithms, even if they are not optimally
matched to the learning problem. We will discuss some examples in the
section on perceptrons.

5.2.4 INFORMATION-THEORETIC RESULTS

In this section we explore in more detail what would happen if the Bayesian
assumption was perfectly realized. That is, we assume that "nature" actu­
ally selects teacher problems at random, and that their prior distribution
is completely known by the student.3

Learning more and more examples, the student's knowledge of the un­
known teacher parameters grows. This knowledge gained by learning a new
example is expressed in the so-called information gain. As was shown by
Haussler, Kearns, and Shapire [13J, this quantity can be related to the aver­
age error made by a student using the Gibbs and Bayes algorithms. Finally,
using information theory and the VC approach, inequalities for errors can
be derived. We restrict ourselves to the case of noise-free learning. A more
general treatment can be found in [14J.

We assume for this section that the inputs are fixed, SO that the only
randomness is in the choice of the teacher, and, for the Gibbs algorithm,
in the choice of the student.

Having observed P classified inputs, we know that the teacher is con­
strained to one of the N(P, d) nonempty cells. Thus, the posterior density
for the teacher's parameters is 0 outside the cell (see Fig. 5.1 for a percep­
tron) and equals

(5.20)

inside the cell, where

3This a natural assumption for physics students, who, in preparing their ex­
ams, often use a catalog of the professor's questions from previous exams.

160 5. Statistical Mechanics of Generalization

(w·w)=N ~_

/ Wt

Fig. 5.1. Sketch of the phase space of weights for a perceptron. Left: Before
learning, the vector Wt is completely unknown and assumed to be randomly
distributed on the surface of an N-dimensional sphere. Right: After learning of
P input-output examples ek' ak, the teacher Wt must be in a smaller cell of the
phase space with boundaries given by the planes akw, ek = 0, k = 1, ... , P.
A new input (dashed line) divides the cell into two new subcells, V+ and V-,
corresponding to the two possible answers.

V(aP) == Vp = 1 p(w) dw
cell

(5.21)

is its (weighted) volume, satisfying I:O'l ... O'p=±l V(aP) = 1.
Let us begin with the Gibbs algorithm and fix the teacher for a moment.

The learner chooses a vector Ws at random, with density [Eq. (5.20)]. If a
new input is added, the cell is divided into two subcells (Fig. 5.1). If an
output cannot be realized, we will formally assume a new cell with zero
volume.

Let us compare the student's prediction on the new input with the
teacher's answer. Both agree only if the student vector Ws is in the same
cell as the teacher's. Averaging over w s , this will happen with probability

y _ Vp +1
- Vp , (5.22)

where VP+1 is the volume of the teacher's new cell. The probability of
making a mistake thus is given by 1 - Y.

The Bayesian prediction would weight the answers of the two sub cells
with their corresponding posterior probabilities and vote for the output

a = sign[V+ - V-j.

Thus, the answer of the largest cell wins. Since the Bayesian gives the
answer with largest posterior probability, he or she will, on average, have

Manfred Opper and Wolfgang Kinzel 161

the lowest number of mistakes over all of the algorithms.4 The Bayesian
will only make a mistake if the teacher is in the smaller volume, i.e., if
Y < !. To this algorithm we can assign the number

8(1 - 2Y) E {O, I}, (5.23)

which counts as a "I" when the algorithm makes a mistake.
Finally, by observing a new classified input, our uncertainty on the

teacher's couplings will be reduced if the volume of the teacher's cell
shrinks.5 Formally, this corresponds to an information gain,

/).1 = -[In(Vp +1) -In(Vp)] = -In(Y). (5.24)

Obviously, Y, the volume ratio, is a random variable with respect to the
random teacher and the inputs. Performing the average over the teacher
only, simple and useful relations between the information gain and the
probabilities of mistakes may be derived next.

Clearly, Y does not change if the teacher is moved inside a cell. Thus,
we can average any function F(Y) over the space of teachers, first by in­
tegrating over all teachers inside a cell, and then summing over all cells,
labeled by their configuration uP+! of outputs:

(F(Y») = (5.25)

The factor V(uP+!) is the integral over the new cell [Eq. (5.21)]. Thus,
outputs, which cannot be realized, are counted with zero weight.

We first will show the useful relation

(F(Y») = (YF(Y) + (1- Y)F(l- Y»). (5.26)

Beginning with the right-hand side, and using the definition in Eq. (5.25),
we fix the first P labels and sum over the up+!. Let V+ and V- be the two
possible subvolumes and Y+ = V+ jV(uP), Y- = 1-y+. The summation
over up+! gives a contribution

V+[Y+ F(Y+) + Y-F(Y-)] + V-[Y-F(Y-) + y+ F(Y+)] = (5.27)
V(uP)[y-F(Y-) + y+ F(Y+)] = V-F(Y-) + V+ F(Y+)

4We always assume that the teacher actually was drawn from the assumed
prior distribution.

15 An interpretation of -In(Vp) in terms of the stochastic complexity of Rissa­
nen [151 has been discussed in [161. Viewing the learning of the examples as an
encoding of the outputs in the network's parameters w, this quantity measures
how many bits we need to describe the parameters if we use only a finite set of
discrete values for the components of w.

162 5. Statistical Mechanics of Generalization

0.5.-----------------~~_=~--------------_.

0.4

0.3

0.2

0.1

0.0 -f--------,--------.---------.--------r------~
0.0 0.2 0.4 0.6 0.8 1.0

y

Fig. 5.2. Graphic demonstration of the inequalities min(Y, 1- Y) (lower curve)
~ 2(Y - y2) (middle curve) ~ -1/2ln 2(Yln Y +(1- Y) In(l- Y)) (upper curve).

to Eq. (5.26). Here we have used V+ + V- = V(a P). Summing over the
remaining labels, we obtain Eq. (5.26).

Using relation (5.26), the total probabilities of mistakes, in other words,
the errors averaged over all teachers (but for fixed inputs), are given by

CGibbs = (1 - Y) = 2(Y _ y2)
CBayes = (8(1 - 2Y») = (min(Y, 1 - Y»),

(5.28)

where the first equality is from Eq. (5.22) and the second from Eq. (5.23).
The average information gain is rewritten as

(t::.I) = -(In(Y)) = -(Y In Y + (1 - Y) In(l - Y)).

By comparing the three curves in Fig. 5.2, we conclude that

CGibbs ~ 2cBayes

1
CGibbs ~ 2In(2) (t::.I).

(5.29)

(5.30)

Although the random Gibbs algorithm is not optimal, its error is of the
same order of magnitude as that of the optimal Bayes algorithm.

The second inequality (5.30) indicates that, in order to gain a lot of in­
formation on the teacher, a student should select inputs on which his or her

Manfred Opper and Wolfgang Kinzel 163

performance is bad. This can be utilized in the so-called query algorithms
(see Sec. 5.5.4).

Using the VC method and Eq. (5.30), an estimate of the decrease of the
generalization error for the Gibbs algorithm can be obtained [13J.

Summing the second inequality (5.30) from P = 0 to P = M - 1, we can
bound the average cumulative number of mistakes,

(5.31)

where we have used the fact that the individual terms

AI = -[In(Vp+1) -In(Vp)J

sum up to -In(VM) == -In(V(aM)). Since the volume of each cell equals
its probability, the sum in the last expression equals the entropy of the
distribution of outputs.

As is well known from information theory, the entropy is maximal if
all probabilities are equal. In other words, this happens if the total unit
volume of the phase space is equally divided under the N(M, d) cells. Thus
we obtain the inequalities

M-l 1 1
]; f.Gibbs(P):::; 21n(2) In (N(M,d)) :::; 21n(2) .d(ln(M/d) -1). (5.32)

The logarithmic growth in M indicates a faster decay of errors than the
worst-case result f.(P) ~ In(o:)/o:, with 0: = P/d. Rather, the estimate is
consistent with a faster decay f.Gibbs(P) <X 0:-1 , asymptotically. In fact,
using more refined techniques, it is shown in [13J that

f.Gibbs(P) :::; 2/0:. (5.33)

Since this bound holds for arbitrary distributions of inputs, even very ar­
tificial ones, one might expect that, for "typical" distributions, learning
might be even faster. Using the statistical mechanics approach, we will see,
however, in the section on perceptrons, that the 0:-1 decay also holds for
a natural distribution of inputs.

A greater speed of generalization only can be achieved if the asymptotic
information gain from new new inputs can be enlarged. We will come back
to this idea in Sec. 5.5.4.

5.2.5 SMOOTH NETWORKS

Most parts of this chapter deal with networks that have binary outputs and
the sign transfer function. Often in technical applications of neural nets, the
transfer functions between in- and outputs are highly nonlinear, but they

164 5. Statistical Mechanics of Generalization

nevertheless are smooth functions. This property is utilized in the so-called
backpropagation algorithm [28], where a training energy is minimized via
gradient descent. This requires the calculations of derivatives of the energy
with respect to the coupling parameters.

It turns out that the asymptotic behavior of the generalization errors
can be calculated easier than for binary outputs.

We assume a learning algorithm that is defined by the Gibbs ensemble

(5.34)

We assume that Uk is a function of the inputs and a teacher parameter
vector. In the following we will not assume that the problem is completely
learnable. Then the aim of a learner will be to find a network that minimizes
the training energy averaged over the space of all examples. If P, the number
of examples, grows large, we expect that the final state of the network
converges to the optimal value Wo, for which

(5.35)

for all i. The bar denotes the average over the examples, and the derivative
is with respect to the components wei).

The generalization error after learning P examples is

e = J dw p(wluP) E(wj U, ~). (5.36)

We further expect that the posterior density is strongly peaked at its max­
imum w, the maximum likelihood estimate. The fluctuations around this
value are, to the lowest order, Gaussian with zero mean and covariance:

(w{i) - wei»~ (w{j) - w(j))) ~ {f3 p)-l (U-l)ij, (5.37)

where

P

Uij = p-1 EM)j L E{w; Uk, ek)w=w ~ 8i8j E{w; u, e)· (5.38)
k=l

Expanding Eq. (5.36) around (w = w), and averaging over the Gaussian
fluctuations in Eq. (5.37), we get

e ~ E(w;u,~) + ~(f3P)-l L:Uij(U-1)ij.
ij

(5.39)

The sum on the right-hand side simply equals N, the number of weights.

Manfred Opper and Wolfgang Kinzel 165

For P large, Vi will be close to the optimum wo. To estimate the difference
between Vi and wo, we use the fact that w = Vi extremizes the learning
energy, i.e., it fulfills

p

0= p-1/28i 2: E(w; Uk, ~k)w=w ~
k=l

P

p-1/28i 2: E(w; Uk, ~k)W=WO + 2: UijvP(w(j) - w(j)O), (5.40)
k=l j ,

where we have expanded to the first order at w = wO. We also neglected
the dependence of Uij on w. The first term, 'Yi, is a sum of independent
random variables and is, in the limit, Gaussian distributed. We find from
Eq. (5.35) that 'Yi = 0 and

'Yi 'Yj ~ 8i E· 8jE == Iij . (5.41)

Using this information, we can solve Eq. (5.40) to get

P (w(i) - wO(i)) (w(j) - w0(j)) ~ (U-1 I U-1)ij. (5.42)

Finally, we expand the first term of Eq. (5.39) at wO up to the second order
in (w(i) - w(i)O); the first order clearly vanishes. Using Eq. (5.42), we get

1 -1 N
e ~ emin + 2pTr(U I) + 2f3P' (5.43)

emin is the minimal error achieved by the parameter wO.
This result has been shown in [17J using the replica method. In [18J, a

similar result has been proved using the analogy to density estimation in
mathematical statistics. In this framework, the matrix I is proportional to
the so-called Fisher Information, defined as

Iij = J dy 8i In('P8(y)) . 8j In('P8(y)), (5.44)

Here we have used the terminology of Sec. 5.2.3 and we assumed that the
parameter () is a vector. I plays an important role in the asymptotics of
statistical estimation procedures [4].

The result in Eq. (5.43) has the same ex: p-1 behavior as the decay
of the Gibbs errors in Eq. (5.33). It should be noted, however, that the
definition (5.36) of the generalization error does not correspond to a binary
classification problem like the ones treated in the previous sections. If we
would force a smooth network to give "straight" answers EEl or e, by clipping
its outputs after training, the generalization error may be different. As we
will see in Sec. 5.5.2, for the ADALINE algorithm, a slower performance
e ex: lIn can be observed in such a case.

166 5. Statistical Mechanics of Generalization

5.3 The Percept ron

5.3.1 SOME GENERAL PROPERTIES

The perceptron shows many interesting features that distinguish it from
other neural networks.

One of the oldest rigorous results for perceptrons is the number of pos­
sible output combinations or cells. Besides the estimate of Sauer's lemma,
we know a precise result for the perceptron, given by Cover [19] in 1965:
For any set of P inputs in general position,6 one has exactly

N(P, N) = 2 L ~ 1 ,
N-l (P)
i=O ~

(5.45)

where N is the number of weights. Equation (5.45) also yields P = N for
the largest number of input vectors with N(P,N) = 2P • Thus, the VC
dimension equals N.

The independence of N(P, N) from the location of input vectors is no
longer valid when we look at other networks. Perceptrons with binary
weights already show large fluctuations for this quantity. Based on ex­
act enumerations on small systems [20], but for many samples of random
inputs, we have obtained lower bounds on the VC dimension d for this
model. Finite-size scaling (see Fig. 5.3) indicates that for N - 00 we will
have d~ N/2.

Another striking feature is the simple geometric picture (Fig. 5.4) of the
perceptron's classification ability. In the space of the inputs, the vector of
couplings defines a separating plane perpendicular to w. Inputs on the side
of this normal vector are classified as $, while those on the other side are
classified as e. Perceptrons realize linear-separable functions.

As a consequence of this geometric picture, we can easily find the gener­
alization error € (= probability of making a mistake) when the inputs have
a spherical distribution. Such a distribution can be realized from indepen­
dent, normally distributed cartesian components ~(j), j = 1, ... ,N, with
density

(5.46)

For fixed teacher and student, one finds

€ = ~ arccos C:: I,::,) . (5.47)

Equation (5.47) will be used extensively in the following sections. Although
this theorem can be derived by averaging over the Gaussian random vari­
ables, it is immediately clear from the geometric construction of Fig. 5.4.

6 Any subset of inputs containing no more than N input vectors is linearly
independent.

Manfred Opper and Wolfgang Kinzel 167

1.1,---~

1.0

0.9

ave 0.8

0.7

0.6

0.5-iL--.--r----.----r--.----,----.-----i
0.0 0.1 0.2 0.3 0.4

Fig. 5.3. VC dimension for the perceptron with binary weights. The curve gives
a lower bound as a function of N, the number of weights. The data were obtained
from large samples of input sets upon calculating the number of possible labelings
by scanning all 2N weight vectors.

Hyperplanes

Fig. 5.4. For a perceptron, teacher Wt and student W II determine separating
planes in the input space. Inputs are mapped onto e if they are in the same
half-space as Wt, •• Thus, the generalization error equals the ratio c = 8/7r of area
with different outputs and total areas.

168 5. Statistical Mechanics of Generalization

Note that, for N -+ 00, any distribution with the same first two moments
will give the above result. A popular choice is ~k(j) = ±1 with probability
1
2·

5.3.2 REPLICA THEORY

In this section we develop a general framework that will allow us to treat
a variety of perceptron learning problems using the replica method.

Following Gardner's approach, we will consider a Gibbs ensemble of per­
ceptrons defined by the distribution

with partition function

z = J dw p(w)· exp (-f3t.E(w;u"e,)) .
In the following we will keep the form of Eq. (5.48) rather general: We will
only assume that E depends on the internal fields N-1/2UkW . ek. Thus,
we consider partition functions of the type

P

Z(uP) = J dw pew) . II iP(N-1/2UkW . ek),
k=l

(5.49)

with an arbitrary iP.
We constrain the coupling vectors to the surface of a sphere, i.e.,

pew) = Vo-18(w . w - qoN),

with Vo = eN/ 2(ln211"+1) ~ J 8(W· w - N)dw. Finally, dw = nf=l dw(j) is
the volume element in cartesian coordinates.

One of the basic assumptions of the statistical mechanics approach can
be stated as follows: The free energy per coupling:F, defined by

(5.50)

is a self-averaging quantity for N -+ 00 and most "natural" distributions
of the random examples. This means that it equals its average

:F = N-1 • L P(uP) InZ(uP) (5.51)
Ul ••• up=±l

for almost all realizations of the random examples. Here,

Manfred Opper and Wolfgang Kinzel 169

is the total probability over all teachers (and noise) that, given the inputs,
the binary classifications qP will be observed. The bar denotes the average
over the distributions of inputs. If Eq. (5.48) was actually the posterior
distribution corresponding to a prior distribution of random teachers (see
Sec. 5.2.3), we would have

(5.52)

where the normalization

C = L Z{qP)
O'l ... O'p=±l

is assumed to be independent of the inputs. In general, we will not restrict
ourselves to Eq. (5.52), but rather we will use the more general ansatz,

1'{qP) = Zt{qP)/Ct
P

Zt{qP) = J dWt Pt{w) . II fPt{N-1/2qkWt . (k), (5.53)
k=l

where fPt can be different from fP and

Pt{w) = Vo- 16{wt . Wt - N).

To perform the average over the inputs, the replica trick is utilized:

where

En = L Zt{qP)zn{qP) (5.55)
O'l ... O'p=±l

is the weighted and averaged n-times replicated partition function. Equa­
tion (5.55) will be calculated for integer n, and the result then will be
continued to reals.

Since all inputs are assumed to be statistically independent and drawn
from the same distribution, we get

Sn = J dWt p(Wt) IT dWa p(wa)
a=l

X C~, ifI.(N-l/'UW.' e) il ifI(N-l/'uw •. e) P (5.56)

For the inputs, we use the Gaussian distribution (5.46). fP and fPt depend on
(only via Ua = N- 1/ 2qWa .(, a = 1, ... , n, and Un+! = Ut = N-l/2qWt .(.

170 5. Statistical Mechanics of Generalization

For fixed couplings, these are joint Gaussian random variables with 0 means
and second moments Qab = UaUb = N-1wa . Wb. Thus, we have, for P =
aN,

n+l

N-1ln(Sn) = N-1ln J II dWa Pa(wa) exp[aNg1(n)]
a=l

(5.57)

with

n

e'h(n) = 2<Pt(un+dQ}) II <p(ua{Q}). (5.58)
a=l

The average over the Ua can be performed with the help of the following
basic assumption of mean-field theory.

For N -+ 00, the integrals over Wa will be dominated by regions in the
phase space where the matrix elements Qab assume nonfiuctuating values.
These are the order parameters, which determine the macroscopic physics of
the network. Assuming that replica symmetry is valid, the order parameters
will obey Qab = q, for a =f b and a, b ~ n. Further, Qa,n+1 = R.

q = N-1wa . Wb is the typical overlap between any two student vectors
Wa and Wb, which are drawn randomly from the Gibbs distribution (5.48).
Accordingly, R = N-1Wt . Ws is the overlap between a teacher and a
student. By Eq. (5.47), the knowledge of the order parameters enables us
to obtain the generalization error via

1
c = - arccos(Rj ,.fijO).

7C'
(5.59)

Using the replica-symmetric ansatz, the Gaussian fields can be con­
structed explicitly,

(5.60)

for a ~ nand
(5.61)

where Za, y, t are independent Gaussian variables with variance 1. Obvi­
ously, these variables yield the correct second moments. Now the Gaussian
average is easily performed, yielding

e91 (n) = 2 i: Dt i: DY<Pt (Y(l- R2/q)1/2 - tR/ql/2)

x [I: Dz <P (zJqO - q - tJq) r (5.62)

Again, Dt = (27C')-1/2e-l/2t2 dt is the Gaussian measure. Using the saddle­
point method, for N -+ 00, we finally get

lim N-llnSn = Extrq,R [agl + g2].
N-oo

Manfred Opper and Wolfgang Kinzel 171

The second term is an entropic term coming from the phase-space integral,
where the order parameters q and R are fixed:

n+l

eN92 (n) = l'o-(n+l) J II dWa II 8(wa . Wb - NQab).
a=l a~b

(5.63)

In replica symmetry, it is not hard to evaluate this expression, giving the
result

n-l 1 [2] (h = -2- ln(qo - q) + "2 In (qo - q) + n(q - R) . (5.64)

Finally, performing the derivative with respect to n yields

(5.65)

where

J~oo Dy <I>t (Y(l - R2/q)1/2 - tR/ql/2)

J~oo Dy <I>t(Y)
(5.66)

x In [I: Dz <I> (zJqO - q - t..;'Q)]

and

1 1 q - R2
F2 = "2 ln(qO - q) + "2 (qO _ q) . (5.67)

Extremizing the free energy in Eq. (5.65), we will get the physical values of
the order parameters q and R, which in turn determine the generalization
error c.

5.3.3 RESULTS FOR BAYES AND GIBBS ALGORITHMS

Before we come to specific deterministic learning algorithms, we will study
the performance of the Gibbs algorithm for a perceptron. As in Secs. 5.2.3
and 5.2.4, we will assume that the prior distribution of the teacher is known
to the student.

However, it should be noted that, for the spherical density of inputs
in Eq. (5.46), by symmetry, the order parameters will not depend on the
actual teacher. Thus, for this special density, the following results will hold
not only on average, but also for any specific teacher. If noise is present in
the teacher's classifications, we also will assume that the student will know
the type of noise and its strength.

The interpretation of the Gibbs ensemble as the posterior distribution
in the Bayesian sense simplifies the algebra. In this case we always have
<I> = <I>t.

172 5. Statistical Mechanics of Generalization

Then, teacher and student will enter the replica theory in a completely
symmetric way. The teacher is just another replica, so that, from the be­
ginning, we can set q = Rand qo = 1.

Now Eq. (5.65) is replaced by

{ 0: 100 1 q} F = Extrq Ao -00 A(t; q) In [A(t; q)] + 21n(1 - q) + 2 ' (5.68)

where

(5.69)

and

Ao = I: Dz <I>(z).

It is interesting to note that this expression could have been derived by a
slight modification of the standard replica trick, where we replace the limit
n ~ 0 by n ~ 1. Setting Zt = Z, we get

F = lim ~N-l1n ~ zn(aP). (5.70)
n-+l an 6

O'l ... O'p=±l

We now give explicit expressions for noise-free and noisy teachers [see
Eq. (5.18)]:

leading to

{
8(u)

<I>(u) = exp[-,88(-u)]
H(-,8-!u)

{
H(-yt)

A(t; q) = e- f3 + (1 - e- (3)H(-yt)
H(-yt)

no noise
output noise
weight noise,

no noise
output noise
weight noise

(5.71)

(5.72)

with 'Y = Jq/1 - q and -y = Jq/1- q + 1/,8. For output noise, Ao =
~(l+e-f3), and Ao = ~ in the other cases. Calculating the order parameter
q from Eq. (5.68), yields the Gibbs error as:

1
CGibbs = - arccos(q). (5.73)

7r

For noisy outputs, this is the probability that the student will find the ideal
output of the teacher.

Solving the order parameter equation asymptotically for 0: ~ 00, i.e.,
q ~ 1, one obtains

without noise
output noise
weight noise

(5.74)

Manfred Opper and Wolfgang Kinzel 173

C1 , C2 are functions of the temperature. C1 converges to the value 0.62 for
f3 -+ 00, whereas C2 goes to 0, indicating the crossover to the faster decay
in the noise-free limit.

The decay OC 0:-1 in the noise-free case is of the same order as the
bound (5.33) discussed in Sec. 5.2.4. Remarkably, this asymptotic decay
still persists if output noise is included. When the noise temperature grows
large (i.e., f3 -+ 0), the coefficient Cl diverges like 4/ f32.

The case of weight noise also has been studied in [8, 21]. However, the
authors calculated the Gibbs error for a different algorithm, which uses
the sum of mistakes [the first line in Eq. (5.18)] as the learning energy.
With an optimized learning temperature, eGibbs ~ 0:-1/ 4 was found. With
a 0 temperature learning, which corresponds to minimizing the training
energy (maximum likelihood), the behavior is even worse. This shows that
the generalization ability can be remarkably enhanced if more information
on the teacher is included in the learning algorithm.

The error of the Bayes algorithm has been calculated in [9, to]. We will
give a different derivation by looking at the volume ratio,

V(aP+l)
y = V(aP) , (5.75)

previously defined in Sec. 5.2.4. Equation (5.75) describes the reduction of
the volume of the teacher's cell when a new input is learned. As was shown
in Sec. 5.2.4, Y can be used to find Gibbs and Bayes errors, as well as the
information gain.

Obviously, Y is an average of the function 9{N-1/2ap+l Wt . (P+l) over
all couplings of the teacher's old cell V(aP). We can write

(5.76)

One of the basic assumptions of the replica-symmetric mean-field theory is
the clustering hypothesis [22], which states that the thermodynamic fluctu­
ations of different components Wt(j) of Wt are uncorrelated in the thermo­
dynamic limit. From the central limit theorem, we conclude that, for fixed
input (P+l' the field N-1/2ap+l w'(P+l can be written as N-1/2ap+l (w)·
(P+1 +v, where the fluctuating part v is Gaussian distributed and has vari-
ance

(v2) = N-l«w. w) - (w)2) = 1- q. (5.77)

Here, we have again used the clustering hypothesis, yielding

q = N-1w a • Wb = N-1(w)2. (5.78)

Performing the average over v gives the expression

Y = H (N- 1/ 2ap +l (w) . (P+l) ,
vr=q (5.79)

174 5. Statistical Mechanics of Generalization

which holds for a fixed input pattern and classification label in the thermo­
dynamic limit! The Bayesian algorithm votes for that value of UPH which
gives the largest volume, in other words, the largest value for Y. By its
definition, H(x) = J:z:oo Dt > ~, if x> O. This has the consequence that a
student with coupling vector Wa = (w) will always make the optimal Bayes
decision.

This was first shown in [23] by means of a slightly different argument. It
is nontrivial because, in general, the "Bayesian student" does not belong to
the phase space of the teachers. Finally, to get the Bayes error, we simply
have to find the average overlap between the student and a random teacher
[Eq. (5.47)]:

Hence,
1

CBayea = - arccos(Jq).
11"

(5.80)

(5.81)

Solving the order parameter equation (5.68), we get an asymptotic decay,

CBayea ~ 0.44 . 0:-1,

for large 0:. A comparison of Gibbs and Bayes errors is given in Fig. 5.5.
Different algorithms to achieve the performance of the Bayes prediction
can be found in [2, 9, 24].

We will end this section by calculating the density of Y. We first need
the probabilities of the classification labels Up+l = ±l. These probabilities
are proportional to the volumes of the two new cells. Thus, they simply
equal Y(up+d! Using that N-1/2(W} . (PH is Gaussian distributed with
respect to the random input (PH' with variance equal to (W}2 = q, we
find

fey) = 21: Dt H(-yt) 8(Y - H(-yt». (5.82)

Here, 'Y = J qj1 - q and 8(-) is Dirac's 8-function. Equation (5.82) is de­
picted in Fig. 5.6 for different values of q. This density is also valid for
discrete couplings as long as replica symmetry is exact. Figure 5.7 gives
a result for fey) obtained from simulations of perceptrons with binary
weights. Here, the volumes of the cells were found by counting the number
of discrete coupling vectors belonging to each cell.

The smooth behavior of fey) somehow seems to contradict the VC re­
sults. Since the number of cells grows only like a polynomial in P, most
of the cells will not be split into two pieces by adding a new input. Thus,
f (Y) should contain 8-functions at Y = 0 and Y = 1, corresponding to one
new cell with the old volume, and one with 0 volume. This would in fact
be true if all of the cells had the same volume. We conclude that those cells
which are not cut into two pieces have neglectable volume (probability) in
the thermodynamic limit.

G

Manfred Opper and Wolfgang Kinzel 175

0.5.------.------~----_.------r_----._----_,

0.4

" " 0.3

0.2

0.1

" , ,
"-

"-

Boyes
Gibbs

O.O~-----.------~----_.----_,r_----._----_;

o 2 3

ex
4 5

Fig. 5.5. Comparison of Gibbs and Bayes generalization errors.

6

5.4 Geometry in Phase Space and
Asymptotic Scaling

The result of the replica theory for the Gibbs algorithm shows an asymp­
totic decay of the error eGibbs ~ 0:-1. The same power law was obtained as
an upper bound from the VC theory in Sec. 5.2.4. While for the replica cal­
culation a specific distribution of inputs was assumed, in the VC approach
only the VC dimension of the network entered the theory. Thus, arises the
question of whether the asymptotic scaling of the generalization error can
be explained using only a few parameters of a network.

As we will see, simple geometric scaling arguments will bring us a step
closer to this idea of universality. We begin with the perceptron. The phase
space of all perceptrons is a simple manifold - the surface of a sphere. The
generalization error,

1
e = - arccos(ws . Wt), (5.83)

7r

which is valid for normalized teacher and student vectors, is just the ar­
clength of the shortest line (the geodesic) between Ws and Wt, and e is a
natural distance between perceptron networks.

A second contribution to a geometry in phase space comes from the
information theoretic results of Sec. 5.2.4. We remember that the average
information gain for any new input is an upper bound for the Gibbs error

176 5. Statistical Mechanics of Generalization

r---~--.---~--'---~--'---'---~--~---r7.0

0.0 0.2 0.4

y
0.6 0.8

6.0

5.0

4.0

f(Y)
3.0

2.0

1.0

Fig. 5.6. Density of the volume ratio Y for q = 0.1 (bell-shaped curve), q = 0.3
(flatter curve), and q = 0.7 (curve peaked at 1).

on that input. Assuming that both quantities will be of the same order
asymptotically, we set

(5.84)

Vp is the volume of the teacher's cell and e is, as we have shown, a typical
distance in the cell. Since the number of couplings N is the dimension of
the manifold, we expect that

Vp~eN.

Then, with P = aN, Eq. (5.84) can be written as

8
e{a) = - 8aln{e{a)),

from which the asymptotic relation

e{a) ~ a-I

follows.

(5.85)

(5.86)

As a further consequence we see that, if the learner can select examples
such that the asymptotic information gain becomes a constant for each new
input, then a faster decay of the generalization error like

e ~ exp{-aN(L.H}) (5.87)

Manfred Opper and Wolfgang Kinzel 177

2.5.---~--,---~---,--~---,--~--~--~---,

2.0

1.5

f(Y) 1.0

0.5

0.0
0.0 0.2 0.4 0.6 O.B 1.0

Y
(a)

2.0

fey) 1.0

O.O~--~---r--~--~---.~--r---~--.---~--~
0.0 0.2 0.4 0.6 O.B 1.0

(b)
Y

Fig. 5.7. Density of volume ratio Y from simulations of a perceptron with binary
weights. (a) P = 4, N = 14. (b) P = 16, N = 20. The smooth curves are the
theoretical predictions.

178 5. Statistical Mechanics of Generalization

Table 5.1. Volumes in input space
0 1 O2 0 3 0 4 0 5 0 6 0 7 0 8

(Fa -1 -1 -1 -1 1 1 1 1
(Fb -1 -1 1 1 -1 -1 1 1
(Fe -1 1 -1 1 -1 1 -1 1

is expected. In fact, such behavior is observed for query algorithms (see
Sec. 5.5.4).

The interpretation of the generalization error as a distance between net­
works is no artefact of the perceptron. Generalizing Eq. (5.83) to arbitrary
networks, we will show that the probability ~(t, s) (over all inputs) that two
networks with parameters Wt and Ws do not give the same answer defines a
metric in the space of networks (of a given type). The only nontrivial part7

is the triangular inequality. Consider three parameter vectors Wa,Wb,We

and divide the input space into 8 sets with volumes 0 1, ... ,08 , Ei Oi = 1,
according to the outputs (Fa,b,e (see Table 5.1). Then, ~(a, b) Probability
of all E, for which Wa and Wb have different outputs = 0 3 + 0 4 + 0 5 + 0 6 •

Similarly, ~(b, c) = O2 + 0 3 + 0 6 + 0 7 and ~(a, c) = O2 + 0 4 + 0 5 + 0 7•

Thus,

This completes the proof of the triangular inequality.
So we can expect that the asymptotic scaling of the learning error based

on the simple geometric picture is valid for more general types of networks
or learning machines.

Based on similar ideas, an asymptotic scaling of the information gain
(~I) ~ a-I for noise-free learning was predicted in [25]. Using this simple
geometric picture, we now derive an asymptotic result for the Gibbs error
in the case of learning with strong output noise [26]. This will be shown for
a general network, where only the number N of free adjustable parameters
enters the calculation.

We consider a teacher network with a noisy output,

(5.88)

The teacher's ideal answer is inverted, i.e., TJ = -1, with probability
e-13 /1 + e-13 independent of the inputs. The task of the learner is to con­
struct a deterministic, i.e., noise-free, student network ws ,

(5.89)

7We neglect the possibility that two different parameters w .. and Wb will give
the same outputs on all inputs.

Manfred Opper and Wolfgang Kinzel 179

who will be able to give the teacher's ideal answers [T} = +1 in Eq. (5.88)].
We will use the Gibbs algorithm to construct such a network. This al­
gorithm will draw a W s randomly from the posterior distribution of the
unknown teacher, after having seen P noisy examples. Using the ideas of
Sec. 5.2.3, the students will have probability

where

Z(qP) ~ J dw exp (-Pt,E(W;qk'~k)) . (5.91)

E(WsiUk,ek) equals 1 if Uk 'I- F(ws,ek)' i.e., if the student does not learn
the outputs correctly.

By using the Gibbs algorithm, the student will not simply try to minimize
his or her learning error, but instead will make mistakes on the observed
labels with probability e-(3/1 + e-(3. This is precisely the rate at which the
teacher produces wrong outputs. Using the temperature {3-1, the student
assumes a priori that a fraction of the teacher's answers are not correct.

Fixing teacher and student for a moment, the probability that the stu­
dent's and the teacher's ideal answer disagree on a new input e, i.e., that

(5.92)

is given by

~(t,s) = 1- L E(WtiU,e)E(wsiU,e)· (5.93)
CT=±l

Given the P outputs, the teacher and the student have the same distribu­
tion [Eq. (5.90)] by the definition of the algorithm. Using this fact, and
weighting all possible output configurations with their probability [Eq.
(5.52)], P(uP) = C-l . Z(uP), we can average Eq. (5.93) over teachers
and students:

(~(t,s)) =

I: C-1 . Z(uP) J dWt dws ~(t, s) . p(wtluP) . p(wsluP). (5.94)
CTl ... CTp=±l

The total Gibbs error is obtained by averaging this expression over the
training inputs. This can be done with the replica method, in a form similar
to Eq. (5.70). One finds, using Eqs. (5.90) and (5.91),

180 5. Statistical Mechanics of Generalization

with the replica Hamiltonian

n

Gn = -In[L exp(-,8 L E(wa, 0', e))· (5.96)
u=±l a=l

This result has an interesting limit for strong noise, i.e., small ,8:

n,8 f32n2 ,82
Gn({Wa}) = -ln2 + 2"" - -8- + 4 LLl(a,b) + 0(,83).

atfb
(5.97)

Here we have made use of the fact that (E(wa; 0', e))2 = E(wa; 0', e) and
LS±l E(wa; (1, e) = 1. Inserting this into Eq. (5.95), we get

82 J n
€Gibbs ~ - ~~ 8n8B In II dWa exp[-BLLl(a,b)],

a=l atfb
(5.98)

where the derivative with respect to B has to be taken at B = Pf32/4. The
phase-space integral in Eqs. (5.98) is the partition function for n classical
"particles" at temperature B-1 interacting with the pair potential Ll(a, b).

If the number of examples P grows large, the effective temperature B-1
goes to 0 and the particles are close together at the minimum of the poten­
tial. In other words, Ll(t, s) vanishes, and we have perfect generalization!

To estimate the speed of generalization, we fix one of the couplings,
e.g., W n' If all distances Ll (n, b) are small for large B, then the triangular
inequality will enforce all other distances Ll(a, b) to be small as well.

Our basic assumption is that for small distances the manifold of parame­
ters W is locally flat. In suitably chosen coordinates, with Wn at the origin,
Wa == wa(i), i = 1, ... , N, the volume element (wn is fixed)

N

dWa ~ II dwa(i) (5.99)
i=1

is locally cartesian. Also, the distances Ll (a, b) are expected to be of the
form Ll[{wa(i) - wb(i)}] for wa(i) - wb(i) « 1, and Ll should obey the
"regular scaling" of a length,

(5.100)

Then we can simply scale the inverse temperature B out of Eq. (5.98) by
using BWa (i) as new coordinates. We get

• f'V _ I' ~ I [B-(n-1)N] _ N
€Gtbbs - n~ 8n8B n - B' (5.101)

Setting B = P,82/4, we get

(5.102)

Manfred Opper and Wolfgang Kinzel 181

This coincides with the known result in the case of the perceptron. Note,
however, that in the present approach we have made no assumptions on
the distribution of inputs and the special architecture of the network.

Since exact replica calculations for multilayer networks become techni­
cally very involved, we expect that the geometric approach will provide a
useful alternative, at least in asymptotic regions. It would be interesting. to
establish a connection with the VC results.

5.5 Applications to Perceptrons

In this section we discuss several applications of the statistical mechanics
of generalization. In particular, we concentrate on the simplest case: the
teacher as well as the student are simple one-layer perceptrons, with one
input layer e, one weight layer Wt or w s , respectively, and one output bit
0'. As before, we normalize the teacher weight vector to Wt • Wt = N:

(5.103)

The student tries to learn a set of aN = P input-output examples
O'k,ek ,k = 1, ... ,aN, given by the teacher network. In the following, sev­
erallearning rules are considered; in addition, the structure of the teacher
may be different from that of the student, or it may even change with time.
It turns out that the simplest case - perceptron learns from perceptron
- already shows many interesting phenomena.

The advantage of simplicity is the fact that one obtains exact mathe­
matical relations, for example, the generalization error e as a fuction of
the number aN of learned examples. Furthermore, the simple structure
is always a part of more complex networks, and from understanding the
perceptron it may be possible to derive results for multilayer networks.

5.5.1 SIMPLE LEARNING: HEBB RULE

The learning rule that easily can be analyzed [27] is the Hebb rule: At each
presentation of a new example (Uk, ek) the product of input and output
bits is added to the corresponding weight,

Ws (t + 1) = w-:'(t) + ~ Uk ek . (5.104)

If each example is presented once, and if the initial weight vector is 0,
then the final weights are given by

1 p

w-:' = . fiT L Uk ek .
vN k=l

(5.105)

182 5. Statistical Mechanics of Generalization

Note that ak is given by the teacher,

(5.106)

Now we study the case of random inputs ek' We are interested in the
generalization error £, which, following Eq. (5.47), is given by the overlaps
R = Wt . waiN and qo = Wa . waiN:

c = ~ arccos (~) . (5.107)

At each step of presenting a new example (ak' ek) the teacher-student
overlap R = Wt . waiN changes by an amount tlR given by

(5.108)

However, for different input patterns ek , the variable u = Wt· eklVN is
Gaussian distributed (u = sum of independent random numbers) with

u=o and
- 1
u2 = - Wt • Wt = 1 .

N
(5.109)

Hence, with iUT = J2/7r, on average, the teacher-student overlap changes
by the amount tlR = J2/7rIN, which gives

R=j! a. (5.110)

The square of Eq. (5.104) gives the change of the student-student over­
lap, and one has

(5.111)

The variable z = wa(t) . eklVN is again Gaussian distributed with

and zu=R.

The correlations between z and u are taken into account by the substitution
z = Ru + J qo - R 2t with t2 = 1 and tu = O. One obtains for the average
of tlqo

(5.112)

Manfred Opper and Wolfgang Kinzel 183

0.5.--,

0.4

0.3

0.2

0.1

Hebb

Bayes
training error

, , , ,

ex
Fig. 5.S. Generalization error for Hebbian learning. The other two curves are
the Bayesian error and the Hebbian training error.

This gives
qo =a+R2 , (5.113)

and, as the final result,

c =..!:. arccos (fI 0:) = ~ arctan ({1r\27r0: .
7r V; j 0: + ~0:2" V 20.)

(5.114)

Hebbian learning also may be considered as a drifting random walk of w 8

in an N-dimensional vector space [2]. The component of w 8 in the direction
of the teacher increases like J2/7r0: while, perpendicular to the teacher, the
student performs a random walk with mean-square displacement 0:. The
ratio of the two lengths determines tan(7rc), according to Fig. 5.4.

Figure 5.8 shows the generalization error c [Eq. (5.114)] as a function of
the number of learned examples a. If only a finite number of examples has
been stored (0: = 0), the network cannot generalize, and one has c = 0.5.
But if the number of examples is of the order of the number of weights, c
decreases. For large values of 0:, Eq. (5.114) gives

c <X l/va. (5.115)

Hence, asymptotically, the Hebbian rule is worse than the Bayesian op­
timum e ~ 0.44/0:. Nevertheless, it is surprising that the rule gives a rea-

184 5. Statistical Mechanics of Generalization

sonably low error c. That is, the Hebbian network cannot learn perfectly;
its training error

(5.116)

is nonzero for any a > O. With the Gaussian variables u and t as before,
one has

(5.117)

which gives [27]

ct = ! - Joo Du erf (u ~ + _1)
2 y; y'2a (5.118)

o

Hence, for a ~ 5, one finds a maximal training error of about 10%, which
appears to be rather large. Nevertheless, the Hebbian network is able to
generalize reasonably well.

5.5.2 OVERFITTING

If one has a cost function E that depends continuously on the weight vector
W 8, then a learning rule may be defined as a gradient descent in the N­
dimensional weight space:

(5.119)

In many applications, the cost function is defined as the quadratic de­
viation between student and teacher output. In a multilayer feedforward
network with continuous activation functions, the gradient rule is called
error backpropagation [28].

Unfortunately, a gradient cannot be defined for binary student output.
But one may try to learn the binary teacher output by a linear student
network, minimizing the cost function

(5.120)

with Uk given by the teacher network, Uk = sign (Wt' t.k/ V'N). This
gives the learning algorithm

W8 (t + 1) = w 8 (t) + Jw (1 - .IN Uk w 8 (t) t.k) Uk t.k . (5.121)

This algorithm has been studied for more than 30 years [29]; it is called
ADALINE. For attractor networks it improves the storage capacity for
random patterns from ac = 0.14 (Hebbian weights) to ac = 1 [30].

Manfred Opper and Wolfgang Kinzel 185

For E = 0, Eq. (5.120) gives aN many linear equations for the N un­
known coefficients of w s :

~ Ws ek = sign (~ Wt .ek); k = 1, ... ,aN. (5.122)

If the input patterns ek are linearly independent, one can solve this equation
for a < 1. But, for a > 1, it is obvious that Eq. (5.122) cannot be fulfilled;
although the rule is realizable, the ADALINE algorithm cannot learn it
perfectly. The training error Et increases for a > 1 to a nonzero value.

Although the learning algorithm is defined by the linear network, its
training and generalization errors still are defined by the nonlinear network
(J' = sign(w· e). Both of the errors can be calculated analytically using the
replica method of Sec. 5.3.2 [31]. Using the Gibbs weight exp[-.8E], one
finds the properties of the stationary state of the weight vector w 8 (i.e.
after having learned for infinitely many timesteps t) from the limit .8 -+ 00.

In Eq. (5.66) we replace q>(u) by

q>(u) = ~exp [-! .8 (u _1)2] (5.123)

and q>t by
(5.124)

Then we solve the saddle-point equations for the order parameters q and
R. For the limit .8 -+ 00, we have to consider two cases:

a < 1 : In this case, one has E = 0, and the length .J'iiO of the student w s is
a free parameter that is maximized by qo -+ q. One finds

a-R2
qo = 1 . -a

(5.125)

a > 1 : One has only one minimum of E, and q converges to qo automatically.
However, the quantity .8(qO-q) remains finite and nonzero. One finds

R = J2/'Tr;
1+ 1 (a-2)

qo = 11' •
a-I

(5.126)

These equations show that the length of the student vector diverges when
a approaches the value 1. This means - since the overlap R between the
teacher and the student remains finite - that the generalization error e
increases to 1/2. At a = 1, the network cannot generalize, although it has
learned perfectly!

The linear network tries to learn a nonlinear problem; for a ~ 1, it does so
by increasing the length of the weight vector. This gives a low performance
of generalization; this effect has been named over fitting [27]. For a > 1,
the network cannot learn perfectly, and its generalization error decreases.
Figure 5.9 compares the ADALINE rule with other learning rules.

186 5. Statistical Mechanics of Generalization

0.50.------.------------------------------~

0.40

0.30

0.20

0.10

ADALINE
Opt. Stobil.
Bayes

0.00~~r_-r--~_,--_r--~~--~--~~--~~

o 2 3 4 5 6

Fig. 5.9. Comparison of generalization errors for ADALINE learning, perceptron
learning with optimal stability, and the optimal Bayes prediction.

For small a values, Eq. (5.125) agrees with the Hebbian rule equations
(5.110) and (5.113). In fact, the ADALINE algorithm only adds an addi­
tional weight to the Hebbian term Uk F-k/VN that is small for small a. For
large a, one finds

e IX. 1/..;a, (5.127)

which is again the result of the Hebbian network. Note that in both cases
the training error is nonzero.

It is interesting to note that the results for the order parameters [Eqs.
(5.125) and (5.126)] can be obtained without the replica method, by an
explicit calculation of the coupling vectors [60]. This will be shown in Ap­
pendix 5.2.

Finally, we want to mention that the dynamics of ADALINE learning can
be solved exactly, in contrast to nonlinear learning rules [32, 33, 34, 35].
It can easily be shown that the dynamics is governed by the spectrum of
eigenvalues of the matrix

P

Bij = ~ L ~k(i) ~k(j).
k=l

(5.128)

B measures correlations between different input bits; note that at each
input unit i the P different training vectors define a P-dimensional vector,

Manfred Opper and Wolfgang Kinzel 187

and Eq. (5.128) gives the product of those vectors. B is a kind of random
matrix; its spectrum is a distorted semicircle between the values (1 ± y'(i)2
with an additional degenerate eigenvalue 0 for 0: < 1, [32, 1]. One finds
that for 0: -+ 1 the longest relaxation time diverges like IVa - 11-2 • Hence,
one obtains a critical slowing down at the transition to perfect learning.

5.5.3 MAXIMAL STABILITY

The simple perceptron Ws has learned an example ek if

(5.129)

Its ability to generalize is related to the fact that the sign function maps
similar input vectors e to the same output bit Uk. But from the above
equation it is obvious that this property is optimal if the quantity

Uk
fl.k = VN Ws . (k (5.130)

is as large as possible (for fixed norm Ws • wsIN). The quantity

A _ • ukVN Ws '(k
u-mln I I

k Ws
(5.131)

is called the stability of the perceptron, and a good learning algorithm
should maximize the stability fl.. For attractor networks, a similar relation
is assumed between the stability and the size of the basin of attraction [12].

Equation (5.131) can be related to quadratic optimization with boundary
conditions:

Minimize w . w
with the conditions ~ w . ek ~ 1

for all patterns (k'

It turns out that the optimal perceptron w s classifies the training examples
into two classes [36]: One set of patterns is right at the boundary fl.k = 1,
and the second set is in the interior of the allowed region. But only the first
set has to be learned by the perceptron, namely, one has

1
Ws = fiT L Xk ek

vN k
(5.132)

with coefficients Xk that are 0 for the second set. The number O:elJN of the
examples belonging to the first set can be calculated by the replica method;
it is shown in Fig. 5.10 as a function of o:N many random examples (k'
O:ell remains smaller than 1, even for 0: -+ 00. Only O:ellN many examples

188 5. Statistical Mechanics of Generalization

1.0~---,

O.B

0.6

exeffO.4

0.2

0.04-~r--r--~-.---r--~~---r--~~--~~
o 2 3 4 5 6

ex

Fig. 5.10. Effective number of inputs per weight to be learned by the perceptron
with optimal stability.

have to be learned by the network; and for these the ADALINE learning
rule is sufficient, leading to E = 0 in Eq. (5.120). For large a, most of the
added training examples are useless since they give t1k ~ 1 and do not
change the student Ws (they are not learned). Of course, this is related to
the fact that the generalization error is small.

Optimal stability has a surprising geometric implication: Consider a set
of aN many random points e on the unit hypersphere in aN-dimensional
space. Label each point black or white randomly. Then a two-dimensional
projection of the points looks like Fig. 5.11(a). For N - 00 and a < 2,
a perceptron with optimal stability A. > 0 exists (Sec. 5.3.1). This means
that there is a weight vector ws , and a two-dimensional projection on a
plane containing Ws looks like Fig. 5.11(b). Now black points are separated
from white ones and there is a gap A. between the two clouds. Precisely at
the boundary planes of the gap there are ael I N many points. Hence, just
by rotating the cloud of random points one can find a view where the black
and white points are clearly separated.

There is an interesting general relation between aefJ and e, which holds
independently of the distribution of the inputs. Consider the case where a
P + 1st example (e, u) is added to the training set of P = aN inputs. If
we run our algorithm on this new, enlarged set, the coupling vector of the
P input problem is only changed if

•

(a)

•• • • • • • ••• •• • ."'. •••• • • tI.
... ill

•• ••
•
•

(b)

•
o

o

•

0
@

0
<0 08 o ~oo

.8 e; 0

~~ ~o
o 00

o 0
0 0

0 0
0

0

Fig. 5.11. Separating random inputs with a perceptron of maximal stability.
The classifications are random (no teacher). (a) Projection onto a random plane.
(b) Projection onto a plane containing w •. The arrow shows the student vector
w •.

190 5. Statistical Mechanics of Generalization

N-1/ 2(JW . e < 1,

where W is the vector of the old couplings. If, on the other hand,

N-1/ 2(JW • e ~ 1,

the old couplings also provide optimal stability for the P + 1 pattern system.
If this happens, then the new pattern is uncorrelated to w.

Let 'Po be the probability over the distribution of the new input for this
event. It turns out that 'Po and the probability G for a correct generalization
on the new input are rather similar:

'Po = Pr(N-1/ 2(Jw . e ~ 1)
G = Pr(N-1/ 2(Jw • e ~ 0). (5.133)

Since 1 > 0, it is clear that Po ~ G, so that we have for the generalization
error

c = 1 - G ~ 1 - 'Po. (5.134)

Now, a'Po is the average, relative number of patterns that need not be
learned explicitly. Conversely, aeJ J = 0.(1 - 'Po) is the average fraction of
patterns that must be learned. Since we always have aeJJ ~ 1, we get from
Eq. (5.134)

ac = 0.(1 - G) ~ aeJJ ~ 1. (5.135)

Thus, we will always have c ~ 1/0..
There are several algorithms that are guaranteed to find the optimal

perceptron for aN many random examples ek' Unfortunately, one cannot
classify the examples according to Eq. (5.132) in advance; hence, one has
to learn all of them instead of a fraction aeJ J /0. of them, which becomes
very small for 0.-"'00.

One algorithm (Minover [38]) is an extension of the standard Rosenblatt
[37] rule; another faster algorithm (Adatron [39]) is related to the quadratic
optimization discussed above. But algorithms derived from standard opti­
mization theories also have been developed [40].

All of these algorithms converge to the perceptron with maximal stability.
Its properties have been calculated in [31] using the replica method of
Gardner [12] introduced in Sec. 5.3.2. Now the function ~ of Eq. (5.66) is

(5.136)

and ~t(u) = 9(u). Maximizing K, shrinks the volume in student space Wa

to a single point, and the overlap q = Wa • Wb/ N approaches the square of
the norm, i.e., q -... qo = Wa . waiN.

Manfred Opper and Wolfgang Kinzel 191

Figure 5.9 shows the generalization error as a function of the size 0: of
the training set. € decreases monotonically and behaves like

0.50
€ ~--

0:
(5.137)

for 0: --+ 00. Hence, asymptotically, the perceptron with optimal stability
can generalize much better than the Hebbian or ADALINE rule (for which
€ ~ 1/..;a). It performs only slightly worse than the Bayesian lower bound
of Sec. 5.3.3, although this difference means that maximal stability does
not imply optimal generalization.

5.5.4 QUERIES

In the previous applications of the statistical mechanics of neural networks
only random input patterns were considered. However, it seems obvious
that the student network can improve its generalization performance if
it selects input patterns according to its present state of knowledge. In
particular, if the fraction 0: of learned examples is large, a new random
plane is unlikely to cut the (small) version space into two parts ofroughly
the same size; hence, the gain of information about the teacher is very small
(see Sec. 5.2.4).

Much more information can be obtained if the student selects a question
according to its present state [41]. For the simple perceptron, a good choice
seems to be a pattern ek that is perpendicular to the weight vector WS'

Such a pattern is at the border of knowledge; tiny chances of W s produce
different answers.

For the simplest learning rule, e.g., the Hebbian algorithm discussed in
Sec. 5.5.1, one easily obtains a differential equation for the overlap Rand
the length qo, which determine the generalization error. Equation (5.111)
gives L':l.qo = lIN since ek . Ws = 0 by construction. Hence, one has

qo = 0: • (5.138)

But IWt' ekl of Eq. (5.108) also can be easily calculated. With IWtl =
VN, the component of Wt perpendicular to Ws has a length VNsin(J,
where (J is the angle between the teacher and the student vectors. If ek is
chosen randomly in the plane perpendicular to WS , then Wt ek is Gaussian
distributed with variance

(Wt • ek)2 = N sin2 (J

= N(l - cos2 (J) • (5.139)

With cos (J = RI v'Qo = RI..;a, one finds

(5.140)

192 5. Statistical Mechanics of Generalization

0.5.--,

0.4

0.3

0.2

0.1

, , ,

random examples
selected examples

, , ,

O.O~--r--.--~--._-,--_.--~--r_~--._--r_~

o 2 3 4 5 6

ex

Fig. 5.12. Comparison oflearning with selected and random inputs, using Hebb's
rule.

which gives, with Eq. (5.108),

dR = f%. J 1 _ R2 .
da Y; a

(5.141)

The solution R(a) determines the generalization error c(a) by c =
arccos (R/Va)/rr.

Figure 5.12 compares the results of random and selected examples. Al­
though the generalization error is lower for "intelligent" questions, the
asymptotic decay for large values of a is c <X 1/ Va for both cases.

This is different if the whole set of examples is relearned after a new
pattern was selected. Then the perceptron with maximal stability gives an
exponential decay of the generalization error with an increasing fraction
a of the number of learned examples [41, 42]. For random patterns, the
Bayesian bound of Sec. 3.3.3 as well as the optimal perceptron give c <X 1/ a.
Hence, in this case, selected examples give much better performance.

For more complicated networks it may be difficult to find patterns at
the border of knowledge: An algorithm has been investigated that uses the
principle of maximal disagreement between several students as a selection
process [43]. Several students are trained on the same set of examples by
an algorithm that selects students randomly in the version space. Then an
algorithm starts which selects a new example for the training set: Many

Manfred Opper and Wolfgang Kinzel 193

random input vectors are presented to the students, and one is chosen
on which the students disagree most. This problem has been solved using
the replica theory. For large a, the gain of information becomes constant,
yielding an exponential decay of the generalization error; this even holds
for only two students.

Selecting examples according to the weight vector W s (or several vectors
ws) may not be the best way of selecting examples. If the student learns
a new example that is perpendicular to all of the previous ones, the gen­
eralization error is much lower than for the examples perpendicular to the
actual Ws (a) [2J. However, this algorithm works only for a < 1.

5.5.5 DISCONTINUOUS LEARNING

If one increases the number of examples, one expects that the generalization
error of a network continuously decreases to its minimal possible value for
a --+ 00. If the rule is completely learnable, then the asymptotic error is 0,
at least for perfect learning. However, a different behavior is observed for
perceptrons with binary weights: For small a, e decreases; but at a critical
value ac , e jumps discontinuously to a lower value that is 0 for a realizable
rule [44, 45J. This transition occurs even for high-temperature learning. In
this case, it can be easily described analytically, since one does not need
replicas [47J. We consider the case where both the teacher and the student

are simple perceptrons with binary weights W s , Wt E {1/..fN, -1/..fN} N.

The student learns a set of aN many examples «(k' Uk) from the teacher,
and the training algorithm is a Monte Carlo procedure. After learning each
weight vector, Ws occurs with probability

p(ws) ex: exp [-,8 ~ e [-(Wt . ek)(ws . ek)l] . (5.142)

For high temperatures, T = 1/,8, the free energy I per synapse of the ther­
mal equilibrium after learning is only a function of the overlap R between
the teacher and the student:

a,8 1 - R 1 - R 1 + R 1 + R -,81 = --;- arccos R - -2- ln -2- - -2- ln -2-' (5.143)

The first term is the generalization error, and the second term is the entropy
of Ising variables with magnetization R. Note that T and a appear only as

aeff = a/T. (5.144)

Hence, in the limit T --+ 00, the network has to learn a --+ 00 many exam­
ples. The minimum of I(R) gives the equation that determines the overlap
R:

a,8
R = tanh ..;r-:::Ji2'

11' l-R
(5.145)

194 5. Statistical Mechanics of Generalization

Solving these equations, one finds three different regimes of aeff:

1. For aeff < 1.7, a state with R < 1 is the minimum of f. The gen­
eralization error decreases from e = ~ at aef f = 0 to e ~ 0.2 at
aeff = 1.7.

2. Between 1.7 < aeff < 2.1, the state with R < 1 is a local minimum,
only; the state R = 1 has lower free energy. Hence, the system has a
first-order transition to perfect generalization.

3. For aeff > 2.1, the metastable state with R < 1 disappears.

Note that for large a the network collapses to its ground state at high
temperatures! To understand this, consider a small deviation 6R = 1 - R
from the state of perfect generalization. The energy increases like E ex:
N J8ij,. This increase cannot be compensated for by the entropy increase
68 ex: N{6R) In{6R). Hence, the state R = 1 is always a local minimum of
f{R); and if the initial state of the student is identical to the teacher, then
no Monte Carlo algorithm can move the student out of this state of perfect
generalization. Increasing the complexity of the student network by using a
multilayer architecture with binary weights leads to even more phases and
discontinuous transitions of the generalization error [46].

At zero temperature, i.e., for perfect learning, the first-order transition
for the binary weight perceptron occurs at a c = 1.245 [45]. Approaching the
transition from below, a -+ ac, the entropy 8 obtained from the number
of weight vectors w B that learn aN many examples perfectly goes to O. 8
has been calculated by the replica method.

Figure 5.13 shows the phase diagram of the binary perceptron obtained
from replica calculation including replica symmetry breaking (RSB) [47].
In addition to the three phases discussed above, there is a spin-glass phase
where a solution with one-step RSB exists; this solution is metastable. The
spin-glass phase indicates a complex space of students {ws } who learn
perfectly. Its implications for a dynamics of the binary weight perceptron
are still unclear. A direct treatment of the dynamics gives new types of
freezing transitions [48].

How many questions does one have to ask in order to obtain a complete
knowledge about the N unknown weights of the student w s? For binary
weights, one needs at least N questions; hence, the minimal possible number
of patterns for which a transition to perfect generalization occurs is N. This
gives a lower bound .

ac > 1. (5.146)

Therefore, learning random patterns with a transition ac = 1.245 is not
the optimal way of asking questions. A better strategy seems to be learning
patterns at the border of knowledge, as was discussed in Sec. 5.5.4. In fact,
a replica calculation gives ac ~ 1.14 [42].

1.0

0.8

0.6

T

0.4

0.2

0.0

1.0

Manfred Opper and Wolfgang Kinzel 195

/
/

/
/

/

Poor Generalization / / .~~
/ ~~

/
/

/

/

/
/

/

/ c;,,'l>
/ 'lJ,'li'

/ ~
/

/ Perfect Generalization
I

I
I

SG

1.5 2.0
a

2.5 3.0

Fig. 5.13. Phase diagram for the perceptron with binary weights (taken from
[47]). To the left of the dashed line, the equilibrium state has R < 1. To the right,
the state of perfect generalization (R = 1) is the absolute minimum of the free
energy. Between the dashed line and the solid spinodal line, the R < 1 state is
metastable. In the region marked by "SG," a one-step replica symmetry breaking
predicts a metastable spin-glass phase.

For T = 0, all results so far have been obtained by phase-space calcula­
tions. This means that one calculates the volume of all students who learn
perfectly. However, a practicable training algorithm does not exist yet. In
fact, finding a W 8 may be an NP-hard problem of combinatorial optimiza­
tion [48,49], at least for Q < 1.63 (the upper limit of the spin-glass phase),
for which an algorithm converging in a time that is a polynomial in N does
not exist. Then even simulated annealing does not yield perfect learning.

5.5.6 LEARNING DRIFTING CONCEPTS

In the previous sections the examples were given by a rule (= teacher)
defined by a perceptron with a stable weight vector Wt. All of the examples
were learned iteratively, that is, the training algorithm was repeated for all
of the examples until it converged.

But neural networks also may be useful for situations where the rule
slowly changes with time, and the network tries to follow the changes by
learning only the most recent examples. Hence, the teacher continuously
changes his opinion and the student tries to adapt to such a dynamic pro­
cess by learning the examples and, if possible, predicting Wt for the next
time step.

In the simplest case, the teacher vector Wt is performing a random walk

196 5. Statistical Mechanics of Generalization

in the N-dimensional space [50, 51J with

'" Wt(t + 1) . Wt(t) = 1 - N' (5.147)

where '" is a measure of the drift velocity. The student learns only one
example (e,a) with a = sign (Wt· e) given by the teacher at time t. The
learning rule uses only information about the output bit a and the field
h(t) of the student. One defines

Ws(t + 1) = ws(t) (1 - ~) + ~I (a(t), h(t)) a(t) ws(t). (5.148)

1 is a function that has to be optimized, and h(t) is the field generated by
the student, h(t) = (l/VN) ws(t) . ej ,\ gives an additional weight decay
which reduces the length of the student vector Ws.

Again we need the overlaps R = Wt • ws/N and qo = Ws . ws/N to
determine the generalization error £ = (1/11") arccos (R/vqo). But, since
only the latest example is learned, one obtains simple differential equations
for R(t) and qo(t), in analogy to Sec. 5.5.1. The changes of Rand q are
given by

6.R = ~[f(a,h(t))~eat-('\+"')R] (5.149)

t::.qo ~ [!Ca, h(t» a h(t) + ~f2(a, h(t» - ,\qo]

These equations have to be averaged over different examples e and different
random walks of the teacher Wt. For random examples one obtains

dR
da

dqo
da

Wt e
= I(a, h) TN a - (,\ + ",)R (5.150)

Wt· e 1 2 = 2/(a, h) VN +"21 (a, h) - 2'\qo .

The fields Ws . e and Wt . e are correlated Gaussian variables that allow
an easy calculation of the average values n similar to Sec. 5.5.1. The
"time t" has been replaced by aN, the number of learned examples.

As before, the simplest learning rule is the Hebbian one, with 1 = 1. In
this case, one finds without decay (,\ = 0):

R(a) (5.151)

0.20

Manfred Opper and Wolfgang Kinzel 197

A Hebb, >--=0
o Hebb, >-- optimal
o Perceptron

optimal f

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

ex

Fig. 5.14. Generalization errors for the learning of drifting concepts, using Heb­
bian learning (with and without weight decay), the perceptron algorithm, and
the on-line algorithm with optimal f given in [53].

Figure 5.14 shows the generalization error c(o:) given by these equations.
It has a minimum at some 0: value but then increases to c = 1/2. Hence,
the student cannot generalize if he or she has learned too much!

The reason for this surprising feature is the fact that the Hebbian cou­
plings have equal strengths for all of the examples. But, since the teacher
changes his or her direction, the examples produced some time ago destroy
the most recent information that is important for generalization.

In fact, a weight decay>. > 0 produces lorgetting [52]; hence, the error
c:(o:) decreases to a stationary value c:(oo) that can be minimized with
respect to >.; the result is shown in Fig. 5.15. The minimal asymptotic
error increases with small drift parameters TJ as

1 1/4 copt(OO) ~ 7r3/ 4 TJ • (5.152)

A better training algorithm is the perceptron learning rule [1], with
I(a, h) = 0 (K - ah/qo). Now, c(oo) can be minimized with respect to the
two parameters K and >.. One finds [50, 51] for small TJ values

c(oo) ~ 0.511]1/3 . (5.153)

The same power of 1] is found if the learner knows c(o:) and uses this
information to derive an optimal function I(a, h) [53].

198 5. Statistical Mechanics of Generalization

--8
t
~

"-"
O.ll

c.v

0.30

0.20

0.10

///
: I.:
: t '
tt' i,: ;,:
f

Perceptron ~ ~~

Hebb rule
/C=},.=O

I/C.},.! opt.
optimal f

O.OO~~~~~~~~~~~~~~Th~~rrl

0.00 0.10 0.20 0.30 0.40 0.50

1]

Fig. S.lS. Stationary value c:(oo) for learning of drifting concepts using the
learning algorithms mentioned in Fig. 5.15. Also, the effect of queries is included.

An additional improvement is obtained by selecting examples as in Sec.
5.5.4. For the Hebb rule with optimal decay, one finds

e(00) = .!. arccos vrk ~ f2..
7r +'17r y; (5.154)

Using e(a) with an optimal I, the generalization error decays exponentially
fast to the same asymptotic error [Eq. (5.154)].

Of course, a random walk cannot be predicted by definition. But for
deterministic changes of the teacher or for biased random walks it should
be possible to predict future actions of the teacher by studying the history
of the presented examples. The statistical mechanics of such problems still
have to be formulated.

5.5.7 DILUTED NETWORKS

In the previous examples the student had the same structure as the teacher.
But it may be interesting to study cases where the student has to deduce the
structure of the teacher from the set of presented examples. A simple case
is the diluted teacher: Both teacher and student are simple perceptrons, but
a certain fraction I of the couplings is erased. This means that the teacher
has a fixed set of weights that are equal to 0, and the student also has a

Manfred Opper and Wolfgang Kinzel 199

fixed fraction of 0 weights, but he or she is allowed to choose which bonds
are to be erased.

Hence, the student has additional dynamic variables C E {O, I}N, which
are multiplied with the weights w 8 E RN. For this problem, the perceptron
of optimal stability can be calculated using the phase-space integral of
Gardner, but now with the additional discrete variables C [54]. One obtains
the generalization error g as a function of a, f8,ft, where f8 and ft are the
fraction of nonzero bonds of the student and teacher, respectively. One finds
that g has a minimum as a function of f8, and for large Q this minimum
approaches f8 ~ It-

Again, the replica calculation does not provide us with a learning al­
gorithm. Finding the optimal configuration c is presumably an NP-hard
problem of combinatorial optimization, similar to the binary perceptron.
Therefore, a practicable algorithm does not exist, yet. However, one might
guess that, by learning the complete network and by erasing the weak
bonds, one may obtain a good approximation of the optimal perceptrons.
In fact, this is the case for attractor networks (= random teacher) [55].

A fast and effective dilution algorithm is given by the Hebbian couplings:

Ci = 0 if (5.155)

where s is determined by f8. For this fixed dilution vector c, the remaining
weights are determined by the standard algorithms for the perceptron of
optimal stability [1].

The generalization error g has been calculated analytically [54]. The order
parameters now are defined by

N

q = N1f L CiWa(i) Wb(i)
8 i=l

N R = NJ,;,; t;CiWt(i) ws(i). (5.156)

Rand q determine g as usual. Figure 5.16 shows the result. For fa < ft,
the target rule is unrealizable; the student cannot reproduce the teacher
perfectly, even for Q -+ 00. For fs > ft, the student has too many degrees
of freedom, which deteriorates his or her ability to generalize. Hence, g

has a maximum that approaches fs -+ ft for a large fraction Q of learned
examples.

Note that fs is a fixed parameter. What remains is to find an algorithm
that determines the optimal dilution fraction fs of the student. By such
a learning rule the student would be able to explore the structure of the
teacher.

200 5. Statistical Mechanics of Generalization

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FS

/C = 0
IX = 0.5
IX = 1
IX = 2
IX = 3
IX = 4
IX = 6
IX = 10
IX = 20

Fig. 5.16. Generalization error as a function of student dilution i. for a teacher
with dilution it = 0.2. The dashed curve separates training with errors (left) and
without errors (right).

5.5.8 CONTINUOUS NEURONS

Up to now we have mainly discussed output neurons with the step transfer
function sign (x). The teacher as well as the student is a network with
binary output a E {+ 1, -I}. But functions with continuous output also
are interesting. First, they model a continuous firing rate as a function of
excitation potential for real neurons; and, second, tasks for neurocomputers
may involve analog signals, and learning rules like gradient descent work
only for continuous functions [56].

In the context of statistical mechanics, continuous neurons have been
studied for a simple percept ron [57]. The teacher and the student are per­
ceptrons with weight vectors Wt and w s , respectively. But now the output
signal is given by

a = tanh (IN W· e) , (5.157)

where "I is a parameter that measures the degree of nonlinearity of the
transfer function. An increase of the student's length qo = Ws . wslN can
be compensated for by a decrease of the slope "Is of Eq. (5.157). Hence,
only the product "I; qo has a physical meaning, and the student has the
freedom to adjust its slope "Is during learning. In [57], qo = 1 was chosen.

Learning again is expressed as minimizing a cost function E, which is

Manfred Opper and Wolfgang Kinzel 201

chosen as the quadratic deviation

(5.158)

By defining

l1k = (JNWt '~k)' (5.159)

one observes that E = 0 implies E = 0 for the function

(5.160)

This is just the cost function for a linear network! For a < 1, E =
o gives less equations than unknowns, and the solution with minimal "18
(corresponding to minimal norm) is given by the pseudoinverse as in Sec.
5.5.2. Using the replica method, one finds [57]

R=y'Q. (5.161)

For a> 1, E = E = 0 gives perfect generalization with "18 = 'Yt and R = 1.
The generalization error c can be defined by

(5.162)

i.e., the quadratic deviation between the answers of the teacher and the
student for random patterns.

One finds for a < 1
00 00

c=~ J Dx J Dy[tanh('Ytx)-tanh('Yt\/a(l-aY)+'Ytax)f
-00 -00

(5.163)
while c = 0 for a > 1. Figure 5.17 shows the results c(a) for different
teacher slopes 'Yt. Surprisingly, for 'Yt > 1. 33, the generalization error in­
creases with a when only a small number a of examples has been learned.

5.5.9 UNSUPERVISED LEARNING

In the previous sections, a teacher function presented answers to random
inputs to a student network. Hence, the teacher classified the input pat­
terns.

However, sometimes one would like to find a classification of input pat­
terns without knowing the answer of a teacher; hence, the input patterns

202 5. Statistical Mechanics of Generalization

0,6

G
0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

ex

1T= 100.0
1,= 10.0
1T=5.0

6 1T=2.0
o 1T=1.0
o 1T=0.5'

Fig. 5.11. Generalization errors for student and teacher with a "tanh(r·)" trans­
fer function. 'YT is the gain factor of the teacher.

ek have a structure that the student network has to find out. Recently
this problem of unsupervised learning was studied in the framework of the
statistical mechanics of simple perceptrons [58].

The inputs are no longer completely random, but they have an internal
structure defined by a teacher vector Wt: The patterns ek belong to two
"clouds" with respect to the overlap to the teacher. The distribution of
U = Wt' t;.k/ffi is a double Gaussian, that is, each peak has a width 1 and
the two peaks are separated by 2p/ffi with a parameter p = 0(1). Note
that the patterns have only a very weak overlap p/ffi with the teacher
vector Wt. In contrast to the previous problems, the student does not know
the sign of u.

Learning again is expressed as minimizing a cost function E, and statis­
tical mechanics of the phase space of all students W s is used to calculate
the overlap R = Wt . wslN after having learned o:N many examples ek
taken from the double peak distribution.

Two cost functions have been considered:

(5.164)

EB = - L O(K -Iws . ekll..fN) . (5.165)
k

The first corresponds to principal component analysis [56] and the second
to finding the perceptron of maximal stability K, i.e., one maximizes K with
EB = 0, if possible.

In both cases, one finds a critical value o:c below which the student
cannot generalize (R = 0). Only if the number of learned examples is larger

Manfred Opper and Wolfgang Kinzel 203

3.0
I I

2.5 I I

I I

I I

I I

2.0 I I

I I

"
I

~ 1.5 I
I
I

1.0 I
I
I

0.5 I
I

0.0
0.0 0.5 1.0 1.5 2.0 2.5

P

Fig. 5.1S. Critical number of inputs/weight, below which unsupervised learning
is impossible for: principal component analysis (solid curve) and maximal stability
(dashed curve). The vertical line is p = ..;2.

than acN can the student develop an overlap with the teacher direction.
Of course, the sign of the classification cannot be deduced, since it is not
shown by the teacher (unsupervised learning). Figure 5.18 shows the critical
number ac as a function of p, which measures how strong the double peak
structure of the cloud of patterns shows up. For the first case, ac diverges
with P > 0, and one finds

(5.166)

But, surprisingly, the perceptron with maximal stability cannot generalize
if the distinction p of the two classes of input patterns is smaller than
Pc = \1'2. And, even for a -+ 00, the generalization error does not decrease
to 0, but one has

R(a -+ 00) = ± v'1- 2/p2 for a> v2 . (5.167)

5.6 Summary and Outlook

We set out to convince the reader that the study of simple mathematical
models is a promising way to understand at least part of a neural network's

204 5. Statistical Mechanics of Generalization

abilities to learn from examples. Thus, in the first part of this chapter we
tried to review a few of the basic theoretical ideas and tools which are
currently discussed in the computer science and statistical physics hterature
on neural networks.

The Vapnik-Chervonenkis method, well known in theoretical computer
science, is able to bound the generalization error using only a single pa­
rameter of the class of networks, rather than their complete architecture.

The statistical physicist's tools, which mainly are based on the replica
method, are designed for very large nets and allow for the exact calcula­
tion of learning curves in a variety of circumstances. Here, however, one is
practically restricted to simple architectures and some hopefully "natural"
probability distributions for the examples to be learned.

In the second part of the chapter we concentrated on the statistical physi­
cist's methods and presented a variety of learning problems that can be
treated exactly for a special network, the perceptron, which is far from
being a toy model. Although there is a great interest to study more com­
plicated, multilayer nets [2], the amount of recent results for perceptrons
suggests that there are still more interesting facts to be discovered for this
machine.

We found a rich structure of learning curves that may not be easily re­
covered within the VC framework. This stems from the fact that problems
such as overjitting, discontinuous learning, or intelligent dilution are es­
sentially related to either specific learning algorithms or specific features of
the network architecture. On the other hand, comparing the VC predictions
and the concrete learning curves for the perceptron, we found that the VC
bounds match the correct order of magnitude for the typical asymptotic
behavior in many cases. Thus, it seems that the asymptotic region can be
estimated correctly by using only a few parameters of a neural network.

It would be a challenge to combine statistical physics methods based on
the replica trick and the VC techniques. Such an approach may be helpful
and important in treating multilayer nets when the complex structure of
the network's phase space makes exact replica calculations a hard task.

Acknowledgments. We thank Andreas Mietzner for assistance and acknowl­
edge support from the Deutsche Forschungsgemeinschaft and the Volkswa­
genstiftung.

Appendix 5.1: Proof of Sauer's Lemma

As can be easily seen, the first inequality of Eq. (5.4) is proved if we can
show the following theorem:

Consider a sequence of inputs eP = e l' ... , e p. If there is an integer d,

Manfred Opper and Wolfgang Kinzel 205

such that the number N(e P) of cells or output configurations fulfills

(5.168)

then we can find a subsequence of these inputs, of length d + 1, for which

N(edH) = 2dH.

The proof is by induction on P and d. It is easy to see that the theorem
holds d = O. It also holds for any P ~ d because, in this case, the premise
(5.168) can never be fulfilled: The sum of binomials is then 2:: 2P . But
N(eP) must always be ~ 2P .

Let the assertion be true for all d ~ do and all numbers of inputs. Now,
assume that the theorem is also true for d = do + 1 and for P < Po inputs.
We then will show that it holds for all P.

We add a Po + 1st input e and assume the premise (5.168):

(5.169)

If, on the first Po inputs, we had N(e PO) > L:1~6I (~o), then, by the in­
duction assumption, the theorem is true.

So let us discuss the other case:

We divide the old cells (those for the first Po inputs) into two groups: a
group M2 , which contains cells that will split into two subcells on presenting
the new input, i.e., both outputs are possible on e. The remaining cells,
i.e., those which do not split, are contained in MI' Obviously,

(5.170)

The bars denote the number of cells in the groups. Now, we study two
possibilities: If IM21 ~ L:1~o (~O), then, by Eq. (5.170), we would have

N((Po+l) ~ ~' (~o) + ~ (~o) =

doH (Po + 1) L . ,
i=O Z

(5.171)

206 5. Statistical Mechanics of Generalization

by a standard addition theorem for binomials. But this contradicts our
condition (5.169). So we are left with the second possibility:

IM21 > t, (~o).
By the induction assumption we can find a subsequence of length do + 1
out of the first Po inputs, such that the teachers of the cells in M2 produce
2110+1 cells. Since these are able to give both possible answers on the new
input ~, we have constructed a subsequence of length do + 2 with 2110+2

output combinations. This completes the proof.

Appendix 5.2: Order Parameters for ADALINE

For a < 1 it is well known [59J that the coupling vector can be explicitly
written as

Ws = N-1/ 2 2: Uk(O-l)kl~' (5.172)
kl

with Okl = N-l~k • ~l. The length of the coupling vector is then

qo = N-1w· W = N-1 2:Uk(O-l)kIUI. (5.173)
kl

The basic idea is to calculate the order parameters from an average over
the teacher. Technically, it is useful to choose Gaussian distributed teacher
vectors with density

g(Wt) = (21r)-N/2 . exp(-~Wt . Wt).

This realizes a homogeneous distribution on the surface of a sphere. The
outputs are then Uk = sign(uk), where the fields Uk = N-l/2Wt . ~k are
Gaussian variables with

(Uk Ul) = Oklo

For random inputs, Okl is typically of order N-1/ 2 for k =/: l, and

for k = 1
for k =/: l.

One can show [IJ that for random inputs and N -+ 00,

N-1 ~(O-l)kk = ~.
L..t I-a

k

(5.174)

(5.175)

(5.176)

Using this equation, and inserting Eq. (5.175) into Eq. (5.173), we get

(5.177)

Manfred Opper and Wolfgang Kinzel 207

Finally, for the second order parameter, we get

(5~178)

The case 0: > 1 can be treated by the same method. We will not give the
details here [60]. We only mention that Ws is the minimum ofthe quadratic
learning error

~)O'k - N-1/ 2W • ek)2.
k

Taking the gradient, we get explicitly for the ith component

with

and

ws(i) = 'L)B- 1)ij/j,
k

Bij = N-1 I:ek(i)ek(j)
k

I; = N-1/ 2 I: O'kek(j)·
k

(5.179)

(5.180)

Again, the order parameters can be claculated by averaging over the teacher
vector.

REFERENCES

[1) W. Kinzel, M. Opper (1991) Dynamics oflearning, In: Physics of Neural Networks,
J. L. van Hemmen, E. Domany, K. Schulten (Eds.) (Springer-Verlag, New York),
p. 149

(2) T.L.H. Watkin, A. Rau, M. Biehl (1993) Rev. Mod. Phys. 65:499

(3) N. Sauer (1972) J. Comb. Theory A 13:145

(4) V.N. Vapnik (1982) Estimation of Dependences .Based on Empirical Data
(Springer-Verlag, New York)

(5) E. Baum, D. Haussler (1989) Neural Comput .. 1(1):151-160

(6) A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth (1989) J. Assoc. Compo
Mach. 36:929

(7) E. Levin, N. Tishby, S. Solla (1989) A statistical approach to learning and gener­
alization in neural networks, In: Proc. 2nd Workshop on Computational Learning
Theory (Morgan Kaufmann)

(8) G. Gyorgyi, N. Tishby (1990) Statistical theory of learning a rule, In: Neural Net­
works and Spin Glasses, (World Scientific)

(9) M. Opper, D. Haussler (1991) Phys. Rev. Lett. 66:2677

208 5. Statistical Mechanics of Generalization

(10) M. Opper, D. Haussler (1991) In: IVth Annual Workshop on Computational Learn­
ing Theory (COLT91) (Santa Cruz, 1991) (Morgan Kaufmann, San Mateo, CA),
pp.75-87

(11) D. Haussler, M. Kearns, M. Opper, R.E. Schapire (1991) Estimating average -
Case learning curves using Bayesian, statistical physics and VC dimension meth­
ods, In: Neural Information Processing (NIPS 91)

(12) E. Gardner (1988) J. Physics A 21:257-270

(13) D. Haussler, M. Kearns, R. Schapire (1991) In: IVth Annual Workshop on Com­
putational Learning Theory (COLT91) (Santa Cruz, 1991) (Morgan Kaufmann,
San Mateo, CA), pp. 61-74

(14)

[15)

D. Haussler, A. Barron (1992) How well do Bayes methods work for on-line pre­
diction of {+1,-1} values? In: Proc. Third. NEC Symposium on Computation and
Cognition (SIAM, Philadelphia, PA)

J. Rissanen (1986) Ann. Stat. 14:1080

[16) R. Meir, J.F. Fontanari (1993) Proc. IVth International Bar-Ilan Conference on
Frontiers in Condensed Matter Physics, published in Physica A 200:644

(17) H. Sompolinsky, N. Tishby, H.S. Seung (1990) Phys. Rev. Lett. 65:1683

(18) S. Amari, N. Murata (1993) Neural Computation 5:140

(19) T.M. Cover (1965) IEEE nuns. El. Compo 14:326-334

(20) G. Stambke (19XX) diploma thesis

[21] G. Gyorgyi (1990) Phys. Rev. Lett. 64:2957

(22) M. Mezard, G. Parisi, M.A. Virasoro (1987) Spin Glass Theory and Beyond, Lec-
ture Notes in Physics, 9 (World Scientific)

[23) T.L.H. Watkin (1993) Europhys. Lett. 21:871

(24) R. Meir, J.F. Fontanari (1992) Phys. Rev. A 45:8874

[25) S. Amari (1993) Neural Networks 6:161

(26) M. Opper, D. Haussler, in preparation

(27) F. Vallet, J. Cailton, P. Refregier (1989) Europhys. Lett. 9:315-320

[28] D.E. Rumelhart, J.L. McClelland, eds. (1986) Parallel Distributed Memory (MIT
Press, Cambridge, MA)

[29] B. Widrow, M.E. Hoff (1960) WESCON Convention, Report IV, 96

[30] I. Kanter, H. Sompolinsky (1987) Phys. Rev. A 35:380

(31) M. Opper, W. Kinzel, J. Kleinz, R. Nehl (1990) J. Phys. A 23:L581

[32) M. Opper (1989) Europhys. Lett. 8:389

[33] A.J. Hertz, A. Krogh, G.I. Thorbergsson (1989) J. Phys. A 22:2133

[34] A. Krogh, J. Hertz (1991) In: Advances in Neural Information Processing Systems
III (Morgan Kaufmann, San Mateo, CA)

[35] Y. LeCun, I. Kanter, S. Solla (1991) Phys. Rev. Lett. 66:2396

(36) M. Opper (1988) Phys. Rev. A 38:3824

Manfred Opper and Wolfgang Kinzel 209

[37] F. Rosenblatt (1961) Principles of Neurodynamics - Perceptrons and the Theory
of Bmin (Spartan Books, Washington DC)

[38] W. Krauth, M. Mezard (1987) J. Phys. A 20:L745

[39] J. Anlauf, M. Biehl (1989) Europhys. Lett. 10:687

[(0) P. Rujan (1993) J. de Phys. (Paris) 13:277

[(1) W. Kinzel, P. Rujan (1990) Europhys. Lett. 13:473

[42] T.L.H. Watkin, A. Rau (1992) J. Phys. A 25:113

[(3) H.S. Seung, M. Opper, H. Sompolinsky (1992) In: Vth Annual Workshop on Com­
putational Learning Theory (COLT9~) (Pittsburgh 1992) pp. 287-294 (Assoc. for
Computing Machinery, New York)

[44] E. Gardner, B. Derrida (1989) J. Phys. A 22:1983

[(5) G. Gyorgyi (1990) Phys. Rev. A. 41:7097

[46] H. Schwarze, M. Opper, W. Kinzel (1992) Phys. Rev. A 46:6185

[47] H. Seung, H. Sompolinsky, N. Tishby (1992) Phys. Rev. A 45:6056

[(8) H. Horner (1992) Z. Phys. B 87:371

[49] H.K. Patel (1993) Z. Physik B 91:257

[50) M. Biehl, H. Schwarze (1992) Europhys. Lett. 20:733

[51] M. Biehl, H. Schwarze (1993) J. Phys. A 26:2561

[52) M. Biehl (19XX) diploma thesis, University of Giessen

[53) O. Kinouchi, N. Caticha (1992) J. Phys. A 25:6243

[54) P. Kuhlmann, K.R. Muller (1994) J. Phys. A 27:3759

[55] R. Garces, P. Kuhlmann, H. Eissfeller (1992) J. Phys. A 25:L1335

[56J J. Hertz, A. Krogh, R.G. Palmer (1991) Introduction to the Theory 01 Neuml
Computation (Addison-Wesley, Reading, MA)

[57] S. Bos, W. Kinzel, M. Opper (1993) Phys. Rev. E 47:1384

[58) M. Biehl, A. Mietzner (1993) Europhys. Lett. 24:421

[59) T. Kohonen (1988) Self Organisation and Associative Memory (Springer-Verlag,
Berlin)

[60] M. Opper (1995) in preparation

6

Bayesian Methods for
Backpropagation Networks
David J.e. MacKay!

with 10 figures

Synposis. Bayesian probability theory provides a unifying framework for
data modeling. In this framework, the overall aims are to find models that
are well matched to the data, and to use these models to make optimal pre­
dictions. Neural network learning is interpreted as an inference of the most
probable parameters for the model, given the training data. The search in
model space (Le., the space of architectures, noise models, preprocessings,
regularizers, and weight decay constants) also then can be treated as an
inference problem, in which we infer the relative probability of alternative
models, given the data. This provides powerful and practical methods for
controlling, comparing, and using adaptive network models. This chapter
describes numerical techniques based on Gaussian approximations for im­
plementation of these methods.

6.1 Probability Theory and Occam's Razor

Bayesian probability theory provides a unifying framework for data model­
ing. A Bayesian data modeler's aim is to develop probabilistic models that
are well matched to the data, and to make optimal predictions using those
models. The Bayesian framework has several advantages.

Probability theory forces us to make explicit all of our modeling as­
sumptions. Bayesian methods are mechanistic: Once a model space has
been defined, then, whatever question we wish to pose, the rules of proba­
bility theory give a unique answer that consistently takes into account all
of the given information. This is in contrast to non-Bayesian statistics, in
which one must invent estimators of quantities of interest and then choose
between those estimators using some criterion measuring their sampling
properties; there is no clear principle for deciding which criterion to use to

lCavendish Laboratory, University of Cambridge, Madingley Road, Cam­
bridge, CB3 OHE, United Kingdom (mackay@mrao.cam.ac.uk).

212 6. Bayesian Methods for Backpropagation Networks

measure the performance of an estimator; nor, for most criteria, is there
any systematic procedure for the construction of optimal estimators.

Bayesian inference satisfies the likelihood principle [1]: Our inferences
depend only on the probabilities assigned to the data that were received,
not on properties of other data sets which might have occurred but did not.

Probabilistic modeling handles uncertainty in a natural manner. There is
a unique prescription (marginalization) for incorporating uncertainty about
parameters into our predictions of other variables.

Finally, Bayesian model comparison embodies Occam's razor, the princi­
ple that states a preference for simple models. This point will be expanded
on in Sec. 6.1.1.

The preceding advantages of Bayesian modeling do not make all of our
troubles go away. The Bayesian is left with the twin tasks of defining an ap­
propriate model space for the data, and implementing the rules of inference
numerically.

6.1.1 OCCAM'S RAZOR

Occam's razor is the principle that states a preference for simple theories.
If several explanations are compatible with a set of observations, Occam's
razor advises us to buy the least complex explanation. This principle is
often advocated for one of two reasons: The first is aesthetic ["A theory
with mathematical beauty is more likely to be correct than an ugly one
that fits some experimental data" (Paul Dirac)]; the second reason is the
supposed empirical success of Occam's razor. Here we discuss a different
justification for Occam's razor, namely,

Coherent inference embodies Occam's razor automatically
and quantitatively.

To explain this statement, we first must introduce the language in which
inferences can be expressed; this is the language of probabilities. All co­
herent beliefs and predictions can be mapped onto probabilities. We will
use the following notation for conditional probabilities: P(AIB,1£) is pro­
nounced "the probability of A, given Band 1£." The statements Band
1£ list the conditional assumptions on which this measure of plausibility
is based. For example, if A is "it will rain today," and B is "the barom­
eter is rising," then the quantity P(AIB,1£) is a number between 0 and
1 that expresses how probable we would think "rain today" is, given that
the barometer is rising, and given the overall assumptions 1£ that define
our model of the weather. This conditional probability is related to the
joint probability of A and B by P(AIB,1£) = P(A, BI1£)/ P(BI1£). Note
that the conditioning notation does not imply causation. P(AIB) does not
mean "the probability that A is caused by B". Rather, it measures the
plausibility of proposition A, assuming that the information in proposition

David J.e. MacKay 213

B is true. With apologies to pure mathematicians, we will use the same
notation for probabilities of discrete variables and for probability densities
over real variables.

Having enumerated a complete list of these conditional degrees of belief,
we then can use the rules of probability to evaluate how our beliefs and
predictions should change when we gain new information, i.e., as we change
the conditioning statements to the right of our "I" symbol. For example,
the probability P{BIA, 11.} measures how plausible it is that the barometer
is rising, given that today is a rainy day; this probability can be obtained
by Bayes' rule, P{AIB, 11.} = P{BIA, 11.}P{AI11.}/P{BI11.}. Here, our overall
model of the weather, 11., is a conditioning statement on the right-hand side
of all the probabilities. All inferences are conditional on subjective assump­
tions. Bayesian methods force us to make these tacit assumptions explicit,
and then provide rules for reasoning consistently given those assumptions.

We evaluate the plausibility of two alternative theories 'HI and 11.2 in
light of data D as follows: Using Bayes' rule, we relate the plausibility of
model 11.1 given the data P{11.lID) to the predictions made by the model
about the data P(DI11.l) and the prior plausibility of 11.1, P(11.l). This gives
the following probability ratio between theory 11.1 and theory 11.2:

P(11.1ID) P(11.l) P(DI11.l)
P(11.2ID) = P(11.2) P(DI11.2)'

(6.1)

The first ratio (P(11.d/P{11.2)) on the right-hand side measures how much
our initial beliefs favored 11.1 over 11.2. The second ratio expresses how well
the observed data were predicted by 11.1, compared to 11.2.

How does this relate to Occam's razor when 11.1 is a simpler model than
11.21 The first ratio (P(11.l)/P(11.2)) gives us the opportunity, if we wish,
to insert a prior bias in favor of 11.1 on aesthetic grounds, or on the basis
of experience. This would correspond to the motivations for Occam's razor
discussed in the first paragraph. But this is not necessary: The second ratio,
the data-dependent factor, embodies Occam's razor automatically. Simple
models tend to make precise predictions. Complex models, by their nature,
are capable of making a greater variety of predictions (Fig. 6.1). So, if 11.2 is
a more complex model, it must spread its predictive probability P{DI11.2}
more thinly over the data space than 11.1. Thus, in the case where the data
are compatible with both theories, the simpler 11.1 will turn out to be more
probable than 11.2, without our having to express any subjective dislike
for complex models. Our subjective prior just needs to assign equal prior
probabilities to the possibilities of simplicity and complexity. Probability
theory then allows the observed data to express their opinion.

Let us turn to a simple example. Here is a sequence of numbers:

2,4,6,8 (6.2)

The task is to predict what the next two numbers are likely to be, and infer
what the underlying process probably was that gave rise to this sequence.

214 6. Bayesian Methods for Backpropagation Networks

Evidence

Fig. 6.1. Why Bayesian inference embodies Occam's razor. This figure gives
the basic intuition for why complex models are penalized. The horizontal axis
represents the space of possible data sets D. Bayes' rule rewards models in pro­
portion to how much they predicted the data that occurred. These predictions
are quantified by a normalized probability distribution on D. In this chapter, this
probability of the data given model1ti, P(DI1ti), is called the evidence for 1ti. A
simple model1tl makes only a limited range of predictions, shown by P(DI1tl)j
a more powerful model1t2, which has, for example, more free parameters than
1t1, is able to predict a greater variety of data sets. This means, however, that
1t2 does not predict the data sets in region Cl as strongly as 1t1. Suppose that
equal prior probabilities have been assigned to the two models. Then, if the data
set falls in region C1, the less powerfu.l model1t1 will be the more probable model.

We assume that it is agreed that a plausible prediction and explanation
are "10, 12" and "add 2 to the previous number."

What about the alternative answer, "8.91,8.67" with the underlying rule
being, "get the next number from the previous number, x, by evaluating
-x3 /44 + 3/11x2 + 34/11"? We assume that this prediction seems rather
less plausible. But the second rule fits the data (2, 4, 6, 8) just as well as
the rule "add 2." So why should we find it less plausible? Let us give labels
to the two general theories:

'Ha The sequence is an arithmetic progression, "add n,"
where n is an integer.

'He The sequence is generated by a cubic function of the
form x -+ cx3 + dx2 + e, where c, d, and e are
fractions.

One reason for finding the second explanation, 'He, less plausible might be
that arithmetic progressions are more frequently encountered than cubic
functions. This would put a bias in the prior probability ratio P('Ha)/ P('He)
in Eq. (6.1). But let us give the two theories equal prior probabilities, and
concentrate on what the data have to say. How well did each theory predict
the data?

To obtain P(DI'Ha), we must specify the probability distribution that
each model assigns to its parameters. First, 'Ha depends on the added
integer n and the first number in the sequence. Let us say that each of

David J.e. MacKay 215

these numbers could have been anywhere between -50 and 50. Then, since
only the pair of values {n = 2, first number= 2} give rise to the observed
data D = (2, 4, 6, 8), the probability of the data, given 'Ha, is

1 1
P(DI'Ha) = 101101 = 0.00010. (6.3)

To evaluate P(DI'He), we must similarly say what values the fractions c, d,
and e might take on. A reasonable assignment might be that, for each
fraction, the numerator is a number anywhere between -50 and 50, and the
denominator is a number between 1 and 50. As for the initial value in the
sequence, let us leave its probability distribution the same as in 'Ha. Then,
including a factor of 4 in the probability of d = 3/11, since this fraction
also can be expressed as 6/22, 9/33, and 12/44, we find that the probability
of the observed data, given 'He, is

P(DI'He) = (1~1) (1~1 510) (1~1 5~) (1~1 5~) (6.4)

= 0.00000000000031. (6.5)

Thus, even if our prior probabilities for 'Ha and 'He are equal, the odds,
P(DI'Ha} : P(DI'Hc}, in favor of 'Ha over 'He, given the sequence D = (2,
4,6, 8), are about three hundred million to one.

This answer depends on several subjective assumptions, in particular, the
probability assigned to the free parameters n, c, d, and e of each theory.
Bayesians make no apologies for this: There is no such thing as inference or
prediction without assumptions. However, the quantitative details of the
prior probabilities have no effect on the qualitative Occam's razor effect; the
complex theory 'He always suffers an "Occam factor" because it has more
parameters, and so can predict a greater variety of data sets (Fig. 6.1). This
was only a small example, and there were only four data points; as we move
to larger and more sophisticated problems, the magnitude of the Occam
factors typically becomes larger, and the degree to which our inferences
are influenced by the quantitative details of our subjective assumptions
becomes even smaller.

6.1.2 BAYESIAN METHODS AND DATA ANALYSIS

Let us now relate the discussion above to real problems in data analysis.
There are countless problems in science, statistics, and technology which
require that, given a limited data set, preferences be assigned to alterna­
tive models of differing complexities. For example, two alternative hypothe­
ses accounting for planetary motion are Mr. Inquisition's geocentric model
based on "epicycles," and Mr. Copernicus's simpler model of the solar sys­
tem. The epicyclic model fits data on planetary motion at least as well as
the Copernican model, but it does so using more parameters. Coinciden­
tally for Mr. Inquisition, two of the extra epicyclic parameters for every

216 6. Bayesian Methods for Backpropagation Networks

planet are found to be identical to the period and radius of the sl m's "cy­
cle around the earth." Intuitively, we find Mr. Copernicus's theory to be
more probable. We now explain in more detail how Mr. Inquisition's excess
parameters are penalized automatically under probability theory.

6.1.3 THE MECHANISM OF THE BAYESIAN OCCAM'S
RAZOR: THE EVIDENCE AND THE OCCAM FACTOR

Two levels of inference often can be distinguished in the task of data mod­
eling. At the first level of inference, we assume that a particular model is
true, and we fit that model to the data. Typically, a model includes some
free parameters; fitting the model to the data involves inferring what val­
ues those parameters should probably take, given the data. The results of
this inference often are summarized by the most probable parameter val­
ues, and error bars on those parameters. This analysis is repeated for each
model. The second level of inference is the task of model comparison. Here
we wish to compare the models in light of the data, and assign some sort
of preference or ranking to the alternatives.2

Bayesian methods consistently and quantitatively are able to solve both
of the inference tasks. There is a popular myth that states that Bayesian
methods only differ from orthodox (also known as "frequentist" or "sam­
pling-theoretical") statistical methods by the inclusion of subjective priors
which are arbitrary and difficult to assign, and usually do not make much
difference to the conclusions. It is true that, at the first level of inference,
a Bayesian's results often will differ little from the outcome of an orthodox
attack. What is not widely appreciated is how Bayes performs the second
level of inference; this section therefore will focus on Bayesian model com­
parison. This emphasis should not be misconstrued as implying a belief that
one ought to use the Bayesian rankings to "choose" a single best model.
What we do with the Bayesian posterior probabilities is another issue. If
we wish to make predictions, for example, then we should integrate over
the alternative models, weighted by their posterior probabilities (Sec. 6.5).

Model comparison is a difficult task because it is not possible simply to
choose the model that fits the data best: more complex models can always
fit the data better, so the maximum likelihood model choice would lead
us inevitably to implausible, overparameterized models which generalize
poorly. Occam's razor is needed.

Let us write down Bayes' rule for the two levels of inference described

2Note that both levels of inference are distinct from decision theory. The goal
of inference is, given a defined hypothesis space and a particular data set, to assign
probabilities to hypotheses. Decision theory typically chooses between alternative
actions on the basis of these probabilities so as to minimize the expectation of a
"loss function." This chapter concerns inference alone, and no loss functions are
involved.

David J.e. MacKay 217

above, so as to see explicitly how Bayesian model comparison works. Each
model 'Hi is assumed to have a vector of parameters w. A model is defined
by a collection of probability distributions: a "prior" distribution P{WI'Hi),
which states what values the model's parameters might plausibly take, and
a set of probability distributions, one for each value of w, which defines the
predictions P{Dlw, 'Hi) that the model makes about the data D.

1. Model fitting. At the first level of inference, we assume that one
model, say, the ith, is true, and we infer what the model's parame­
ters w might be given the data D. Using Bayes' rule, the posterior
probability of the parameters w is

(6.6)

that is,
P . _ Likelihood x Prior

osterlOr - E . d .
VI ence

The normalizing constant P{DI'Hi) is commonly ignored since it is
irrelevant to the first level of inference, i.e., the choice of Wj but it
becomes important in the second level of inference, and we name
it the evidence for 'Hi. It is common practice to use gradient-based
methods to find the maximum of the posterior, which defines the
most probable value for the parameters, WMPj it is then usual to
summarize the posterior distribution by the value of WMP and error
bars on these best-fit parameters. The error bars are obtained from
the curvature of the posteriorj evaluating the Hessian at WMP, A =
-vv log P{wID, 'Hi), and Taylor-expanding the log posterior with
t!:l.W=W-WMP:

we see that the posterior can be locally approximated as a Gaussian
with a covariance matrix (equivalent to error bars) A-I. Whether
this approximation is good or not will depend on the problem we are
solving. The maximum and mean of the posterior distribution have
no fundamental status in Bayesian inference - they both can be
arbitrarily changed by nonlinear reparameterizations. Maximization
of a posterior probability is only useful if an approximation like Eq.
(6.7) gives a good summary of the distribution.

2. Model comparison. At the second level of inference, we wish to
infer which model is most plausible given the data. The posterior
probability of each model is

(6.8)

218 6. Bayesian Methods for Backpropagation Networks

Notice that the data-dependent term P(DI1ii) is the evidence for 1ii,
which appeared as the normalizing constant in Eq. (6.6). The second
term, P(1ii), is the subjective prior over our hypothesis space, which
expresses how plausible we thought the alternative models were before
the data arrived. Assuming that we choose to assign equal priors
P{1ii) to the alternative models, models 1ii are ranked by evaluating
the evidence. Equation (6.8) has not been normalized because in the
data modeling process we may develop new models after the data
have arrived, when an inadequacy of the first models is detected, for
example. Inference is open-ended: we continually seek more probable
models to account for the data we gather.

To reiterate the key concept: To assign a preference to alternative mod­
els 1ii , a Bayesian evaluates the evidence P(DI1ii). This concept is very
general: The evidence can be evaluated for parametric and nonparametric
models alike; whatever our data modeling task - a regression problem,
a classification problem, or a density estimation problem - the Bayesian
evidence is a transportable quantity for comparing alternative models. In
all of these cases the evidence naturally embodies Occam's razor.

Evaluating the Evidence

Let us now study the evidence more closely to gain insight into how the
Bayesian Occam's razor works. The evidence is the normalizing constant
for Eq. (6.6):

(6.9)

For many problems, including interpolation, it is common for the posterior
P{wID,1ii) ex: P(Dlw,1ii)P{wl1ii) to have a strong peak at the most
probable parameters WMP (Fig. 6.2). Then, taking for simplicity the one­
dimensional case, the evidence can be approximated by the height of the
peak of the integrand P(Dlw,1ii)P(wl1ii) times its width, O'wID:

P(D l1ii) ~ P(D IWMP' 1ii) P(wMP I1ii) O'wlD • , ..,.. " , .., ., (6.10)

Evidence ~ Best fit likelihood x Occam factor

Thus, the evidence is found by taking the best-fit likelihood that the model
can achieve and mUltiplying it by an "Occam factor" [2], which is a term
with magnitude less than 1 that penalizes 1ii for having the parameter w.

Interpretation of the Occam Factor

The quantity O'wlD is the posterior uncertainty in w. Suppose for simplicity
that the prior P(WI1ii) is uniform on some large interval O'w, representing

David J.e. MacKay 219

t\ , , , , , ,
: \
! ~ P(wID,1[,) , ,
: ~ , ,
j 0'101 rl
,~,

" '>

4.--------------~-------------.. W 0'10

•

Fig. 6.2. The Occam factor. This figure shows the quantities that determine
the Occam factor for a hypothesis 1ti having a single parameter w. The prior
distribution (solid line) for the parameter has width 0'10' The posterior distribu­
tion (dashed line) has a single peak at WMP with characteristic width UlOID. The
Occam factor is (O'wID/O'W)'

the range of values of w that 1ii thought possible before the data arrived
(Fig. 6.2). Then, P(wMP I1ii) = l/uw , and

UlOID Occam factor = --,
Uw

(6.11)

i.e., the Occam factor is equal to the ratio of the posterior accessible volume
of 1ii 's parameter space to the prior accessible volume, or the factor by
which 1ii'S hypothesis space collapses when the data arrive [2, 3]. The
model 1ii can be viewed as consisting of a certain number of exclusive
submodels, of which only one survives when the data arrive. The Occam
factor is the inverse of that number. The logarithm of the Occam factor
can be interpreted as the amount of information gained about the model
when the data arrive.

A complex model having many parameters, each of which is free to vary
over a large range U 10, typically will be penalized by a larger Occam fac­
tor than a simpler model. The Occam factor also penalizes models that
have to be finely tuned to fit the data, and favors models for which the
required precision of the parameters UlOID is coarse. The Occam factor is
thus a measure of complexity of the model but, unlike the VC dimension or
algorithmic complexity, it relates to the complexity of the predictions that
the model makes in data space. This depends not only on the number of
parameters in the model, but also on the prior probability that the model
assigns to them. Which model achieves the greatest evidence is determined
by a trade-off between minimizing this natural complexity measure and
minimizing the data misfit.

Figure 6.3 displays an entire hypothesis space so as to illustrate the
various probabilities in the analysis. There are three models, 1il,1i2, and
1i3, which have equal prior probabilities. Each model has one parameter

220 6. Bayesian Methods for Backpropagation Networks

D

.
. . ' .

(DI~) .'. .._:
------------------------~:---------------------,.~----------------~""t_-~P(DI,\).i't ,-"j

.-:i ~.I~"
•• : j ::-: i .

• : i -:";.. I .: "..! .'., ~., I'
~/! 'i~. i P(wID"\~1

'.. Iii • & II
• m I' ~" /" /",

.,:' iii P(W,D.I\II\ P(wl,\) / i
P(wID.I\l!i II llL'

ill P(WII\)j'j\ /'
P(wll\) :il I I, \

/" lil \.. 1\
-. -481

;: W W w
"'-wiD

----O"w---

Fig. 6.3. A hypothesis space consisting of three exclusive models, each having
one parameter w, and a one-dimensional data set D. The dashed horizontal line
shows a particular observed data set. The dashed curves below show the posterior
probability ofw for each model given this data set (cf. Fig. 6.1). The evidence for
the different models is obtained by marginalizing onto the D axis at the left-hand
side (cf. Fig. 6.2).

w (each shown on a horizontal axes) but assigns a different prior range trw

to that parameter. 'H3 is the most flexible, i.e., the most complex model,
assigning the broadest prior range. A one-dimensional data space is shown
by the vertical axis. Each model assigns a joint probability distribution
P(V, wl'Hi) to the data and the parameters, illustrated by a cloud of dots.
These dots represent random samples from the full probability distribution.
The total number of dots in each of the three model subspaces is the same,
because we assigned equal priors to the models.

When a particular data set D is received (horizontal line), we infer the
posterior distribution of w for a model ('H3, say) by reading out the den­
sity along that horizontal line and normalizing. The posterior probability
P(wID, 'H3) is shown by the dotted curve at the bottom. Also shown is the
prior distribution P(WI'H3) (cf. Fig. 6.2).

We obtain Fig. 6.1 by marginalizing the joint distributions P(D, wl'Hi)
onto the D axis at the left-hand side. This procedure gives the predictions of
each model in data space. For the data set D shown by the dotted horizontal
line, the evidence P(DI'H3) for the more flexible model 'H3 has a smaller
value than the evidence for H2 . This is because 1i3 placed less predictive

David J.e. MacKay 221

probability (fewer dots) on that line. Looking back at the distributions over
w, 11.3 has smaller evidence because the Occam factor (JwID/(Jw is smaller
for 11.3 than for 11.2. The simplest model 11.1 has the smallest evidence of all,
because the best fit that it can achieve to the data D is very poor. Given
this data set, the most probable model is 11.2.

Occam Factor for Several Parameters

If w is k-dimensional, and if the posterior is well approximated by a Gaus­
sian, then the Occam factor is obtained from the determinant of the cor­
responding covariance matrix [c.f. Eq. (6.10)]:

P(D l11.i) P(D IWMP' Hi) P(wMP I11.i) (21r)k/2det-1/2 A, (6.12) , ., , ,
y v

Evidence ~ Best-fit likelihood xOccam factor

where A = -VV log P(wID, 11.i), the Hessian which we evaluated when
we calculated the error bars on WMP [Eq. (6.7)]. As the number of data
collected, N, increases, this Gaussian approximation is expected to become
increasingly accurate.

In summary, Bayesian model selection is a simple extension of maximum
likelihood model selection: The evidence is obtained by multiplying the best­
fit likelihood by the Occam factor.

To evaluate the Occam factor, we need only the Hessian A if the Gaussian
approximation is good. Thus, the Bayesian method of model comparison
by evaluating the evidence is no more demanding computationally than the
task of finding for each model the best-fit parameters and their error bars.

For background reading on Bayesian methods, the following references
may be helpful. Bayesian methods are introduced and contrasted with or­
thodox statistics in [2a, 3, 4]. The Bayesian Occam's razor is demonstrated
on model problems in [2, 5]. Useful textbooks are [1, 6].

Bayesian Methods Meet Neural Networks

The two ideas of neural network modeling and Bayesian statistics might
at first glance seem to be uneasy bedfellows. Neural networks are nonlin­
ear parallel computational devices inspired by the structure of the brain.
Backpropagation networks are able to learn, by example, to solve prediction
and classification problems. Such a neural network is typically viewed as a
black box that slaps together, by hook or by crook, an incomprehensible
solution to a poorly understood problem. In contrast, Bayesian statistics
are characterized by an insistence on coherent inference based on clearly
defined axioms; in Bayesian circles, an "ad hockery" is a capital offense.
Thus, Bayesian statistics and neural networks might seem to occupy oppo­
site extremes of the data modeling spectrum.

However, there is a common theme uniting the two. Both fields aim to
create models that are well matched to the data. Neural networks can be

222 6. Bayesian Methods for Backpropagation Networks

viewed as more flexible versions of traditional regression techniques. Be­
cause they are more flexible (nonlinear), they are able to fit the data bet­
ter and model regularities in the data that linear models cannot capture.
The problem with neural networks is that an overflexible network might
be duped by stray correlations in the data into "discovering" nonexistent
structures. This is where Bayesian methods play a complementary role.
Using Bayesian probability theory, one can automatically infer how flexible
a model is warranted by the data; the Bayesian Occam's razor automati­
cally suppresses the tendency to discover spurious structures in data. The
philosophy advocated here is to use flexible models, like neural networks,
and then control the complexity of these models in light of the data using
Bayesian methods.

Occam's razor is needed in neural networks for the reason illustrated in
Fig. 6.4(A). Consider a control parameter that influences the complexity of
a model, for example, a regularization constant (weight decay parameter).
As the control parameter is varied to increase the complexity of the model
[from left to right across Fig. 6.4(A)), the best fit to the Training data that
the model can achieve becomes increasingly good. However, the empirical
performance of the model, the Test error, has a minimum as a function
of the control parameters. An overcomplex model overfits the data and
generalizes poorly. Finding values for model control parameters that are
well matched to the data is therefore an important and nontrivial problem.

A central message of this chapter is illustrated in Fig. 6.4(B). When we
evaluate the posterior probability distribution of the control parameters, we
find the Bayesian Occam's razor at work. The probability of a model given
the data is not the same thing as the best quality of fit that the model
can achieve. Overcomplex models are less probable because they predict
the data less strongly. Thus, the "evidence" P(DatalControl Parameters)
can be used as an objective function for optimization of model control
parameters.

Bayesian optimization of model control parameters has four important
advantages: (1) no validation set is involved, so all of the training data can
be devoted to both model fitting and model comparison; (2) regularization
constants can be optimized on-line, i.e., simultaneously with the optimiza­
tion of ordinary model parameters; (3) the Bayesian objective function is
not noisy, in contrast to a cross-validation measure; and (4) the gradient
of the evidence with respect to the control parameters can be evaluated,
making it possible to simultaneously optimize a large number of control
parameters.

6.2 Neural Networks as Probabilistic Models

A supervised neural network is a nonlinear parameterized mapping from an
input x to an output y = y(x; w, A). The output is a continuous function

David J.e. MacKay 223

Test Error

~
Training Error

A~---------------------------
Model Control Parameters

Log Probability(Training Data I Control Parameters)

B-----------------------------
Model Control Parameters

Fig. 6.4. Optimization of model complexity.

of the input and of the parameters Wj the architecture of the net, i.e., the
functional form of the mapping, is denoted by A. Such networks can be
"trained" to perform regression and classification tasks.

6.2.1 REGRESSION NETWORKS

In the case of a regression problem, the mapping for a network with one
hidden layer may have the form:

Hidden layer: a)l) = L W)~)XI + oy); hj = f(l) (a)l» (6.13)
I

Output layer: a~2) = Lw~J)hj +O!2)j Yi = t<2)(a~2», (6.14)
j

where, for example, fCl)(a) = tanh(a), and f (2)(a) = a. The "weights" w
and "biases" 0 together make up the parameter vector w. The nonlinear
"sigmoid" function fCl) at the hidden layer gives the neural network greater
computational flexibility than a standard linear regression model.

224 6. Bayesian Methods for Backpropagation Networks

This network is trained using a data set D = {x(m), t(m)} by adjusting
w so as to minimize an error function, e.g.,

ED(W) = ~ LL (t~m) - Yi(X(m)jw))2. (6.15)
m i

This minimization is based on repeated evaluation of the gradient of ED
using backpropagation (the chain rule) [7]. Often, regularization (also known
as "weight decay") is included, modifying the objective function to:

M(w) = {3ED + o:Ew, (6.16)

where, for example, Ew = ~ Ei w;. This additional term favors small
values of wand decreases the tendency of a model to "overfit" noise in the
training data.

6.2.2 NEURAL NETWORK LEARNING AS INFERENCE

The neural network learning process above can be given the following prob­
abilistic interpretation. The error function is interpreted as minus the log
likelihood for a noise model:

1
P(Dlw, (3, 7-l) = ZD({3) exp(-(3ED). (6.17)

Thus, the use of the sum-squared errOr ED [Eq. (6.15)J corresponds to an
assumption of Gaussian noise on the target variables, and the parameter {3
defines a noise level a~ = 1/ (3.

Similarly, the regularizer is interpreted in terms of a log prior probability
distribution over the parameters:

1
P(wla,7-l) = Zw(o:) exp(-o:Ew). (6.18)

If Ew is quadratic as defined above, then the corresponding prior distri­
bution is a Gaussian with variance a: = 1/0:. The probabilistic model 7-l
specifies the functional form A of the network, the likelihood [Eq. ·(6.17)J,
and the prior [Eq. (6.18)J.

The objective function M(w) then corresponds to the inference of the
parameters w given the data:

P(wID, 0:, (3, 7-l) = P(Dlw,{3, 7-l)P(wla, 7-l)
P(Dla, (3, 7-l)

1
= ZM exp(-M(w)).

(6.19)

(6.20)

The w found by (locally) minimizing M(w) is then interpreted as the
(locally) most probable parameter vector, W MP '

David J.C. MacKay 225

Why is it natural to interpret the error functions as log probabilities?
Error functions are usually additive. For example, ED is a sum of squared
errors. Probabilities, on the other hand, are multiplicative: For indepen­
dent events A and B, the joint probability is P(A, B) = P(A)P(B). The
logarithmic mapping maintains this correspondence.

The interpretation of M(w) as a log probability adds little new at this
stage. But new tools will emerge when we proceed to other inferences. First,
though, let us establish the probabilistic interpretation of classification net­
works, to which the same tools apply.

6.2.3 BINARY CLASSIFICATION NETWORKS

If the targets t in a data set are binary classification labels (0,1), it is natural
to use a neural network whose output Y(Xj w, A) is bounded between 0
and 1, and is interpreted as a probability P(t= 11x, w, A). For example, a
network with one hidden layer could be described by Eqs. (6.13) and (6.14),
with f(2)(a) = 1/(1 + e-a). The error function f3ED is replaced by the log
likelihood:

m

The total objective function is then M = -G + aEw . Note that this
includes no parameter 13.

6.2.4 MULTICLASS CLASSIFICATION NETWORKS

For a multi class classification problem, we can represent the targets by a
vector, t, in which a single element is set to 1, indicating the correct class,
and all other elements are set to O. In this case, it is appropriate to use
a "softmax" network [8] having coupled outputs which sum to 1 and are
interpreted as class probabilities Yi = P(ti = 11x, w, A). The last part of
Eq. (6.14) is replaced by:

eai

Yi = Ei' eai' .
(6.22)

The log likelihood in this case is

G = LLtilogYi(x{m)jw). (6.23)
m i

As in the case of the regression network, the minimization of the objective
function M(w) = -G + aEw corresponds to an inference of the form
in Eq. (6.20). Let us now study the variety of useful results that can be
built on this interpretation. The results will refer to regression modelsj the
corresponding results for classification models are obtained by replacing
f3ED by -G, and ZD(f3) by 1.

226 6. Bayesian Methods for Backpropagation Networks

6.2.5 IMPLEMENTATION

Bayesian inference for data-modeling problems may be implemented by an­
alytical methods, by Monte Carlo sampling, or by deterministic methods
employing Gaussian approximations. For neural networks, there are few
analytic methods. Sophisticated Monte Carlo methods that make use of
gradient information have been applied to some model problems [9]. The
methods reviewed here are based on Gaussian approximations to the pos­
terior distribution.

6.3 Setting Regularization Constants a and (3

The control parameters a and /3 determine the complexity of the model.
The term model here refers to a triple: the network architecture; the form
of the prior on the parameters; and the form of the noise model. Different
values for the hyperparameters a and /3 define different submodels. To infer
a and /3 given the data, we simply apply the rules of probability theory:

P(/3ID 1t) = P(Dla,/3,1t)P(a,/3I1t)
a" P(DI1t)'

(6.24)

The data-dependent factor P(Dla, /3, 1t) is the normalizing constant from
our previous inference [Eq. (6.19)]; we call this factor the evidence for a
and /3.

Assuming that we have only weak prior knowledge about the noise level
and the smoothness of the interpolant, the evidence framework optimizes
the constants a and /3 by finding the maximum of the evidence for a and /3.
If we can approximate the posterior probability distribution in Eq. (6.20)
by a single Gaussian,

P(wID,a,/3, 1t) ~ Z~ exp (-M(WMP) - ~(W - WMP)TA(w - WMP») ,

(6.25)
where A = -V'V'logP(wID,1t), then the evidence for a and /3 can be
written as

Z'
log P(Dla,/3, 1t) = log Zw(a)~D(/3) (6.26)

1 k
= -M(WMP) - '2logdetA -logZw(a) -logZD(/3) + '2 log 211', (6.27)

where k is the number of parameters in w. The terms -~ log det A -
log Zw(a) constitute the log of a volume factor that penalizes small val­
ues of a: The ratio (211')k/2det-l/2 A/Zw(a) is the ratio of the posterior
accessible volume in parameter space to the prior accessible volume. The

David J.e. MacKay 227

maximum of the evidence has some elegant properties which allow it to
be located efficiently by on-line reestimation techniques. Technically, there
may be multiple evidence maxima, but this is not common when the model
space is well matched to the data. As is shown in [10, 5J, the maximum
evidence a = aMP satisfies the following self-consistent equation:

(6.28)

where w MP is the parameter vector that minimizes the objective function
M = (3ED + aEw, and,,/ is the "number of well-determined parameters,"
given by

"/ = k-aTrace(A-I). (6.29)

Here, k is the total number of parameters, and the matrix A-I measures
the size of the error bars on the parameters w [Eq. (6.7)J. Thus, "/ ~ k
when the parameters are all well determined in relation to their prior range,
which is defined by a. The quantity "/ always lies between 0 and k. Recalling
that a corresponds to the variance 0': = 1/ a of the assumed distribution
for {Wi}, Eq. (6.28) specifies an intuitive condition for matching the prior
to the data: The variance is estimated by 0':' = (w2), where the average is
over the "/ effective well-determined parameters; the other k - "/ effective
parameters having been set to 0 by the prior.

Similarly, in a regression problem with a Gaussian noise model, the max­
imum evidence value of (3 satisfies:

l/{3MP = 2ED/(N - ,,/). (6.30)

Since 2ED is the sum of squared residuals, this expression can be recognized
as a variance estimator with the number of degrees of freedom set to "/.

Equations (6.28) and (6.30) can be used as reestimation formulas for a
and {3. The computational overhead for these Bayesian calculations is not
severe: It is only necessary to evaluate properties of the error bar matrix,
A-I. This matrix may be evaluated explicitly [11, 12, 13, 14J, which does
not take significant time when the number of parameters is small (a few
hundred). For large problems, these calculations can be performed more
efficiently using algorithms that evaluate products A v without explicitly
evaluating A [15, 16J.

Thodberg [12J combines Eqs. (6.28) and (6.30) into a single reestimation
formula for the ratio a/ {3. This ratio is all that matters if only the best­
fit parameters are of interest. An advantage of keeping a and {3 distinct,
however, is that knowledge from other sources (bounds on the value of the
noise level, for example) can be explicitly incorporated. Also, if we move
to noise models more sophisticated than a Gaussian, a separation of these
two control parameters is essential. Finally, if we wish to construct error
bars, or generate a sample from the posterior parameter distribution for
use in a Monte Carlo estimation procedure, the separate values of a and {3
become relevant.

228 6. Bayesian Methods for Backpropagation Networks

6.3.1 RELATIONSHIP TO IDEAL HIERARCHICAL
BAYESIAN MODELING

Bayesian probability theory has been used above to optimize the hyperpa­
rameters 0: and (3. This procedure is known in some circles as generalized
maximum likelihood. Ideally, we would integrate over these nuisance pa­
rameters in order to obtain the posterior distribution over the parameters
P(wID, H) and the predictive distributions P(t(N+IlID, H); however, if a
hyperparameter is well determined by the data, integrating over it is very
much like estimating the hyperparameter from the data and then using
that estimate in our equations [17, 2, 18J. The intuition is that if, in the
predictive distribution

P(t(N+IlID, H) = J do: P(t(N+IlID,o:, H)P(o:ID, H), (6.31)

the posterior P(o:ID, H) is sharply peaked at O:=O:MP with width alogalD,

and if the distribution P(t(N+llID, 0:, H) varies slowly with log 0: on a scale
of alogalD, then P(o:ID, H) is effectively a delta-function, so that:

(6.32)

Now the error bars on logo: and 10g{3, found by differentiating
log P(Dlo:, {3, H) twice, are [5]:

(6.33)

Thus, the error introduced by optimizing 0: and {3 is expected to be small
for 7» 1 and N -7» 1. How large 7 needs to be depends on the problem;
but for many neural network problems, a value of 7 greater than 3 may
suffice, since the predictions of an optimized network are often insensitive
to an e-fold change in 0:.

It is often possible to integrate over 0: and {3 early in the calculation, ob­
taining a true prior and a true likelihood. Some authors have recommended
this procedure [19, 20J, but it is counterproductive as far as practical ma­
nipulation is concerned [18]: the resulting true posterior is a skew-peaked
distribution, and, apart from Monte Carlo methods, there are currently no
computational techniques that can cope directly with such distributions.

Later, a correction term will be given which approximates the integra­
tion over 0: and {3 when predictions are made, i.e., as a last step in the
calculations.

6.3.2 MULTIPLE REGULARIZATION CONSTANTS

For simplicity, it so far has been assumed that there is only a single class
of weights, which are modeled as coming from a single Gaussian prior with
a:' = 1/0:. However, in dimensional terms, weights usually fall into three

David J.e. MacKay 229

or more distinct groups, which for consistency should not be modeled as
coming from a single prior. It therefore is desirable to divide the parameters
into several classes c with independent scales O:e. Assuming a Gaussian prior
for each class, we can define EW(e) = L:iEe w~ /2, and assign a Gaussian
prior:

P({wi}IO:e, 1i) = II; exp (-L: o:eEW(e») .
Wee) e

(6.34)

This gives a weight decay scheme with a different decay rate O:e for each
class. It often is found that network performance can be enhanced by this
division of weights into different classes. The automatic relevance determi­
nation model (Sec. 6.7) uses this prior.

The evidence framework optimizes the decay constants by finding their
most probable value, i.e., the maximum over {O:e} of P(DI{O:e}, 1i), and,
as before, the maximum evidence {O:e} satisfy the following self-consistent
equations:

l/o:~P = 2: wrp2 he, (6.35)
iEe

where w MP is the parameter vector that minimizes the objective function
M = /3ED + L:e O:eEW(e) , and 'Ye is the number of well-determined pa­
rameters in class c, 'Ye = ke-o:eTracee(A-l), where ke is the number of
parameters in class c, and the trace is over those parameters only.

For simplicity, the following discussion will assume once more that there
is only a single parameter 0:.

6.4 Model Comparison

The evidence framework divides our inferences into distinct "levels of in­
ference," of which we now have completed the first two:

• Levell: Infer the parameters w for given values of 0:, /3:

P(ID /3 1i) = P(Dlw, 0:, /3, 1i)P(wlo:, /3, 1i)
w ,0:, , P(Dlo:, /3, 1i) . (6.36)

• Level 2a: Infer 0:, /3:

P(/3ID 1i) = P(Dlo:,/3,1i)P(o:,/3I1i)
0:" P(DI1i)' (6.37)

• Level 2b: Compare models:

P(1iID) ex: P(DI1i)P(1i). (6.38)

230 6. Bayesian Methods for Backpropagation Networks

There is a pattern in these three applications of Bayes rule: At each of the
higher levels 2a and 2b, the data-dependent factor (e.g., in level
2a, P(Dla,,8, 'H)) is precisely the normalizing constant (the "evidence")
from the preceding level of inference. This pattern of inference continues
when we compare different models 'H, which might use different architec­
tures, preprocessings, regularizers, or noise models. Alternative models are
ranked by evaluating P(DI'H), the normalizing constant of inference in Eq.
(6.37).

In the preceding section we reached level 2a by using a Gaussian approx­
imation to P(wID, a,,8, 'H). We now evaluate the evidence for 'H. Using a
Gaussian approximation for P(loga,log,8ID, 'H), and neglecting the slight
correlations in this posterior, we obtain the estimate

P(DI'H) ~ P(DlaMP ,,8MP' 'H)P(IogaMP ' log,8MPI'H) 21l"0"1ogaIDO"log.8ID,
(6.39)

where P(DlaMP ' ,8MP' 'H) is obtained from Eq. (6.27), and the error bars
on log a and log,8 are as given in Eq. (6.33). This Gaussian approximation
over a and ,8 holds good for 'Y» 1 and N - 'Y» 1 [18J.

6.4.1 MULTIMODAL DISTRIBUTIONS

The preceding exposition falls into difficulty if the posterior distribution
P(wID, a,,8, 'H) is significantly multimodal; this is usually the case for mul­
tilayer neural networks. However, we can persist with the use of Gaussian
approximations if we introduce two modifications.

First, we recognize that a typical optimum WMP will be related to a num­
ber of equivalent optima by symmetry operations, such as the interchange
of hidden units and the inversion of signs of weights. When evaluating the
evidence using a local Gaussian approximation, a symmetry factor should
be included in Eq. (6.26) to take into account these equivalent islands of
probability mass. In the case of a net with one hidden layer of H units, the
appropriate permutation factor is H!2H , for general WMp.

Second, there are multiple optima which are not related to each other
by model symmetries. We modify the above framework by changing our
goals; specifically, we view each of the local probability peaks as a distinct
model. Instead of inferring the posterior over a,,8 for the entire model 'H,
we allow each local peak of the posterior to choose its own optimal value
for these parameters. Similarly, instead of evaluating the evidence for the
entire model'H, we aim to calculate the posterior probability mass in each
local optimum. This seems natural, since a typical implementation of the
model will involve setting the parameter vector to a particular value or a
small set of values. Thus, we do not care about the probability of an en­
tire model; what matters is the probability of the local solutions we find.

David J.e. MacKay 231

The same method of chopping up a complex model space is used in the
unsupervised classification system, AutoClass [21].

Henceforth, the term "model" will refer to a pair {'H, Sw.}, where 'H
denotes the model specification and Sw. specifies a solution neighborhood
around an optimum w·. Adopting this shift in objective, the Gaussian inte­
grals above can be used without alteration to set a and {3 and to compare
alternative solutions, assuming that the posterior probability consists of
well-separated islands in parameter space that are roughly Gaussian.

For general a and {3, the Gaussian approximation over w will not be
accurate; however, we only need it to be accurate for the small range of a
and {3 close to their most probable values. For sufficiently large amounts of
data compared to the number of parameters, this approximation is expected
to hold. Practical experience indicates that this is a useful approximation
for many real problems.

6.5 Error Bars and Predictions

Having progressed up the three levels of modeling, the next inference task is
to make predictions with our adapted model. It is common practice simply
to use the most probable values of 'H, w, etc., when making predictions,
but this is not optimal. Bayesian prediction of a new datum t(N+ll involves
marginalizing over all of these levels of uncertainty:

P(t(N+tlID) = L ! da d{3 ! dkw P(t(N+ll Iw, a, {3, 'H)P(w, a, {3, 'HID).
'H.

(6.40)
The evaluation of the distribution P(t(N+1l lw, a, {3, 'H) for specified model
parameters w is generally straightforward, requiring a single forward pass
through the network. Typically, marginalization over w and 'H affects the
predictive distribution significantly, but integration over a and {3 has a
lesser effect.

6.5.1 IMPLEMENTATION

Marginalization sometimes can be done analytically. When this fails, Monte
Carlo methods [9] may be used. The average of a function of an uncertain
parameter q, t(q), under the posterior over q, can be estimated with tol­
erable error by obtaining a small number of samples from the posterior
distribution for q and then evaluating the mean value of t. The variance
of this estimator is independent of the dimensionality of q and scales in­
versely with the sample size. A cheap and cheerful way of obtaining such
samples is described later in Sec. (6.9). Here, methods based on Gaussian
approximations are described.

232 6. Bayesian Methods for Backpropagation Networks

6.5.2 ERROR BARS IN REGRESSION

Integrating first over W for fixed a and (3, the predictive distribution is

If a Gaussian approximation is made for the posterior P(wID, a, (3, 11.), if
the noise model is Gaussian, and if a local linearization of the output is
made as a function of the parameters,

(6.42)

with g = ay / aw, then the predictive distribution in Eq. (6.41) is a straight­
forward Gaussian integral. This distribution has mean y(X N+1 , W MP) and
variance 0';10,,6 = gT A-I g + O'~, where A = "V"V log P(wID, a, (3, 11.).

Integration over the regularization constants a and (3 contributes an addi­
tional variance in only one direction; to leading order in "Y- I , P(t(N+l) ID, 11.)
is normal, with variance [18]:

2 T (A-I (2 2) I I T) 2
O't = g .l'l. + O'logolD + O'!og,6ID WMpWMP g + O'v' (6.43)

where w~p == aWMPla/a(loga) = akIwMP ' and O'~golD = 2h and

O'fog,B/D = 2/N - "Y.

6.5.3 INTEGRATING OVER MODELS: COMMITTEES

If we have multiple regression models 1-£, then our predictive distribution
is obtained by summing together the predictive distribution of each model,
weighted by its posterior probability. If a single prediction is required and
the loss function is quadratic, the optimal prediction is a weighted mean of
the models' predictions y(xN+1; WMP , 1-£). The weighting coefficients are the
posterior probabilities, which are obtained from the evidences P(DI11.). If
we cannot evaluate these accurately, then alternative pragmatic prescrip­
tions for the weighting coefficients exist [12, 38, 22].

6.5.4 ERROR BARS IN CLASSIFICATION

In the case of linearized regression discussed above, the mean of the predic­
tive distribution in Eq. (6.41) was identical to the prediction of the mean,
WMP . This is not the case in classification problems. The best-fit parameters
give overconfident predictions. A non-Bayesian approach to this problem
is to downweight all predictions uniformly, by an empirically determined
factor [23]. But a Bayesian viewpoint helps us to understand the cause of
the problem, and provides a straightforward solution that is demonstrably
superior to this ad hoc procedure.

David J.e. MacKay 233

This issue is illustrated for a simple two-class problem in Fig. 6.5. Figure
6.5{a) shows a binary data set, which, in Fig. 6.5{b) is modeled with a linear
logistic function. The best-fit parameter values give predictions which are
shown by three contours. Are these reasonable predictions? Consider new
data arriving at points A and B. The best-fit model assigns both of these
examples probability 0.9 of being in class 1. But intuitively we might be
inclined to assign a less confident probability (closer to 0.5) at B than at
A, since point B is far from the training data.

Precisely this result is obtained by marginalizing over the parameters,
whose posterior probability distribution is depicted in Fig. 6.5{c). Two ran­
dom samples from the posterior define two different classification surfaces,
which are illustrated in Figs. 6.5(d) and (e). The point B is classified dif­
ferently by these different plausible classifiers, whereas the classification of
A is relatively stable. We obtain the Bayesian predictions [Fig. 6.5{f)J by
averaging together the predictions of the plausible classifiers. The resulting
0.5 contour remains similar to that for the best-fit parameters. However,
the width of the decision boundary increases as we move away from the
data, in full accordance with intuition.

The Bayesian approach is superior because the best-fit model's predic­
tions are selectively downweighted to a different degree for each test case.
The consequence is that a Bayesian classifier is better able to identify the
points where the classification is uncertain. This pleasing behavior results
simply from a mechanical application of the rules of probability.

For a binary classifier, a numerical approximation to the integral over a
Gaussian posterior distribution is given in [24J. An equivalent approxima­
tion for a multiclass classifier has not yet been implemented.

This marginalization also can be done by Monte Carlo methods. A dis­
advantage of a straightforward Monte Carlo approach would be that it is
a poor way of estimating the probability of an improbable event, i.e., a
P(tID, 'H) that is very close to 0, if the improbable event is most likely to
occur in conjunction with improbable parameter values. In such cases one
might instead temporarily add the event in question to the data set and
evaluate the evidence P(D, t(N+lll'H). The desired probability is given by
comparing this with either the previous evidence P(DI'H) or the evidence
for the complementary virtual data set P(D, t(N+ll I'H).

6.6 Pruning

The evidence can serve as a guide for pruning, i.e., changing the model
by setting selected parameters to O. Thodberg [12J has done this in the
straightforward way: Each parameter in the network is tentatively pruned;
then the new model is optimized, and the evidence is evaluated to decide
whether to accept the pruning.

234 6. Bayesian Methods for Backpropagation Networks

Samplcsfrom
p(wlD.H}

c)

Fig. 6.5. Integrating over error bars in a classifier. (a) A binary data set. The
two classes are denoted by the point styles x=l, 0=0. (b) The data are modeled
with a linear logistic function. Here, the best-fit model is shown by its 0.1, 0.5,
and 0.9 predictive contours. The best-fit model assigns probability 0.9 of being in
class 1 to both inputs A and B. (c) The posterior probability distribution of the
model parameters, P(wID, Ji) (schematic; the third parameter, the bias, is not
shown). The parameters are not perfectly determined by the data. Two typical
samples from the posterior are indicated by the points labeled 1 and 2. The
following two panels show the corresponding classification contours. (d) Sample
1. (e) Sample 2. Notice how the point B is classified differently by these different
plausible classifiers, whereas the classification of A is relatively stable. (f) We
obtain the Bayesian predictions by integrating over the posterior distribution of
w. The width of the decision boundary increases as we move away from the data
(point B). See text for further discussion.

Here, an alternative procedure using the Gaussian approximation is de­
scribed. Whether pruning is in fact a good idea is questioned later in Sees.
6.7 and 6.10.

Suppose that a model's parameters have prior and posterior distributions
which are exactly Gaussian (Le., assume that the model is locally linear,
and that both a and (3 are well determined):

P(wl11) = _1_ exp (-a1wTlw)
Zw 2

P{wID, 11) = Z~ exp (-MMP - ~LlWT ALlw) ,

where Llw = w - WMP • For brevity, a and (3 are omitted here from the

David J.e. MacKay 235

conditioning propositions. The evidence for 'H is

log P(DI'H) = -MMP - ~ log det A + ~ logdet 0:1 + const. (6.44)

We are interested in evaluating the difference in evidence between this
model'H and an alternative model 'Hi, where the subscript 8 denotes the
setting to 0 of parameter 8. The remaining parameters of 'Hi still have a
Gaussian distribution but are confined to the constraint surface w . es = 0,
where es is the unit vector in the direction of the deleted parameter.

We can evaluate the difference in evidence between 'H and 'Hi by: (1)
finding the location of the new optimum w~P and evaluating the change in
MMP' f!..MMP = _!f!..wT Af!..w there; and (2) evaluating the change in log
determinant of the distribution.

The first task is accomplished by introducing a Lagrange multiplier. We
find:

MP Ws A-I w2
Wi = WMP - 2.H. es ; f!..MMP = 2 B2 ,

as as
(6.45)

where the marginal error bars on parameter W B are a~ = eBA-leB = A-;!.
The quantity f!..MMP is the saliency term that has been advocated as a guide
for "optimal brain damage" [14, 25]. The change in evidence, however,
involves a second "Occam factor" term that is simple to calculate. The
change in evidence when a single parameter 8 is deleted is

W2 a
log P(DI'H) - log P(DI'Hi) = 2 s2 + log -!!..,

as at»
(6.46)

where a~ is the prior variance for the parameter W,. This objective function
can be used to select which parameter to delete. It also tells us to stop
pruning (or, to be precise, that pruning is yielding a less probable model)
once it is positive, for all parameters, 8.

An equivalent expression can be worked out for the case of simultaneous
pruning of multiple parameters. Consider the pruning of ks parameters.
We obtain the joint (ks x ks) covariance matrix for the pruned parameters,
Es , by reading out the appropriate submatrix of A-I. Then the evidence
difference is

(6.47)

Thus the Bayesian formulas incorporate additional volume terms not
included in the "brain surgery" literature. It is not clear whether these
terms would make a big difference in practice. In our opinion, the pruning
technique now is superseded by the use of more sophisticated regularizers,
as discussed in Sec. 6.7.

236 6. Bayesian Methods for Backpropagation Networks

6.7 Automatic Relevance Determination

The automatic relevance determination (ARD) model [26] can be imple­
mented with the methods described in the previous sections.

Suppose that in a regression problem there are many input variables, of
which some are irrelevant to the prediction of the output variable. Because
a finite data set will show random correlations between the irrelevant inputs
and the output, any conventional neural network (even with weight decay)
will fail to set the coefficients for these junk inputs to O. Thus, the irrelevant
variables will hurt the model's performance, particularly when the variables
are many and the data are few.

What is needed is a model whose prior over the regression parameters
embodies the concept of relevance, so that the model effectively is able
to infer which variables are relevant and then switch the others off. A
simple and "soft" way of doing this is to introduce multiple weight decay
constants, one Q associated with each input. The decay rates for junk inputs
automatically will be inferred to be large, preventing those inputs from
causing significant overfitting.

The ARD model uses the prior of Eg. (6.34). For a network having one
hidden layer, the weight classes are: one class for each input, consisting of
the weights from that input to the hidden layer; one class for the biases to
the hidden units; and one class for each output, consisting of its bias and
all the weights from the hidden layer. Control of the ARD model can be
implemented using Eg. (6.35).

Automatic relevance determination is expected to be a useful alternative
to the technique of pruning (Sec. 6.6), which also embodies the concept of
relevance, but in a discrete manner. Possible advantages of ARD include
the following:

1. Pruning using Bayesian model comparison requires the evaluation
of determinants or inverses of large Hessian matrices, which may be
ill-conditioned. ARD, on the other hand, can be implemented using
evaluations of the trace of the Hessian alone, which is more robust.

2. Compared with a non-Bayesian cross-validation method, ARD simul­
taneously infers the utility of large numbers of possible input vari­
ables. With only a single cross-validation measure, one might have
to explicitly prune one variable at a time in order to estimate which
variables are useful. In contrast, ARD returns two vectors measuring
the relevance of all input variables Xi: the regularization constants Qi

and the "well determinednesses" "'Ii, and it suppresses the irrelevant
inputs without further intervention.

3. ARD allows large numbers of input variables of unknown relevance
to be left in the model without harm.

David J.e. MacKay 237

Practical problems found in implementing the ARD model using Gaus­
sian approximations are as follows:

1. If irrelevant variables are not explicitly pruned from a large model,
then computation times remain wastefully large.

2. The presence of large numbers of irrelevant variables in a model ham­
pers the calculation of the "evidence" for different models. Numeri­
cal problems arise with the calculation of determinants of Hessians.
This does not interfere with the Bayesian optimization of regulariza­
tion constants, but it prevents the use of Bayesian model comparison
methods.

3. Although the ARD model is intended to embody a soft version of
pruning, the approximations of the evidence framework can lead to
singularities with an etc going to 00 if the signal-to-noise ratio is low;
this causes inputs to be irreversibly shut off.

In spite of these reservations, we are confident that the right direction
for adaptive modeling methods lies in the replacement of discrete model
choices (e.g., pruning) by continuous control parameters (e.g., sophisticated
regularizers) .

A common concern is whether the extra hyperparameters {etc} might
cause overfitting. There is no cause for worry; there are two reasons. First,
if we can evaluate the evidence, then we can evaluate objectively whether
the new model is more probable, given the data. The extra parameters
are penalized by Occam factors so, eventually, if we increased the number
of hyperparameters, an evidence maximum would be reached. In fact, the
Occam factors for regularization constants are very weak; the error bars
on log etc scale only as 1/...fYc. This fact relates to the second reason why
the extra parameters {etc} are incapable of causing overfitting of the data:
The extra parameters do not make the model capable of fitting more com­
plicated data sets. Only the parameters w can overfit noise, and the worst
overfitting occurs when the regularization constants etc are all switched to
o. Thus, the extra hyperparameters have no effect on the worst-case capac­
ity of the model. Their effect is a positive one, namely, a damping out of
unneeded degrees of freedom in the model. There is a weak probabilistic
penalty for the extra parameters, simply because they increase the vari­
ety of simple data sets that the model is capable of predicting. A model
with only one hyperparameter et is capable of realizing only one "flavor
of simplicity," namely, "all parameters Wi are small," as opposed to the
complex flavor, "most parameters Wi are big." A model having, say, three
hyperparameters {etc}, can predict a total of 23 = 8 flavors of simplicity
and complexity including the two above.

238 6. Bayesian Methods for Backpropagation Networks

2r---~---'----~--~----r---~--~

0.5

'" 0 ~
Do

'" B -0.5

-1

-1.5

-2

-2.5
-2 -1 0 1

Input
2 3 4 5

Fig. 6.6. Samples from the prior of a one-input network, with varying number
of hidden units. For each curve a different number of hidden units, H, is used:
100, 200, 400, 800, and 1600. The regularization constants for the input weights
and hidden unit biases are fixed at O'i:, = 40 and O'hla. = 8. The output weights
have O'~ut = 11m to keep the dynamic range of the function constant.

6.8 Implicit Priors

It is interesting to examine what sort of functions are generated when nets
are created by sampling from the prior distributions of Eqs. (6.18) and
(6.34). The study of these prior distributions provides guidelines for the
expected scaling behavior of regularization constants with the number of
hidden units, H. It also identifies which control parameters are responsible
for controlling the "complexity" of the function, and which are merely
scaling constants. For regression nets with one hidden layer of tanh units
and a standard Gaussian prior, we find the following interesting result [27J.

In the limit as H -+ 00, the complexity of the functions generated by the
prior is independent of the number of hidden units. The prior on the input
to hidden weights determines the spatial scale (over the inputs) of variations
in the function. The prior on the biases of the hidden units determines
the characteristic number of fluctuations in the function. The prior on the
output weights simply determines the vertical scale of the output, and has
no other influence on complexity.

Figures 6.6-6.8 illustrate samples from priors for a one-input-one-output
network with a large number of hidden units.

Figure 6.6 illustrates that, as the number of hidden units H is increased,
while keeping {O'~, O'bias' (O'~ut ..jjj)} fixed, the properties of a random sam­
ple from the prior remain stable. (The output weights must get smaller in

David J.e. MacKay 239

0.6

0.'

0.2

0

4J -0.2 ;
8 -0 ••

-0.6

-0.8

-1

-1.2

xJut •
Fig. 6.7. Samples from the prior of a one-input network, with varying CT~. Vary­
ing CT~ alone changes both the characteristic scale length of the oscillations
and the overall width of the region in input space in which the action occurs.
{H,CTblaa,CT~ut} = {400,2.0,0.05}. CT~ = 40, 30, 20, 10,8,6,4. The smaller the
value of CT~, the less steep the function.

accordance with CT;ut OC 1/..fii in order to keep constant the vertical range
of the function, which is a sum of H independent random variables with
finite variance.)

Figure 6.7 illustrates the effect of varying O'~ alone. Finally, Fig. 6.8 illus­
trates the effect of varying both O'~ and O'bias' so as to keep the range of the
"action" over the input variable constant. The parameter CTbias determines
the total number of fluctuations in the function.

Progressing to multiple inputs, we obtain Fig. 6.9 by setting the weights
into a 2:400:1 net to random values and plotting the output of the net.
The picture shows that you can get a "random-looking" function from this
model even though the hidden units' activities are based on linear functions
of the inputs.

The prior distribution over functions is symmetrical about 0, in both
the input space and the output space. It is therefore wise, if this Bayesian
model is used, to preprocess the inputs and targets so that 0 is at the
expected center of the action.

6.9 Cheap and Cheerful Implementations

The following methods can be used to solve the tasks of automatic optimiza­
tion of {ac } and f3 (Sec. 6.3) and calculation of error bars on parameters

240 6. Bayesian Methods for Backpropagation Networks

0.4

0.2

0

-0.2

..,
-0.4 ::l

Q, ..,
B -0.6

-0.8

-1

-1.2

-1.4
-2 -1 2

Input
3 4 5

Fig. 6.8. Samples from the prior of a one-input network, with varying O"hla8' The
number of hidden units is kept fixed at 400, with O";ut = 0.05, for all of these
samples. The same seed was used, so that all of the weights are simply scaled by
the regularization constants as the "movie" progresses. The ratio O"I:./O"hlas = 5.0
in all cases, so as to keep the action in the range ±5.0. The constant O"hlas took the
following values: 8, 6, 4, 3, 2, 1.6, 1.2, 0.8, 0.4, 0.3, 0.2. This constant determines
the total number of ups and downs in the function. The constant 0"1:. determines
the input scale on which the ups and downs occur.

and predictions (Sec. 6.5) without calculation of Hessians or sophisticated
Monte Carlo methods. These methods depend on the same Gaussian as­
sumptions as does the rest of this chapter; further approximations also are
made.

6.9.1 CHEAP ApPROXIMATIONS FOR OPTIMIZATION

OF a AND {3

On neglecting the distinction between well-determined and poorly deter­
mined parameters, we obtain the following update rules for a and f3 [cf.
Eqs. (6.35) and (6.30)]:

f3:= N/2ED.

This easy-to-program procedure is expected to break down when there are
a large number of poorly determined parameters.

David J.C. MacKay 241

1
0.5

o
-0.5

-1
-1.5

-2

-1

1

Fig. 6.9. A sample from the prior distribution of a two-input network.
{H, O"~, O"bias, O"~ut} = {400, 8.0, 8.0, 0.05}.

6.9.2 CHEAP GENERATION OF PREDICTIVE
DISTRIBUTIONS

A simple way of obtaining random samples from the posterior probability
distribution of the parameters follows. This approximate procedure is accu­
rate when the noise really is Gaussian, and when the model can be treated
as locally linear.

1. Start with a converged network, with parameters w*, trained on the
true data set D* = {x(m) , t(m)}. Estimate the Gaussian noise level
from the residuals using, for example, (1~ = E(t - y(w*»2/(N - k)j
alternatively, estimate (1~ from a test set.

2. Now define a new data set Dl by adding artificial Gaussian noise of
magnitude (1 v to the outputs in the true data set D"'. Thus, DI =
{x(m) , t~m)}, where t~m) = t(m) + II, where II '" Normal(O, (1~). No
noise is added to the inputs.

3. Next, starting from w*, train a new network on DI . Call the con­
verged weight vector WI. Because the data set will be changed little
by the added noise, WI will be close to w*, and this optimization
should not take long.

4. Repeat steps 2 and 3 twelve times, generating a new data set Dj from
the original data set D* each time to obtain a new Wj' Save the list
of vectors W j.

5. Separately, use each of WI, W2, '" W12 to make predictions. For ex­
ample, in the case of time-series continuation, use each Wj by itself
to generate an entire continuation.

242 6. Bayesian Methods for Backpropagation Networks

These predictions can be viewed as samples from the model's pre­
dictive distribution. They might be summarized by measuring their
mean and variance.

In order to get a true sample from the posterior, we also should perturb the
prior. For each weight, the mean to which each weight decays, ordinarily 0,
should be randomized by sampling from a Gaussian of variance 0'; = 1/0,.

The above method is used in Bayesian image reconstruction [28J. It
should be particularly useful for obtaining error bars when neural nets
are used to forecast a time series by bootstrapping the network with its
own predictions. A full Bayesian treatment of time-series modeling with
neural nets has not yet been made.

6.10 Discussion

6.10.1 ApPLICATIONS

The methods of Sees. 6.2 to 6.7 have been successfully applied to several
practical problems.

Thodberg has applied these methods to an industrial problem, the infer­
ence of pork fat content from spectroscopic data [12J. The evidence frame­
work yields better performance than standard techniques involving cross­
validation. This improvement is attributed to the fact that a Bayesian needs
no validation set: All of the available data can be used for parameter fitting,
for optimization of model complexity, and for model comparison.

The automatic relevance determination model (Sec. 6.7) also has been
used to win a recent prediction competition, involving modeling of the en­
ergy consumption of a building [22J. Here, the success is attributed to the
fact that the evidence framework can be used to simultaneously optimize
multiple regularization constants {O,c} on-line. Over 20 regularization con­
stants were involved in these networks. The scaling up of these methods
to larger neural network problems will be helped by the use of implicit
second-order methods [15, 16J.

6.10.2 MODELING INSIGHTS

An advantage of the Bayesian framework for data modeling (in the eyes of
Bayesians) is that it forces one to make explicit the assumptions made in
constructing the model. When a poor modeling assumption is identified,
the probabilistic viewpoint makes it easy to design coherent modifications
to the model.

For example, in [l1J the standard weight decay model with only one reg­
ularization constant a was applied to a regression network. The evidence
for different solutions was found to be poorly correlated with the empiri-

David J.e. MacKay 243

cal performance of the solutions. This failure forced home the insight that,
for dimensional consistency, at least three different a's are required: one
for the input to hidden weights, one for the biases of the hidden units,
and one for all of the connections to the outputs. Changing to this model
with multiple regularizers produced solutions with slightly improved em­
pirical performance; most importantly, the evidence for these solutions was
beautifully correlated with their generalization error.

Here are some examples of other model modifications that are easily mo­
tivated from the probabilistic viewpoint. The use of a sum-squared error
corresponds to the assumption that the residuals are Gaussian and uncor­
related among the different target variables. In time-series modeling, this
may well be a poor model for residuals, which may show local trends. A
better model would, for example, assume Gaussian correlations between
residuals, such that the data error f3ED is replaced by:

L (f30(tm _y)2 + f31(tm -y)(tm+l-Y) + f32(tm -y)(tm+2-Y) + ...) .
m

(6.48)
This would modify the "backprop" rule, so that the propagated error signal
at each frame would be a weighted combination of the residuals at neigh­
boring frames. The network then would experience less of an urge to fit
local trends in the data. And, when predictions are made, the model of
correlations among residuals would be able to capture the current trend
and modify the net's predictions accordingly. The evidence would be used
to optimize the correlation model's parameters f3o, f3b f32, etc.

The Gaussian noise model also might be modified to include the possibil­
ity of outliers, using a Bayesian robust noise model [6]. Probability theory
allows us to infer from the data how heavy the tails of the noise model
ought to be.

Another assumption is that the output noise level is the same for all input
vectors. As is discussed in [29, Chapter 6], this assumption can be relaxed
by constructing a parameterized model of f3(x), which can be learned by
evidence maximization.

All three of the above examples could be realized as special
cases of the following general model, in which the entire set of
network parameters is modeled as changing in a correlated way.
The general model could be written P({t(m)},{w(m)},w*la,~) =
TIm P(t(m) Iw(m))P({w(m)} IwOo , ~)P(wOo 101). Here, the underlying mapping
is parameterized by wOo, which is drawn, say, from the ARD prior. The map­
ping at time m is parameterized by w(m) , which is a random sample from a
distribution centered on w". Temporal correlations between these samples
are defined by the parameters ~, which might be optimized by evidence
maximization. These parameters also model the noise itself. For example,
correlated Gaussian residuals are achieved by introducing correlated Gaus­
sian noise into the bias of the output unit. Non-Gaussian noise (long-tailed,

244 6. Bayesian Methods for Backpropagation Networks

or asymmetric) could be created by introducing a Gaussian noise process
earlier in the net; a careful choice of hidden unit activation functions could
bias the noise distribution in accordance with our prior beliefs. If we make
a model in which noise is modeled by fluctuations in the network param­
eters, it is easy to imagine that an input-dependent noise level could be
learned by this model. Finally, a "mixture of experts" is another special
case of this model, obtained when the distribution p({w(m)}lw*,<I» is a
mixture of delta-functions.

A final example of a probabilistic motivation for a model modification
lies in image analysis. If we use a neural net for character recognition,
say, then we might expect a well-trained net to have input weights that are
spatially correlated. It is desirable to incorporate this prior expectation into
the model adaptation process, because such priors on parameters damp
out unnecessary degrees of freedom and reduce overfitting. One way of
creating such a correlation is to preblur the data before feeding it into
the network, and use the normal uncorrelated prior on the parameters.
This is equivalent to keeping the original inputs and having a correlated
prior on the parameters, where the correlations are defined implicitly by
the properties of the preblur. This procedure has been used fruitfully in
character recognition work [30J.

Whenever a modification to a model is conceived, which can be expressed
probabilistically, a coherent algorithm incorporating the modification can
be mechanically derived. The automatic relevance determination model
(Sec. 6.7) is an example of a successful model developed in this way. One
often can observe the unanticipated emergence of elegant formulas when
the rules of probability theory are applied to a new model.

6.10.3 RELATIONSHIP TO THEORIES OF GENERALIZATION

The Bayesian "evidence" framework assesses within a well-defined hypoth­
esis space how probable a set of alternative models are. However, what we
often want to know is how well each model is expected to generalize. Em­
pirically, the correlation between the evidence and generalization error is
surprisingly good [11, 12J. But a theoretical connection linking the two is
not yet established. Here, a brief discussion is given of similarities and dif­
ferences between the evidence and quantities arising in work on prediction
of the generalization error.

Relation to GPE

Moody's "Generalized Prediction Error" (GPE) [31J is a generalization of
Akaike's "Final Prediction Error" (FPE) to nonlinear regularized models.
These are both estimators of generalization error which can be derived
without making assumptions about the distribution of residuals between
the data and the true interpolant, and without assuming that the true

David J.e. MacKay 245

interpolant belongs to some particular class. Both are derived by assuming
that the observed distribution over the inputs in the training set gives a
good approximation to the distribution of future inputs.

The difference between the FPE and the GPE is that the total number of
parameters k in the FPE is replaced by an effective number of parameters,
which is in fact identical to the quantity 'Y arising in the Bayesian analysis
in Eq. (6.29). If ED is one-half the sum-squared error, then the predicted
error per data point is

(6.49)

The added term O'~'Y has an intuitive interpretation in terms of overfitting.
For every parameter that is well determined by the data, we unavoidably
overfit one "direction" of noise. This has two effects: it makes ED smaller
than it "ought to be," by 0'~/2, on average; and it means that our predic­
tions vary from the ideal predictions (those that we would make if we had
infinite data) so that our prediction error on the same N input points would
on average be worse by 0'~/2. The sum of these two terms, multiplied by
the effective number of well-determined parameters 'Y, gives the correction
term.

Like the log evidence, the GPE has the form of the data error plus a term
that penalizes complexity. However, although the same quantity 'Y arises
in the Bayesian analysis, the Bayesian Occam factor does not have the
same scaling behavior as the GPE term (see the discussion below). And,
empirically, the GPE is not always a good predictor of generalization. One
reason is that, in the derivation of the GPE, it is effectively assumed that
test samples will be drawn only at the x locations at which we have already
received data. The consequences of this false assumption are most serious
for overparameterized and overflexible models. An additional distinction
between the GPE and the evidence framework is that the GPE is defined
for regression problems only; the evidence can be evaluated for regression,
classification, and density models.

Relation to the Effective VC Dimension

Recent work on "structural risk minimization" [30] utilizes empirical ex­
pressions of the form:

E "" E IN 10g(Nh} +C2
gen - D +Cl NI'Y ' (6.50)

where 'Y is the "effective VC dimension" of the model and is identical to
the quantity in Eq. (6.29). The constants Cl and C2 are determined by
experiment. The structural risk theory currently is intended to be applied
only to nested families of classification models (hence the absence of {3: ED
is dimensionless, like G} with monotonic effective VC dimension, whereas
the evidence can be evaluated for any models. Interestingly, the scaling

246 6. Bayesian Methods for Backpropagation Networks

behavior of this expression (6.50) is identical to the scaling behavior of
the log evidence in Eq. (6.27), subject to two assumptions: first, that the
value of the regularization constant satisfies Eq. (6.28); and second, that
the significant eigenvalues (>'0 > a) scale as >'0 '" Nah. (This scaling
holds, for example, in the family of interpolation models consisting of a
sequence of steps of independent heights, in which we vary the number of
steps.) Then it can be shown that the scaling of the log evidence is

-log P(Dla, (3, 1£) '" {3EP/ + ~ (-y log(Nh) + 'Y) • (6.51)

[Readers familiar with the Minimum Description Length (MDL) will rec­
ognize the dominant 'Y /2 log N term; MDL and Bayes are equivalent, as is
discussed later.] Thus, the scaling behavior of the log evidence is identical
to the structural risk minimization expression (6.50), provided that Cl = ~
and C2 = 1. Isabelle Guyon has confirmed (personal communication) that
the empirically determined values for Cl and C2 are indeed close to these
Bayesian values. It will be interesting to try to understand and develop this
relationship.

6.10.4 CONTRASTS WITH CONVENTIONAL DOGMA IN

LEARNING THEORY AND STATISTICS

Representation Theorems

It is popular to prove the utility of a particular model by demonstrating
that the model has arbitrary representational power. For example, "neural
networks are good interpolation tools because they can implement any
smooth function given enough hidden units."

A Bayesian data modeler takes a different attitude (as, to be fair, do
other learning theory researchers). The objective of data modeling is to
find a model that is well matched to the data. A model that is too flexi­
ble, and which could match arbitrary data, will generalize poorly; and in
Bayesian terms such a model is improbable compared to simpler models
that also fit the data. Probability theory favors a model that is as inflexible
as possible: just flexible enough to capture the real structure in the data,
but no more. The quality of a model is judged solely by how well matched
it is, probabilistically, to the data.

Those who appreciate that the universal representational power of a
model is not a good thing are often led astray by a second myth, the
supposed need to limit the complexity of a model when there is little data.

"The Complexity of the Model Should Be Matched
to the Amount of Data"

A popular idea is that, when there is little data, it is good to use a model
with few parameters, even if that model is known to be incapable of rep­
resenting the true function. An attempt is made to match the "capacity"

David J.e. MacKay 247

of the model to the number of data points. This sometimes is used as the
motivation for "pruning" a neural network [14J.

A Bayesian need never do this; the choice of which models to consider
is a matter of prior belief, and should not depend on the amount of data
collected. It is now common practice for Bayesians to fit models that have
more parameters than the number of data points [5, 32J. It is true that prob­
ability theory penalizes models that are too complicated for the data. But
we should not therefore deliberately construct models that are so simple
that they are incompatible with our prior beliefs. In terms of the evidence,
it is not possible for a small data set to systematically favor the wrong
model [5J.

In a domain such as interpolation, our typical prior belief is that the
real underlying function is complex and would require an infinite number
of parameters to describe it exactly. There will never be enough data to
determine all of the parameters of the true model. But this does not mean
that we should use a smaller model: that would give us well-determined but
incorrect predictions! We should use the model we believe in. No harm can
come of this. It may be that the resulting predictions are ill-determined;
but if the true model's predictions have huge error bars, it is surely crazy to
use a simpler model in order to make the error bars smaller! Alternatively,
the prior knowledge of smoothness, etc., included in the true model may
constrain the ill-determined parameters such that the predictions are quite
satisfactory.

The strength of the Bayesian method, therefore, centers on the prior
assigned to the parameters. The prominent role of the prior in Bayesian
methods often is regarded as a weakness. But any alternative method of
controlling the complexity of an interpolant, say, also embodies implicit
priors - except that those implicit priors generally do not correspond to
our real beliefs. The way forward, therefore, is to develop more sophis­
ticated probabilistic models and better computational methods for using
them. Discrete model choices should be replaced by regularized continua
of models, with an arbitrarily large number of parameters.

"My Model Is Better than Your Model"

Much of orthodox statistics is concerned with the invention of estimators
and the evaluation of certain average case properties of those estimators
(such as bias, variance, sufficiency, consistency, power, etc.). These criteria
then are used to choose between different estimators; all this without any
reference to the actual data that have been observed. Bayesians need not
get involved in debates concerning which properties of an estimator one
should concentrate on, or which estimator is intrinsically best. There is
no best model. Each model corresponds to a probabilistic statement about
the domain. One model will be better matched to some data sets, while
another model will be better matched to others. The evaluation of the

248 6. Bayesian Methods for Backpropagation Networks

evidence allows us to infer, from the particular observed data set, which in
our space of models is the most probable model.

An alternative way of viewing Bayesian modeling is to say that we only
have one supermodel, composed of a number of submodels which make
different assumptions, which have different complexities, etc. Once a su­
permodel is defined, our inferences are given by mechanically following the
rules of probability; these inferences implicitly involve comparisons of the
submodels, embodying the Bayesian Occam's razor.

The subjective task that a Bayesian still has to tackle is the definition of
the entire model space. The inventions of a good model space for a prob­
lem, and of numerical techniques for inference in that space, are nontrivial
tasks requiring great skill. The recommended philosophy [6] is to aim to
incorporate every imaginable possibility into the model space: for example,
if it is conceivable that a very simple model might be able to explain the
data, one should include simple models in the model space; if the noise
might have a long-tailed distribution, one should include a hyperparameter
which controls the heaviness of the tails of the distribution, such that one
value of the hyperparameter gives the null distribution; if an input variable
might be irrelevant to a regression, include it in the regression anyway,
with a sophisticated regularizer embodying the concept of relevance. The
inclusion of remote possibilities in the model space is "safe," because our
inferences will home in on the submodels that are best matched to the
data. The inclusion in our initial model space of bizarre models that are
subsequently ruled out by the data is not expected to influence predictive
performance significantly.

6.10.5 MINIMUM DESCRIPTION LENGTH (MDL)

A complementary view of Bayesian model comparison is obtained by replac­
ing probabilities of events by the lengths in bits of messages that communi­
cate the event without loss to a receiver. Message lengths L(x) correspond
to a probabilistic model over events x via the relations:

P(x) = TL(X) , L(x) = -log2 P(x). (6.52)

Noninteger coding lengths can be handled by the arithmetic coding proce­
dure [33].

The MDL principle [34] states that one should prefer models which can
communicate the data in the smallest number of bits. Consider a message
that states which model, 'H., is to be used, and then communicates the data
D within that model, to some prearranged precision 6D. This produces a
message of length L(D, 'H.) = L('H.) + L(DI'H.). The lengths L('H.) for dif­
ferent 'H. can be interpreted in terms of an implicit prior P('H.) over the
alternative models. Similarly, L(DI'H.) corresponds to a density P(DI'H.).
Thus, a procedure for assigning message lengths can be mapped onto pos-

David J.e. MacKay 249

II
L-_____ L_(w_i_3)_I~_3_) ____ ~I~1 ___ L_(_D_lw_~_)_'~_3_) __ ~

Fig. 6.10. A popular view of model comparison by minimum description length.
Each model 'Hi communicates the data D by sending the identity of the model,
sending the best-fit parameters of the model w·, and then sending the data
relative to those parameters. As we proceed to more complex models, the length
of the parameter message increases. On the other hand, the length of the data
message decreases, because a complex model is able to fit the data better, making
the residuals smaller. In this example, the intermediate model 'H2 achieves the
optimum trade-off between these two trends.

terior probabilities:

L(D,1i) = -logP(1i) -log(P(DI1i)6D)

= -log P(1iID) + const.

In principle, then, MDL always can be interpreted as Bayesian model com­
parison, and vice versa. However, this simple discussion has not addressed
how one would actually evaluate the key data-dependent term L(DI1i),
which corresponds to the evidence for 1i. Often, this message is imagined
as being subdivided into a "best-fit parameter" block and a data block.
This procedure conveys an intuitive picture of model comparison (Fig.
6.10). Models with a small number of parameters have only a short pa­
rameter block but do not fit the data well, and so the data message (a
list of large residuals) is long. As the number of parameters increases, the
parameter block lengthens, and the data message becomes shorter. There
is an optimum model complexity (1i2 in the figure) for which the sum is
minimized.

This picture is still too simple. We have not specified the precision to
which the parameters w should be sent. This precision has an important
effect (unlike the precision cD to which real-valued data D are sent, which,
assuming cD is small relative to the noise level, just introduces an additive
constant). As we decrease the precision to which w is sent, the parameter
message shortens, but the data message typically lengthens because the
truncated parameters do not match the data very well. There is a nontrivial
optimal precision. In simple Gaussian cases it is possible to solve for this
optimal precision [35], and it is closely related to the posterior error bars
on the parameters, A-I, where A = - VV log P{wID, 1i). It turns out that
the optimal parameter message length is virtually identical to the log of the
Occam factor in Eq. (6.12). (The random element involved in parameter
truncation means that the encoding is slightly suboptimal.)

250 6. Bayesian Methods for Backpropagation Networks

With care, therefore, one can replicate Bayesian results in MDL terms.
Although some of the earliest work on complex model comparison involved
the MDL framework [36], MDL has no apparent advantages over the direct
probabilistic approach.

MDL does have its uses as a pedagogical tool. The description length
concept is useful for motivating prior probability distributions. Also, dif­
ferent ways of breaking down the task of communicating data using a model
can give helpful insights into the modeling process.

On-Line Learning and Cross-Validation

The log evidence can be decomposed as a sum of on-line predictive perfor­
mances:

log P(DI1i) = log p(t(l) 11i) + log p(t(2) It(l), 1i)+

log P(t(2)lt(l), t(2), 1i) ... + log P(t(N) It(l) ... t(N-l), 1i).

This decomposition emphasizes the difference between the evidence
and "leave one out cross-validation" as measures of predictive abil­
ity. Cross-validation examines the average value of just the last term,
log P(t(N) It(l) ... t(N-l), 1i), under random reorderings of the data. The ev­
idence, on the other hand, sums up how well the model predicted all of the
data, starting from scratch.

The "Bits Back" Encoding Method

Another MDL thought experiment [37] involves incorporating random bits
into our message. The data are communicated using a parameter block and
a data block. The parameter vector sent is a random sample from the poste­
rior distribution P(wID,1i) = P(Dlw, 1i)P(wl1i)J P(DI1i). This sample
w is sent to an arbitrary small granularity 6w using a message length
L(wl1i) = -log(P(wl1i)6w). The data are encoded relative to w with a
message of length L(Dlw,1i) = -log(P(Dlw, 1i)6D). Once the data mes­
sage has been received, the random bits used to generate the sample w
from the posterior can be deduced by the receiver. The number of bits so
recovered is -log(P(wID, 1i)6w). These recovered bits need not count to­
ward the message length, since we might use some other optimally encoded
message as a random bit string, thereby communicating that message at
the same time. The net description cost is therefore:

L(wl1i) + L(Dlw, 1i) - "bits back" = log P(wl1i)P(Dlw, 1i)6D
- P(wID,1i)

= -log P(DI1i) -log6D.

Thus, this thought experiment has yielded the optimal description length.

David J.C. MacKay 251

6.10.6 ENSEMBLE LEARNING

The posterior distribution P(wID,1£) may be a very complicated density.
The methods described in this chapter have assumed that, in local re­
gions that contain significant probability mass, the posterior can be well
approximated by a Gaussian found by making a quadratic expansion of
10gP(wID,1£) around a local maximum. (For brevity we omit here the
parameters 0: and f3.)

An interesting idea that has been implemented by Hinton and van Camp
[37] is to try to improve the quality of this type of approximation by opti­
mizing the entire posterior approximation. We call this ensemble learning.
Consider a parameterized approximation Q(w; 0) to the true posterior dis­
tribution P(wID, 1£). For example, the parameters 0 for a Gaussian distri­
bution would be its mean and covariance matrix. The idea is that a Gaus­
sian fitted somewhere other than the mode of P(wID,1£) might in some
sense be a better approximation to the posterior. One possible measure of
the quality of fit of Q to P is the "free energy":

J P(wID,1£)
F(O) = - dwQ(w;O)log Q(w;O) . (6.53)

It is well known that F has a lower bound of 0 that can be realized only if
there are parameters 0 such that Q matches P exactly. This measure can be
motivated by generalizing the MDL "bits back" thought experiment (Sec.
6.10) with the random sample w drawn from Q instead of from P [37].

Now the task is to minimize F(O). This is in general a challenging task.
However, Hinton and van Camp [37] have shown that exact derivatives of
F with respect to 0 can be obtained for a neural net with one nonlinear
hidden layer and a linear output if the Gaussian model Q(w; 0) is restricted
so as to have 0 correlation among the weights.

The weakness of ensemble learning by free energy minimization is that,
if the approximating distribution Q(w; 0) has only a simple form, then
the free energy objective function favors distributions that are extremely
conservative, placing no probability mass in regions where P(w) is small.
For example, if a strongly correlated Gaussian P is modeled by a separable
Gaussian Q, then the free energy solution sets the curvature of log Q to be
the same as the diagonal elements of the curvature of log P. This gives an
approximating distribution that covers far too small a region of w space,
so that the outcome of ensemble learning would be essentially identical to
the outcome of traditional optimization of a point estimate. It is therefore
interesting to try to extend the ensemble learning method to more complex
models Q.

A possible extension of Hinton's and van Camp's idea is to include in 0 an
adaptive linear preprocessing of the inputs. Denote the coefficients of this
linear mapping from inputs to subinputs by U, and the parameters from
the subinputs to the hidden units by V; the effective input weights are given

252 6. Bayesian Methods for Backpropagation Networks

by the product VU. A separable Gaussian prior now can be applied to the
parameters V, so that Hinton's and van Camp's exact derivatives still can
be evaluated. Inclusion of the additional parameters U in () defines a richer
family of probability distributions Q(w; 0) over the effective parameters w.
It will be interesting to see if these distributions are powerful enough to
yield Gaussian approximations superior to those produced by the evidence
framework.

Acknowledgments. The author thanks his colleagues at Caltech, the Uni­
versity of Toronto, and the University of Cambridge for invaluable discus­
sions. He also is grateful to Radford Neal for comments on the manuscript.

REFERENCES

[lJ J. Berger (1985) Statistical Decision Theory and Bayesian Analysis (Springer­
Verlag, New York)

[2J S.F. Gull (1988) Bayesian inductive inference and maximum entropy. In: Maximum
Entropy and Bayesian Methods in Science and Engineering, Vol. 1: Foundations,
G.J. Erickson, C.R. Smith (Eds.) (Kluwer, Dordrecht), pp. 53-74

[2a] E.T. Jaynes (1983) Bayesian intervals versus confidence intervals. In: E. T. Jaynes.
Papers on Probability, Statistics and Statistical Physics, R.D. Rosencrantz (Ed.)
(Kluwer, Dordrecht), p. 151

[3J H. Jeffreys (1939) Theory of Probability (Oxford Univ. Press, Oxford, UK)

[4] T.J. Loredo (1990) From Laplace to supernova SN 1987A: Bayesian inference in
astrophysics. In: Maximum Entropy and Bayesian Methods, Dartmouth, U.S.A.,
1989, P. Fougere (Ed.) (Kluwer, Dordrecht), pp. 81-142

[5] D.J.C. MacKay (1992) Bayesian interpolation. Neural Comput. 4(3):415-447

[6] G.E.P. Box, G.C. Tiao (1973) Bayesian Inference in Statistical Analysis (Addi­
son-Wesley, Reading, MA)

[7] D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986) Learning representations by
back-propagating errors. Nature 323:533-536

[8J J.S. Bridle (1989) Probabilistic interpretation of feedforward classification net­
work outputs, with relationships to statistical pattern recognition. In: Neuro­
Computing: Algorithms, Architectures and Applications F. Fougelman-Soulie, J.
Herault (Eds.) (Springer-Verlag, New York)

[9J R.M. Neal (1993) Bayesian learning via stochastic dynamics. In: Advances in Neu­
ral Information Processing Systems 5, C.L. Giles, S.J. Hanson, J.D. Cowan (Eds.)
(Morgan Kaufmann, San Mateo, CA), pp. 475-482

[10J S.F. Gull (1989) Developments in maximum entropy data analysis. In: Maximum
Entropy and Bayesian Methods, Cambridge 1988, J. Skilling (Ed.) (Kluwer, Dor­
drecht), pp. 53-71

[11] D.J.C. MacKay (1992) A practical Bayesian framework for backpropagation net­
works. Neural Comput. 4(3):448-472

David J.e. MacKay 253

[12] H.H. Thodberg (1993) Ace of Bayes: Application of neural networks with pruning.
Technical Report 1132 E, Danish Meat Research Institute

[13] C.M. Bishop (1992) Exact calculation of the Hessian matrix for the multilayer
perceptron. Neural Comput., 4(4):494-501

[14] B. Hassibi, D.G. Stork (1993) Second order derivatives for network pruning: 01>­
timal brain surgeon. In: Advances in Neural In/ormation Processing Systems 5,
C.L. Giles, S.J. Hanson, J.D. Cowan (Eds.) (Morgan Kaufmann, San Mateo, CA),
pp. 164-171

[15] J. Skilling (1993) Bayesian numerical analysis. In: Physics and Probability, W.T.
Grandy Jr., P. Milonni (Eds.) (Cambridge University Press, Cambridge, UK)

[16] B. Pearlmutter (1993) Neural Comput. to appear

[17] G.L. Bretthorst (1988) Bayesian Spectrum Analysis and Parameter Estimation.
(Springer-Verlag, New York)

[18] D.J.C. MacKay (1994) Hyperparameters: Optimize, or integrate out? In: Maxi­
mum Entropy and Bayesian Methods, Santa Barbara 1999, G. Heidbreder (Ed.)
(Kluwer, Dordrecht)

[19] W.L. Buntine, A.S. Weigend (1991) Bayesian back-propagation. Complex Syst.
5:603-643

[20] D.H. Wolpert (1993) On the use of evidence in neural networks. In: Advances in
Neural In/ormation Processing Systems 5, C.L. Giles, S.J. Hanson, J.D. Cowan
(Eds.) (Morgan Kaufmann, San Mateo, CA), pp. 539-546

[21] R. Hanson, J. Stutz, P. Cheeseman (1991) Bayesian classification theory. Technical
Report FIA-90-12-7-01, NASA Ames

[22] D.J.C. MacKay (1993) Bayesian non-linear modeling for the 1993 energy predic­
tion competition. Technical Report, Cambridge University, Cambridge, UK, in
preparation

(23) J.B. Copas (1983) Regression, prediction and shrinkage (with discussion). J.R.
Statist. Soc B 45(3):311-354

[24] D.J.C. MacKay (1992) The evidence framework applied to classification networks.
Neural Comput. 4(5):698-714

[25] Y. LeCun, J.S. Denker, S.A. Solla (1990) Optimal brain damage. In: Advances in
Neural In/ormation Processing Systems 2, D.S. Touretzky (Ed.) (Morgan Kauf­
mann, San Mateo, CA), pp. 598-605

[26] D.J.C. MacKay, R.M. Neal (1993) Automatic relevance determination for
neural networks. Technical Report, Cambridge University, Cambridge, UK, in
preparation

[27] R.M. Neal (1993) Priors for infinite networks. Technical Report, Univ. of Toronto,
Toronto, Canada, in preparation

[28] J. Skilling, D.R.T. Robinson, S.F. Gull (1991) Probabilistic displays. In: Maximum
Entropy and Bayesian Methods, Laramie, 1990, W.T. Grandy, L. Schick (Eds.)
(Kluwer, Dordrecht), pp. 365-368

[29] D.J.C. MacKay (1991) Bayesian Methods for Adaptive Models. PhD thesis, Cali­
fornia Institute of Technology, Pasadena

254 6. Bayesian Methods for Backpropagation Networks

[30] I. Guyon, V.N. Vapnik, B.E. Boser, L.Y. Bottou, S.A. Solla (1991) Structural
risk minimization for character recognition. In: Advances in Neural Information
Processing Systems 4, J.E. Moody, S.J. Hanson, R.P. Lippmann (Eds.) (Morgan
Kaufmann, San Mateo, CA), pp. 471-479

[31] J.E. Moody (1992) The effective number of parameters: An analysis of generaliza­
tion and regularization in nonlinear learning systems. In: Advances in Neural In­
formation Processing Systems 4, J.E. Moody, S.J. Hanson, R.P. Lippmann (Eds.)
(Morgan Kaufmann, San Mateo, CA), pp. 847-854

[32] N. Weir (1991) Applications of maxmimum entropy techniques to HST data. Proc.
ESO/ST-ECF Data Analysis Workshop, April 1991

[33] I.H. Witten, R.M. Neal, J.G. Cleary (1987) Arithmetic encoding for data com­
pression. Commun. ACM 30(6):520-540

[34] C.S. Wallace, D.M. Boulton (1968) An information measure for classification.
Comput. J. 11(2):185-194

[35] C.S. Wallace, P.R. Freeman (1987) Estimation and inference by compact coding.
J.R. Statist. Soc. B 49(3):240-265

[36] J.D. Patrick, C.S. Wallace (1982) Stone circle geometries: An information theory
approach. In: Archaeoastronomy in the Old World, D.C. Heggie (Ed.) (Cambridge
Univ. Press, Cambridge, UK), pp. 231-264

[37] G.E. Hinton, D. van Camp (1993) Keeping neural networks simple by minimizing
the description length of the weights. Proc. COLT-9S, to appear

[38] L. Breiman (1992) Stacked regressions. Technical Report 367, Dept. of Stat., Univ.
of Cal. Berkeley

7

Penacee: A Neural Net System
for Recognizing On-Line
Handwriting
I. Guyon,l J. Bromley,2 N. Matic,3

M. Schenkel,4 and H. Weissman5

with 11 figures

Synopsis. We report on progress in handwriting recognition and signature
verification. Our system, which uses pen-trajectory information, is suitable
for use in pen-based computers. It has a multimodular architecture whose
central trainable module is a time-delay neural network. Results comparing
our system and a commercial recognizer are presented. Our best recognizer
makes three times less errors on hand-printed word recognition than the
commercial one.

7.1 Introduction

This chapter reports on progress in the design of a multimodular system
that recognizes on-line handwriting and whose central module is a neural
network. By on-line we mean that the input to the system is the pen
trajectory, sampled at regular time intervals by a touch-sensitive pad. In
this chapter, we provide a synthesis of previously published work from our
group [1, 2, 3, 4, 5, 6, 7] and a perspective on the on-going research.

There is urgent need for good recognizers to ensure the success of the

1 AT&T Bell Labs, 955 Craston Road, Berkeley, CA 9470B, USA
(isabelle@research.att.com).

2 AT&T Bell Labs, Room 4G-33B, Holmdel, NJ 07733, USA
(jbromley@research.att.com).

3 AT&T Bell Labs, presently at Synaptics, 2698 Orchard Parkway, San Jose,
CA 95134, USA (nada@synaptics.com).

4 AT&T Bell Labs and ETH-Zurich, CH-B092 Zurich, Switzerland
(schenkel@isLethz.ch).

5 AT&T Bell Labs, presently at 12 Mordehai-Hetez St., Petah-Tikua, Israel
(f67361@barilan.bitnet).

256 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

Fig. 1.1. Building blocks of the Penacee system.

first pen-based computers and pen-based personal communicators. In spite
of the efforts of many companies and universities, state-of-the-art on-line
handwriting recognition accuracy has not yet reached a level that is accept­
able to users. We tackle this problem from different angles. First, we address
tasks of intermediate difficulty, but of real practical interest, such as the
recognition of hand-printed words. Second, we introduce writer adaptation
to fine tune the recognizer with examples of a particular user style.

The Penacee system (our Pen panacea . ..) is composed of several mod­
ules (preprocessor, classifier, segmentor, etc.), as is classically done in pat­
tern recognition [8] (see Fig. 7.1). The originality of using neural networks,
and perhaps also the main advantage, is that the network itself can be de­
composed into two modules [9]: a neural-network-based feature extractor
and a classifier.

We make extensive use of our neural feature extractor, which is a train­
able module capable of producing a very good and compact feature repre­
sentation. Our neural network is a time-delay neural network (or TDNN)
[10, 11]. It is a convolutional network that has several layers of local fea­
ture extractors. It is the one-dimensional version of the network used by the
Optical Character Recognition group in our department [12, 13, 14] and is
suitable for processing time-varying signals, such as the pen-trajectory.

I. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 257

In Sec. 7.2, we introduce the various modules of our system, and in Sec.
7.3 we present the results of applying it to isolated character recognitions,
word recognition, and signature verification.

7.2 Description of the Building Blocks

7.2.1 RECOGNITION PREPROCESSOR

The preprocessor converts the input to the system to a representation that
facilitates the recognition process. Preprocessing techniques incorporate hu­
man knowledge about the task at hand, such as known invariances and
relevant features. In this work, we use a rather crude preprocessing and
rely mostly on the neural network to enforce invariances and extract fea­
tures. Our preprocessing consists of fairly simple normalizations and the
extraction of low-level local topological features such as line orientation.

Because the input data is the pen-trajectory, we face the choice of whe­
ther or not to use the dynamic information. It is possible to remove the
temporal parametrization of the data and represent patterns as pixel im­
ages. With such a representation, all of the techniques used for OCR (op­
tical character recognition) are readily applicable. In this work, however,
we encode patterns as a sequence of feature vectors, corresponding to the
sequence of drawing actions [1, 4].

In Fig. 7.2, we give an example of a preprocessed pattern with sequential
encoding. The preprocessing is decomposed into normalization (centering,
scaling, deskewing), resampling (to obtain a desired number of regularly
spaced points along the trajectory), smoothing (to remove jittering), and
feature extraction. In the resulting representation, each point on the tra­
jectory is associated with a feature vector whose components are a subset
of x and y coordinates, direction of the trajectory, curvature of the trajec­
tory, speed of the pen, acceleration of the pen, pen-down or -up position
(touching or above the writing surface).

Depending on the application, the preprocessing may vary slightly. For
instance, it is debatable whether the representation should be invariant
under changes in the speed of the pen. For writer-independent character
recognition, variations in the speed of the pen are a nuisance. Conversely,
for signature verification, the exact dynamics of drawing actions are very
precious for the detection of forgeries. Data-collection devices sample the
trajectory at regular time intervals (10-12 ms). Some invariance with re­
spect to the speed of the pen is obtained for character recognition appli­
cations by resampling to points regularly spaced in arc length, as opposed
to regularly spaced in time. For signature verification, the resampling pre­
serves regular time intervals.

258 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

LOOf
(a)

L o o p

(b) lime

Fig. 1.2. Recognition preprocessing. (a) The original word. (b) The data as
presented to the network. The feature vector in this case has eight components
encoding x and y coordinates normalized and rescaled, pen-up or -down informa­
tion, speed of the pen, two components for direction of the pen-trajectory, and
two components for its curvature.

7.2 .2 NEURAL FEATURE EXTRACTOR

Our networks consist of several layers of feature extraction followed by a
classification layer. The neural feature extractor in Fig. 7.1 is the network
up to its classification layer.

We use a convolutional neural network, the time-delay neural network
(TDNN). TDNNs first were introduced for speech recognition and are well
suited to sequential signal processing [10, 11].

We briefly sketch here the principles of the TDNN (Fig. 7.3). One layer of
the network transforms a sequence of feature vectors into another sequence
of higher order feature vectors in the following way.

A given neuron detects a particular local topological feature of the pen­
trajectory. Its receptive field is restricted to a limited time window. The
same neuron is reused along the time axis (Fig. 7.3, the same neuron is
replicated in the time direction) to detect the presence or absence of the
same feature at different places along the trajectory. By using several dif­
ferent neurons at each time step, the neural network performs the detection
of different features (Fig. 7.3, the outputs of different neurons produce a
new feature vector in the next layer, at a given time step).

The operations performed by one layer of the network are convolutional
in essence (Fig. 7.4). Each neuron k in layer l + 1 has an associated convolu­
tion kernel of height m (the number of features in layer l + 1) and of width
O. The coefficient of the kernel are the neuron weights w~'f, i = 0, ... (0 -1)
and j = 0, . .. (m - 1). The convolution of the states fj(t) of layer l with
kernel k is another sequence of states ft+ 1 (t) of layer l + 1 corresponding to
confidence levels for the presence or absence of a given feature k along the

I. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 259

data flow

}!
a:

time

~

~
f­
X
W
W
a:
:J

~
W
U.
...J
< a:
:J
w
Z

Fig. 7.3. Architecture of the time-delay neural network (TDNN). The connec­
tions between layers obey the following rules (not all neurons are represented):
(1) neurons are feature detectors with restricted input fields, limited in the time
direction; (2) in each layer, a set of neurons scans the output of the previous
layer along the time axis and produces higher level feature vectors; and (3) the
sequence of feature vectors is subsampled in time at each layer to obtain time
contraction. For isolated character recognition, the time contraction is such that
characters, which fit into a fixed-size input window, correspond to one output
vector, for which the time dimension has been completely eliminated. The fig­
ure also shows that the convolution can be extended in time and so that, for a
variable-length input, a sequence of output vectors is produced. This is used in
Sec. 7.3.2 for the recognition of entire words.

pen-trajectory. State sequences are parametrized by the discrete-time vari­
able t. The confidence levels are squashed by the neuron sigmoid function
91·]:

[
6-1 m-l 1

ft+l(t) = 9 t; ~ w~'f fJ(t - i) (7.1)

with
91x] = atanh.Bx, (7.2)

where tanh denotes the hyperbolic tangent, a = 1/ tanh(2/3), and.B = 2/3.
The time component of our input representation is gradually eliminated

by subsampling the convolution at each layer by a factor of two or three.
To partially compensate for the loss of information, the number of features
is gradually increased 115]. This is what we call a bi-pyramidal network

260 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

v '
<:l '- ~ttIi.\:I .. ~

k,e w ..
I,j

J 1 --- I i --I I e
.... I I I I I f. (t-i)
~ I I -+t::I J

<:l·y:----y--;FF-? layer e
1 2... I-J I-i I

Fig. 7.4. Operations of one layer of the TDNN. Each layer l produces an inter­
mediate representation of the input pattern as a sequence of feature vectors. We
denote by fICt) the jth component of that vector at time t. The intermediate
representation of layer t + 1 is obtained by sweeping several "neuron feature de­
tectors" over the intermediate representation of layer i. Neuron k produces the
sequence f~+l(t).

architecture. Bi-pyramidal networks progressively convert time information
into feature information.

The weights are adjusted during a supervised training session using error
backpropagation [16], which performs gradient descent in weight space with
a mean-squared-error (MSE) loss function (see Sec. 7.2.6) .

Because of the convolutional structure of our network, the same neuron
is replicated along the time axis. For the unfolded architecture (Fig. 7.3),
one usually talks about "weight sharing" among the various replicas of the
same neuron [171. Weight sharing is enforced during training by averaging
the weight updates of the various replicas.

7.2.3 CLASSIFIER

The classifier is often part of the neural network itself. On top of the feature
extraction layers, the last fully connected layer performs the final classifi­
cation (Fig. 7.3) .

The last layer of the TD NN consists of as many neurons as there are
classes, {char!, char2, . .. charc}. During training, when a character of class
char x is presented, we impose desired values of -1 to all neurons, except
to the neuron associated to the char x class, which receives a + 1 desired
value. Thus, we bring back our C-class problem to C 2-class problems:
Each neuron is trained to separate one class versus all the other ones.
After training, the classification is made according to the largest output
value. The outputs of the neural network may be used to estimate the

1. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 261

posterior probabilities P(charxlinput).6 In that case, the classification is
made according to the maximum a posteriori probability.

We make the distinction between neural feature extractor and classifier
for two reasons:

• The neural feature extractor can be used independently to provide
a compact representation of the data. In applications such as writer
adaptation (Sec. 7.3.1) and signature verification (Sec. 7.3.3), pat­
terns are stored for later use in this representation.

• Convolutional networks are good at extracting features, but there
may be more suitable classifiers for the task at hand that can be used
instead of the last layer of the network [9]. For instance, a K-nearest
neighbor classifier or an optimal margin classifier [18] replaces the
last layer for writer adaptation in Sec. 7.3.1.

7.2.4 SEGMENTATION PREPROCESSOR AND

POSTPROCESSOR

Our neural network isolated character recognizer is part of a larger system
that can perform word recognition. The segmentation techniques that we
use to separate a word into characters are closely related to dynamic time
warping and hidden Markov models, which are used for speech recogni­
tion [19]. Their resemblance with neural networks has been pointed out by
several authors [20, 21, 22, 23], but they will not be emphasized here.

We distinguish several levels of difficulty in the segmentation problem
(see Fig. 7.5). If characters are entered in boxes, or if they are clearly
spaced, the segmentation is trivial and can be handled independently of
the recognition process. But, in the absence of boxes, people usually do
not space their characters uniformly, which results in many segmentation
ambiguities. To address this harder task, our strategy is to let the segmen­
tation preprocessor make guesses and provide the recognizer with several
likely segmentation hypotheses. The final segmentation and recognition de­
cisions then are taken all at once by the segmentation postprocessor, using
the recognition scores.

In our nomenclature, the segmentation preprocessor isolates segments of
pen-trajectory called tentative characters. A stroke is an elementary seg­
ment between a pen-down and the next pen-up. The segmentation pre­
processor may take advantage of such pen-lifts and spaces between strokes
and/ or minima of the speed of the pen to determine tentative cuts. Alterna-

6Given our choice for the sigmoid function [Eq. (7.2)] and desired values, the
outputs of the network are between -1.7 and +1.7. They are rescaled between 0
and 1 to obtain probability estimates.

262 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

~~[g3 (a)

XZU (b)

U{r (c)

LOap (d)

Fig. 7.5. Writing styles handled by the Penacee segmentors. (a) Boxed charac­
ters. (b) Clearly spaced characters. (c) Ambiguous spacing but consistent pen-lifts
between characters. (d) Connected characters.

tively, the segmentation preprocessor simply can regularly sample windows
of the input signal.

Tentative characters usually overlap considerably. The segmentation
postprocessor uses an interpretation groph. The nodes of this graph con­
tain the tentative character recognition scores, and the transitions between
nodes favor particular character chainings. This avoids reusing the same
part of a character multiple times and allows the implementation of fre­
quencies of character successions particular to a given language.

We use the recognition scores provided by the neural network to provide
estimates of the posterior probabilities of the various character interpre­
tations charx given the input: P(charxlinput). The transition coefficients
are estimates of P(charylcharx) determined independently of the recogni­
tion process. Using (abusively) the assumption of independence between
the recognition of the various characters, the segmentation postprocessor
computes probability estimates of character sequence interpretations as

P(charx, chary, ... Iinput) = P(charxlinput)· P(charylcharx)
.P(charylinput) (7.3)

The output of the segmentation postprocessor is the best path in the graph,
corresponding to the most probable word (or character sequence). Our
implementations will be described in Sec. 7.3.2.

7.2.5 SIMILARITY MEASURER

So far, we have assumed that the neural network would be used to estimate
the posterior probability P(charxlinput). But one may be interested in
having the network estimate P(inputl '" input2), that is, the estimate of
the similarity between two patterns. Such a network has found applications

1. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 263

to classification problems, using a K-nearest neighbor classifier or a kernel
classifier [24], and to verification problems such as signature verification [4]
(Sec. 7.3.3) and fingerprint verification [25].

Similarity measures are very problem-dependent and usually must be
designed by experts. As an alternative, we tailor the similarity measure to
the task at hand by training a neural network classifier to separate pairs
of similar patterns and pairs of dissimilar ones.

For instance, take two identical neural feature extractors netl and net2.
The first one encodes inputl into outPUtl and the second one input2 into
output2' Add on top a similarity measure module that computes the dot
product between outPUtl and output2 to obtain the degree of similarity
between the two patterns. We named a system with such an architecture a
siamese neural network [4] (see Fig. 7.2.5).

During training, similar patterns (e.g., two genuine signatures from the
same person) are given a large positive desired degree of similarity. Con­
versely, dissimilar patterns (e.g., a signature and its forgery) are associated
with a negative or 0 desired degree of similarity. The network is trained
with the backpropagation algorithm by backpropagating errors through the
similarity measure module (Sec. 7.2.7). The constraint that netl = net2 is
enforced during training by averaging the weight updates of corresponding
weights in netl and net2'

Other similarity measure modules can be used instead of the simple dot
product, such as a Gaussian similarity measure exp(_d2 /0'2), where d is the
Euclidean distance between output 1 and output2. One also could imagine
using an elastic matching module to perform better time alignment. In Sec.
7.3.3, we use a normalized dot product: cos (outpuh , output2)'

7.2.6 Loss CALCULATOR

The loss calculator computes a penalty function or loss function which
measures the distance of the system from its objective. Combined with an
appropriate optimization technique such as gradient descent, the loss func­
tion guides the system during training towards our goal. A very commonly
used loss function is the square loss:

Lsq = (output - desired) 2 ,

where output is the actual output of the system and desired is its corre­
sponding desired value. For instance, for a classification problem with two
classes A and B, all elements of class A are assigned a desired value of +1
and all elements of class B a desired value of -1. After training, if the out­
put of the system is positive, the input pattern is classified as A, otherwise
as B.

The goal of learning is to get best generalization performance. For a clas­
sification problem, this means that, after training, the classification error
rate on examples not used for training (test set) must be low. It is not clear

264 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

whether minimizing a loss function using only training examples can yield
good generalization. However, both theoretical studies and experimental
results [26] show that good generalization can be achieved if the "capac­
ity" of the learning system is matched to the number of training examples.
If the capacity is too large, the system can easily learn the training exam­
ples, but it usually exhibits poor generalization (overfitting). Conversely, if
the capacity is too small, the system is not capable of learning the task at
all (underfitting).

The capacity of a neural network is related to the number of free pa­
rameters [27]. This is a relatively small number for convolutional networks
such as the TDNN, compared to fully connected networks and to networks
with local connections but with no weight sharing [17]. More recent work
talks rather of an "effective capacity" which incorporates properties of the
input space, network architecture, and training algorithm [26]. A simple
way of affecting the capacity during training is to modify the loss function
by adding, for instance, a weight decay term that pulls the weights to o.

In our present work, the capacity control is handled by "early stopping."
Before training, the weights are initialized with small random values such
that the total input of the neurons lies in the linear part of the sigmoid
squashing function [Eq. (7.2)]. The initial effective capacity is smaller than
what the number of tunable parameters suggests: It is equal to the number
of free parameters of the equivalent linear system. During training, as the
weights increase, use is made of the nonlinearity of the squashing function
and the capacity progressively increases until it reaches an optimum which
is detected by cross-validation. We do cross-validation by computing the
performance of the system on a small set of patterns that is distinct from
the training set and the test set.

Training algorithms usually minimize the average loss over all training
examples, with respect to the weights of the network. Such is the case for
the original backpropagation algorithm [16], which minimizes the mean­
square-error (MSE) or average square loss. This technique is widely applied
and well suited to a large variety of problems. An alternative strategy is to
minimize the maximum loss over all training patterns ("minimax" training)
[28]. This technique is guaranteed to capture the tail of the distribution of
input patterns but is very sensitive to outliers [18]. Better generalization
than with MSE minimization is obtained with minimax training after care­
ful screening of eventual mislabeled or meaningless patterns that have been
inserted in the training data [3] (see Sec. 7.3.1).

7.2.7 GLOBAL OPTIMIZATION TECHNIQUES

Once the various modules described in the previous sections are assembled
into a system, the problem arises of optimizing all of the parameters (i.e.,
the weights of the network) with respect to the final objective determined
by the loss function. In [29], a general framework has been proposed to

I. Guyon, J. Bromley, N. Math~, M. Schenkel, H. Weissman 265

achieve the global optimization of a multimodular architecture. We present
here a particular example which illustrates the main ideas.

We train our neural network with gradient descent, for which the weight
updates are computed as

8L
!:l.W=-f-8w' (7.4)

where L is a loss function, W is a weight of the network, and f is a small
positive quantity (the gradient step or learning rate). The backpropagation
algorithm permits chaining the computation of the partial derivatives from
the output to the input of the network [16].

Consider the case of the "siamese" neural network described in Sec.
7.2.5. To compute the weight updates and use the chaining rule of back­
propagation, one needs first to compute the partial derivative:

8L
(7.5)

8outPUti'

where i is either 1 or 2. Assume that we use a cosine similarity measure
and a squared loss:

L(inpuh, input2, w) = [cos(outputl, output2) - desired]2

output 1 • outPUt2 d' d [()]
2

= II outPUtl IIII output2 II - eszre ,

(7.6)

(7.7)

where desired = 1 if the patterns are similar and 0 otherwise. Then, using
the condensed notation 8 for cos(outputl, output2) , X for outputl' Y for
outPUt2' and D for desired, we obtain:

8L 8L 88
8X = 888X

1 (II Y II) = 2(8 - D) II XliII Y II Y - 81iXlfX ,

(7.8)

(7.9)

from which all other partial derivatives with respect to the weights of the
network can be computed using backpropagation.

7.3 Applications

In this section we present solutions to problems in on-line handwriting
recognition and signature verification that involve various combinations of
the modules previously described.

We have designed the Penacee system so that ultimately it will han­
dle unconstrained handwriting of any style. We report first the results we
have obtained for the writer-independent recognition of digits, uppercase
and lowercase letters, written in the boxed mode. Then we explain the

266 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

Fig. 1.6. The architecture of the isolated character recognizer.

techniques that we have used to handle the recognition of unsegmented
hand-printed uppercase words (run-on mode) . We report the results of two
methods of segmentation: INSEG (for INput SEGmentation) and OUTSEG
(for OUTput SEGmentation). We show that the two methods have comple­
mentary advantages. We propose a combination of INSEG and OUTSEG
and preliminary results indicating that our final system may be able to
handle unconstrained handwriting. Finally, we present an application of
"siamese" neural networks to signature verification.

7.3.1 ISOLATED CHARACTER RECOGNITION

The simplest task that we have addressed is that of isolated character
recognition, which involves the combination of modules shown in Fig. 7.6.
The specifications of the neural feature extractor (a TDNN up to its second
to last layer) are summarized in Table 7.1. We report on several experiments
with the same neural feature extractor but different classification layers.
We always use one output neuron per character interpretation or class.
The desired output values for a given interpretation chari are - 1 for all of
the neurons except the ith, which has a desired output of 1. We train the
network with backpropagation.

The experiments are performed with data collected in the cafeteria of
an AT&T facility. Approximately 250 writers contributed to at least one
complete set of the 10 digits, the 26 uppercase letters, and the 26 lowercase
letters. We address the writer-independent task, meaning that different sets
of writers are used for training and testing.

In [1], we report results obtained on digits and uppercase letters. A set
of approximately 12,000 examples is used for training and 2500 examples
for testing. A TDNN with 36 outputs in its classification layer is trained to

1. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 267

Table 7.1. TDNN Feature Extractor for Character Recognition

Input Subsampling elm elm elm elm
length steps 1st layer 2nd layer 3rd layer 4th layer

90 3.3.2 8/7 6 110 4 116 5 I 24

The subsamplings steps are time subsampling steps from one layer to the neXt.
The time scale thus is contracted by a factor of 18. The kernels have dimensions
e by m (Fig. 7.3). The neural feature extractor has 34,660 connections in its
unfolded version (Fig. 7.3) but only 3106 independent weights, due to "weight
sharing" (Sec. 7.2.2).

recognize either digits or uppercase letters. This means that, during train­
ing, no error is backpropagated from the uppercase letter neurons if a digit
is presented, and vice versa. At utilization time the a priori information
about whether the character to be recognized is a digit or an uppercase
letter is needed. For instance, the neuron with maximum activation among
the digit output neurons is selected if the character to be recognized is
known to be a digit. We obtain an error rate on the test set of 3.4% error
(2.3% if tested on digits only and 3.8% if tested on uppercase letters only).

In [2], we propose a training algorithm (the "emphasizing scheme") that
enables atypical patterns, such as characters written by left-handed people,
to be learned. The method is a simple way of improving the information­
theoretic learning efficiency. It consists, during backpropagation training,
in presenting more often the least predictable patterns (i.e., the ones with
the largest squared losses). The method is related to minimax learning pro­
cedures (Sec. 7.2.6) such as optimum margin classification [18J and boosting
techniques [30J. Using this method, the error rate is reduced from 3.4 to
2.8%. Even more importantly, the variation in error rate for different writ­
ers is substantially decreased.

In [3J, we present results on lowercase letters. In this study, we propose
a "super-supervised" learning technique, the purpose of which is to detect
undesirable outliers (mislabeled or meaningless patterns introduced byac­
cident into the database). During the supervised learning session, which
utilizes the class labels stored in our database, a human "super-supervisor"
double checks the labels of the patterns that are hardest to learn and are
therefore suspicious. We show that the "emphasizing scheme" works best
when the data are cleaned by a "super-supervisor." A TDNN with the same
feature extraction layers as specified in Table 7.1, but with only 26 neurons
in the classification layer (for the lowercase letters), is trained with approx­
imately 9500 lowercase letters and tested with 2000 letters from different
writers. Our final error rate of 6.9% is considerably better than the initial
error rate of 11 % error that is obtained with standard backpropagation and
without cleaning the data.

In [2, 5J, we address the problem of writer adaptation. No matter how

268 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

good a writer-independent system becomes, there always will be too many
variations in writing styles to ensure very high recognition accuracy for all
writers. It is therefore important to allow a given writer to fine-tune the
system to his own handwriting. We have developed techniques that allow
the same neural feature extractor to be kept and retrain only the classifi­
cation module. The simplest method consists in using a nearest-neighbor
classifier instead of the last layer of the network. A selection of prototypes
is stored in the representation of the neural feature extractor. Patterns are
classified according to the class of their nearest prototype. When the sys­
tem fails to recognize a pattern, an additional prototype is generated. New
classes can be introduced, allowing for customizations of the recognizer by
adding new sets of symbols and gestures. Performing nearest-neighbor clas­
sification in the representation of the neural feature extractor, as opposed
to the network input representation, is advantageous for two reasons: few
patterns are required for adaptation (usually only one or two), thanks to
the robustness of the representation; and little storage is required, thanks
to the compactness of the representation. Using an optimal margin classi­
fier instead of the nearest-neighbor classifier, the same accuracy is retained
while recognition speed is improved and fewer prototypes are needed. This
enables us to reach very high recognition accuracies for most writers (less
than 1 % error) with fast adaptation and at the expense of no recognition
speed degradation.

7.3.2 HAND-PRINTED WORD RECOGNITION

In [6, 7], we address the harder task of recognizing hand-printed words that
are not a priori segmented into letters. This task involves the combination
of modules shown in Fig. 7.7. We report results obtained with two methods
of recognition-based segmentation. The methods are designed to work in
the ''run-on mode," where there is no constraint on the spacing between
characters. While both methods use a neural network recognition engine
and a graph-algorithmic postprocessor, their approaches to segmentation
are quite different.

The experiments are carried out on data from a large variety of writers
which were collected in the cafeteria of an AT&T facility. We collected ap­
proximately 9000 one- to five-letter words, which we separated into 8000
for training and 1000 for testing. Short words (one to three letters) are ran­
dom combinations of all letters, and longer words are legal English words.
Another set of 600 English words of any length (from an 80,000-word dic­
tionary) also is used for testing. Our best result is 11% word error rate on
that last set, using lexical checking.

I. Guyon, J. Bromley, N. Math~, M. Schenkel, H. Weissman 269

Fig. 1.1. The architecture of the hand-printed word recognizers.

INSEG

We call our first method INput SEGmentation, or INSEG, because of the
key role played by the segmentation preprocessor. The INSEG technique is
inspired by earlier work in optical character recognition [14]. A set of heuris­
tics is used to determine likely segmentation points, or "tentative cuts,"
For the recognition of on-line hand-printed characters, pen-lifts are very
natural tentative cuts. Our segmentation preprocessor uses both pen-lifts
and spaces to cut the data stream and define a set of "tentative characters,"
usually a small superset of the valid characters (Fig. 7.8) .

An interpretation graph is built with the recognition scores of all tenta­
tive characters (Fig. 7.8). The transition probabilities are simply set to the
inverse of the preceding node fan-out and do not include information about
the relative position of the tentative characters [31] nor the frequencies of
letter successions in English [32] . The segmentation postprocessor searches
the K-best paths in the graph. In the case of the figure, the best path is
"UFT." But if the word is written by an English-speaking person, we would
rather select the second-best path "LIFT," which is a valid English word.
In practice, we use up to 20 best paths and try to match them with the
closest English words using the "ispell" program [33]. The words thus ob­
tained are reordered using the interpretation graph. The valid English word
with the highest score is selected. Using as a recognition engine the TDNN
described in Sec. 7.3.1, we obtain a word error rate on the short-word data
of 29% without lexicon and 23% with lexicon.

270 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

L: 0.6
C:O.2

Fig. 7.S. Example of an interpretation graph produced by the INSEG system.
The first two best scores are shown on top of each box. The transition weights
indicated below the arrows are just the inverse of the preceding node fan-out.
The best path "UFT" has a score of O.lD. The second-best path "LIFT" has a
score of only 0.07, but it will be preferred when lexical checking is used.

We have found that better recognition rates are obtained by optimizing
the overall system: recognizer and segmentor. This is done by retraining
the TDNN with both examples of valid characters and counterexamples of
characters. These counterexamples correspond to mistakes of the segmen­
tation preprocessor, such as incorrect splitting of characters or incorrect
groupings of strokes. If the correct interpretation is not the best path in
the interpretation graph, the segmentation postprocessor pursues its search
until the nth path gives the correct interpretation. All of the incorrect paths
up to the (n - 1)th are used as counterexamples to retrain the network.
With such retraining, much improvement is obtained. The word error rate
without lexicon drops to 18% and with lexicon to 15%, on the short-word
test set.

Our best performances are obtained using retraining and by combining
two different neural networks with a voting scheme: a TDNN and a two­
dimensional convolutional network [34]. On the short-word test set, we
reach, without lexicon, a word error rate of 13% and, with lexicon, 10%.
On the long-word test set, we reach an error rate of 23% without lexicon and
11 % with lexicon. It should be emphasized that the test sets are not cleaned
from mislabeled and meaningless patterns that are introduced during data

I. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 271

collection. The error rates we obtain are more than three times smaller than
the error rate obtained by a commercial recognizer tested on the same data.

OUTSEG

The INSEG system is well suited for the recognition of characters sep­
arated by pen-lifts. For connected handwriting, we prefer an alternative
segmentation technique which does not presume any segmentation points
prior to recognition. We call this other technique OUTput SEGmentation,
or OUTSEG.

The segmentation preprocessor presents to the recognizer a window of
the input signal. The window is shifted in time to show the next tentative
character. Therefore, the task of the segmentation preprocessor is trivial.

Scores for the different tentative characters are obtained as an ordered
sequence of score vectors (Fig. 7.3). Both the location and the interpretation
of the characters are determined by the segmentation postprocessor which
therefore handles the segmentation per se. Hence the name OUTSEG.

How does the segmentation postprocessor proceed? If no character is
present in the input window, all of the network outputs are below a cer­
tain activation threshold. Conversely, if a character is present in the input
window, there is a high activation value for the neuron corresponding to
the correct interpretation. We avoid, however, the very delicate problem
of tuning thresholds by filtering the sequence of output scores. We use a
digital filter that implements a model of character duration and of dura­
tion of the spacing between characters. In Fig. 7.9, we show the sequence of
network outputs and the interpretation path selected by our postprocessor.
Several high scores are filtered in this path by the duration modeling.

We first use a TDNN trained on isolated characters only, similar to the
one described in the previous section. We obtain with that network a very
large error rate: more than 80% word error, with or without lexicon, on the
short-word database.

As in the case of the INSEG method, we have found that it is important
to retrain the TDNN with entire words. With retraining, the network learns
both to recognize characters and to detect transitions between characters
by giving a low score to all outputs when the window is not centered on a
character. We use for that purpose the position-invariant training technique
proposed in [35, 36J. We also have tried to optimize the overall system,
recognizer plus segmentor, by backpropagating errors through the duration
model, with similar success. After retraining, the word error rate on the
short-word data reduces to 21 % without lexicon and 17% with lexicon. On
the long-word data we obtain 49% without lexicon and 21% with lexicon.

The error rates of OUTSEG are about twice as small as that of the com­
mercial recognizer tested on the same data. They are, however, not quite as
good as that of INSEG on this task. This is understandable since uppercase
printed letters are relatively easy to segment with a good heuristic segmen-

272 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

~
0
tl
M
'zJ
(j)
:x
H
Y
!:>':
t-'

~
0
'U
10
:;0
(J)

>-'l
c:::

~
X
to<
N

[

I ,
I ,
I ,
I ,
I ,
I ,
I ,

L0tSP

iI

•
0 0

-
p

I \
I \
I ,
I \
I

t
1111111111111111111111111111111111111 I>-

01 2 ...

Fig. 7.9. Example of an output from the OUTSEG system. Each row in the
matrix represents the score of one output unit for a different input window po­
sition in tim1l. Each column represents the scores for all units for one particular
position of the time window. The darker the boxes, the more confident the unit
is in its interpretation. The last row in the matrix is 1 minus the sum of all the
other scores in a given column. It represents the probability that no character
is detected. The dashed line indicates the best path found by the postprocessor,
using a duration model of the characters and the character transitions.

tation preprocessor. In more than 95% of the words in our database, letters
are separated by spaces and/or pen-lifts. Although we do not have direct
evidence, the experiments performed in [37J are an indication that, on cur­
sive handwriting, for which good tentative cuts are difficult to determine,
OUTSEG would work better than INSEG.

Combination of INSEG and OUTSEG

We would like our end system to be able to recognize printed characters,
both cursive script and also mixed styles. Currently existing systems are
good at recognizing either printed letters or cursive. We propose a way of
combining INSEG and OUTSEG into a single system that has the good
features of both systems and permits mixed styles to be handled. We call
this new method INOUTSEG.

1. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 273

To extend INSEG to cursive recognition, one would need to introduce
more tentative cuts than pen-lifts, perhaps minima of the speed of the
pen. But, multiplying the number of tentative cuts is unnecessary for the
recognition of hand-printed characters, and can only result in performance
degradation. It is also unclear whether tentative cuts other than pen-lifts
could be found. On the other hand, OUTSEG can spot character locations
without making use of heuristic tentative cuts, but it makes more mistakes
than INSEG when characters are nicely separated by pen-lifts.

Our idea is to rely on the INSEG preprocessor to determine tentative
cuts in input space that are reported in the OUTSEG output space (see
Fig. 7.1O). We then detect inconsistencies between the INSEG and OUT­
SEG segmentations. When OUTSEG finds multiple characters between two
consecutive tentative cuts, additional "virtual cuts" are introduced to sep­
arate them. The list of tentative cuts and virtual cuts thus obtained is
subsequently used to build an interpretation graph, such as the one de­
scribed in Fig. 7.8. This INOUTSEG graph is filled with the recognition
scores of INSEG and OUTSEG combined with a voting scheme.

In the example of Fig. 7.10, the INSEG system uses a neural network
trained to recognized uppercase and lowercase letters, and the OUTSEG
system uses a network trained to recognize cursive words. The figure shows
that OUTSEG cannot recognize the uppercase letter "M" and makes an
insertion error at the end of the word. On the other hand, INSEG can­
not separate the connected letters "ed." The combined system, however,
correctly recognizes the word. Our system still is under development, and
experimental results will be reported elsewhere.

7.3.3 SIGNATURE VERIFICATION

The problem of signature verification is quite different from that of char­
acter recognition. For handwriting recognition, the correct interpretation
must be discovered, not the identity of the writer. For signature verifica­
tion, the correct interpretation (writer name) is given, but what needs to
be discovered is the identity of the writer (good guy or forger?).

Most approaches to this problem rely on human expertise to devise dis­
criminatory similarity measures. In our approach, we train a "siamese"
neural network (see Secs. 7.2.5 and 7.2.7 and Fig. 7.11) to learn a similar­
ity measure from examples.

In [4], we address the signature verification task with the problem of
reducing credit card fraud in mind. The credit card holder would give
several samples of his own signatures at the bank, and then an encrypted
pattern of his signature would be stored on his credit card. At the retail
site, his signature would be matched against the pattern stored on his card.

The experiments are carried out on data collected among the staff at
AT&T and NCR, and on data collected at Wright State University. A
total of approximately 3300 signatures was obtained, including genuine

274 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

<al '\1 i)< gj
M

curv

~~--------~~--'-------~--------r-----r-----'

~ ,dl I,d
~ : I I q
3' ,II', l!!
i5 , ,III
:8 I ,1,1
~ '* , ' I I I I I ,
~)V ,1 1 '111 1
x 1\ I' I
~~""""~~,, .. .m~~ ~~ .. ~ ~ ~ 1 2 3 5 6

(c) OUTSEG recognized: vlxedd

1-2 1-3

X
2-3

(d) INSEG recognized:

(e) INOUTSEG recognized: Mixed

Fig. 1.10. Example of combination of input and output segmentation. (a) The
original word. (b) The data as presented to the OUTSEG network. (c) The se­
quence of output scores obtained by the OUTSEG network. (d) The INSEG
interpretation graph. (e) The INOUTSEG interpretation graph, including IN­
SEG tentative cuts, OUTSEG virtual cuts, and the scores of both INSEG and
OUTSEG combined with a voting scheme. In (b) and (c), the tentative cuts se­
lected by INSEG (coinciding with some pen-lifts) are shown as bold vertical lines;
the virtual cuts provided by OUTSEG are shown as vertical dashed lines. In (d)
and (e), arrows are not represented; each box is associated with the tentative
character delineated by two cuts whose numbers are at the bottom of the box;
in each box, we show only the interpretation associated to the best score whose
intensity is indicated with the grey shading (the darker, the larger).

1. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 275

Fig. 7.11. Architecture of the siamese neural network.

signatures and forgeries . The amount of effort put into producing forgeries
varied but reflected rather well the spectrum of real-life data since many
forgers attempting to use somebody else's credit card produce effortless
forgeries and may even use their own signature.

Training of the "siamese" network is performed by presenting pairs of
signatures. We train the neural feature extractor to produce a representa­
tion of the signatures such that there is a small angle between two genuine
signatures from the same person, and a large angle between two distinct
signatures and between a signature and its forgery. The angle is measured
by the "similarity measurer" (Fig. 7.11) by calculating the cosine between
the output vectors of the two neural feature extractors (see Sec. 7.2.5). If
both signatures are produced by the same person (genuine signatures), the
desired cosine is 1, otherwise it is negative or O. The exact value of the
desired value does not influence the performance significantly.

During utilization, the cosine similarity measure is replaced by a Gaus­
sian similarity measure (Sec. 7.2.5) . Credit card holders usually do not
contribute to the data that are used to train the neural feature extractor.
They provide only a few examples of their signatures, which are encoded as
the representations of the outputs of the neural feature extractor. We build
a Gaussian model of these patterns, whose mean becomes the reference
prototype for the user's signature and whose covariance matrix is used to
determine the width and orientation of the Gaussian window.

The siamese network fits the problem quite nicely. After training, a model
signature can be encoded in the representation of the neural feature extrac­
tor. It is therefore both compressed significantly and encrypted, which is
suitable for storage on a credit card magnetic strip. During verification, the

276 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

signature to be checked is processed at the retail place by an identical neu­
ral feature extractor and matched to its model. The model can be updated
constantly with examples of successfully verified signatures.

In [4], several network architectures are tried. The networks are trained
with 7700 signature pairs, 50% being pairs of genuine signatures from the
same person, 40% genuine forgery pairs, and 10% pairs of different signa­
tures. The networks then are tested on a separate set of signatures from
different people comprising about 500 genuine signatures and 400 forgeries.
For each person, a model signature in the neural feature extractor repre­
sentation is built from six signatures. The model is tested with six other
genuine signatures and forgeries.

By varying a rejection threshold on the output of the system, one can
monitor the trade-off between accepting too many forgeries and rejecting
too many genuine signatures. Our best network permits detecting 80% of
the forgeries while rejecting only 5% of the genuine signatures.

7.4 Conclusion

We presented a neural network approach to solve several problems in on­
line handwriting recognition. Our design choices make consistent use of the
sequential nature of the data, in both the preprocessing and the neural
network architecture (a TDNN). The initial success of our writer- indepen­
dent isolated character recognizer motivated us to address tasks of greater
difficulty. We reported here on applications to signature verification and
the recognition of hand-printed words with no spacing constraints between
characters. On this last task, our system outperforms a widely distributed
commercial recognizer tested on the same data. While we still are improving
our first system, we already are developing the next generation, which will
try to recognize mixed styles including hand-printed letters and cursive.

Acknowledgments. The work described in this overview was conducted in
Larry Jackel's department at Bell Labs and is the result of the joint ef­
fort of many researchers, including Paul Albrecht, Yoshua Bengio, Jim
Bentz, Bernhard Boser, Leon Bottou, John Denker, Donnie Henderson,
Wayne Hubbard, Yann Le Cun, Annick Leroy, Cliff Moore, Craig Nohl,
Howard Page, Ed Pednault, Doug Riecken, Eduard Sackinger, Roopack
Shah, Vladimir Vapnik, and Anne Weissbuch. Collaborations with our col­
leagues at ETH-Ziirich, and our colleagues at Bell Labs doing research on
Optical Character Recognition and Multimedia Communications are grate­
fully acknowledged. The simulations were performed on the neural network
simulator SN of Neuristique Inc., written by Leon Bottou and Yann Le
Cun, and on the network simulator v-lisp written by Bernhard Boser.

I. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 277

REFERENCES

[I] I. Guyon, P. Albrecht, Y. Le Cun, J. Denker, W. Hubbard (1991) Design of a neural
network character recognizer for a touch terminal. Pattern Recognition 24(2)

[2] I. Guyon, D. Henderson, P. Albrecht, Y. Le Cun, J. Denker (1992) Writer inde­
pendent and writer adaptive neural network for on-line character recognition. In:
From Pixels to Features III, S. Impedovo (Ed.) (Elsevier, Amsterdam)

[3] N. Matic, I. Guyon, L. Bottou, J. Denker, V. Vapnik (1992) Computer-aided clean­
ing of large databases for character recognition. Proc. ICPR, Amsterdam, (IEEE,
New York)

[4] J. Bromley, J. Bentz, L. Bottou, I. Guyon, L. Jackel, Y. Le Cun, C. Moore, E.
Sackinger, R. Shah (1993) Signature verification with a siamese time delay neural
network. In: Applications of Neural Networks to Pattern Recognition, I. Guyon,
P.S.P. Wang (Eds.) (World Scientific, Singapore)

[5] N. Matic, I. Guyon, J. Denker, V. Vapnik (1993) Writer adaptation for on-line
handwritten character recognition. In: ICDAR'93, Tokyo

[6] M. Schenkel, H. Weissman, I. Guyon, C. Nohl, D. Henderson (1992) Recognition­
based segmentation of on-line hand-printed words. In: Advanr.es in Neural Infor­
mation Processing Systems 5 (NIPS 9f), (Morgan Kaufmann, San Mateo, CA)

[7] H. Weissman, M. Schenkel, I. Guyon, C. Nohl, D. Henderson (1993) Recognition­
based segmentation of on-line run-on hand-printed words: Input VB. output seg­
mentation. Pattern Recognition, submitted

[8] C.C. Tappert, C.Y. Suen, T. Wakahara (1990) The state of the art in on-line
handwriting recognition. IEEE 1rans. PAMI12(8):787-808

[9] P. Gallinari (1990) A neural net classifier combining unsupervised and supervised
learning. In: Proc. International Neural Network Conference, Vol. 1, Paris, July
1990 (IEEE, New York), pp. 375-378

(10) K.J. Lang, G.E. Hinton (1988) A time delay neural network architecture for speech
recognition. Technical Report CMU-cs-88-152, Carnegie-Mellon University, Pitts­
burgh PA

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K. Lang (1989) Phoneme recog­
nition using time-delay neural networks. IEEE 1rans. Acoust. Speech Signal Proc.
37:328-339

[12] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard,
L.D. Jackel (1990) Back-propagation applied to hand-written zipcode recognition.
Neural Comput. 1(4)

[13] O. Matan, C.J.C. Burges, Y. Le Cun, J. Denker (1992) Multi-digit recognition
using a Space Dispacement Neural Network. In: Advances in Neural Information
Processing Systems 4, Denver, J.E. Moody et al. (Eds.) (Morgan Kaufmann, San
Mateo, CA)

[14] C.J.C. Burges, O. Matan, Y. Le Cun, D. Denker, L.D. Jackel, C.E. Stenard, C.R.
Nohl, J.I. Ben (1992) Shortest path segmentation: A method for training neural
networks to recognize character strings. In: JJCNN'9f, Vol. 3, Baltimore (IEEE,
New York)

[15] L.-Y. Bottou (1988) Master's thesis, EHEI, Universite de Paris 5, Paris, France

278 7. Penacee: A Neural Net System for Recognizing On-Line Handwriting

[16] D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986) Learning internal represen­
tations by error propagation. In: Parallel distributed processing: Explorations in
the microstructure of cognition, Vol. I, (Bradford Books, Cambridge, MA), pp.
318-362

[17] Y. Le Cun (1989) Generalization and network design strategies. In: Connectionism
in Perspective, R. Pfeifer, Z. Schreter, F. Fogelman, L. Steels (Eds.) (Elsevier,
Zurich, Switzerland)

[18] B. Boser, 1. Guyon, V. Vapnik (1992) A training algorithm for optimal margin
classifiers. In: Fifth Annual Workshop on Computational Learning Theory (ACM,
Pittsburgh, PA), pp. 144-152

[19] L.R. Rabiner (1989) A tutorial on Hidden Markov Models and selected applications
in speech recognition. In: Proc. IEEE, Vol. 77-2 (IEEE, New York)

[20] R.P. Lippmann (1989) Review of neural networks for speech recognition. Neural
Comput. 1(1):1-38

[21] J.S. Bridle (1990) Alpha-nets: A recurrent "neural" network architecture with a
hidden markov model interpretation. Speech Commun. 9(1):83-92

[22] H. Bourlard, C. Wellekens (1990) Links between markov models and multilayer
perceptron. IEEE 7Tans. Pattern Anal. Machine Intell. 12-12:1167-1178

[23] E. Levin, R. Pieraccini, E. Bocchieri (1993) Time-warping network: A neural ap­
proach to hidden markov model based speech recognition. In: Applications of Neu­
ral Networks to Pattern Recognition,!. Guyon, P.S.P. Wang (Eds.) (World Scien­
tific, Singapore)

[24] E. Sackinger, J. Bromley (1991) Neural-network and k-nearest neighbour classifiers.
Technical Report TM 51323-919819-01, AT&T Bell Labs.

[25] P. Baldi, Y. Chauvin (1992) Neural networks for fingerprint recognition. Neural
Comput., to appear

[26] 1. Guyon, V. Vapnik, B. Boser, L. Bottou, S.A. Solla (1992) Structural risk mini­
mization for character recognition. In: Advances in Neural Information Processing
Systems 4, Denver, J.E. Moody et al. (Eds.) (Morgan Kaufmann, San Mateo, CA)

[27] E.B. Baum, D. Haussler (1989) What size net gives valid generalization? Neural
Comput. 1(1):151-160

[28] V. Vapnik (1982) Estimation of Dependences Based on Empirical Data (Springer­
Verlag, New York)

[29] L. Bottou (1991) Une approche theorique de l'apprentissage connexionistej Appli­
cation Ii la reconnaissance de la parole. PhD thesis, University of Paris XI, Paris,
France

[30] H. Drucker, R. Schapire, P. Simard (1993) Boosting performance in neural net­
works. In: Applications of Neural Networks to Pattern Recognition, I. Guyon,
P.S.P. Wang (Eds.) (World Scientific, Singapore)

[31] E. Pednault (1992) A hidden markov model for resolving segmentation and inter­
pretation ambiguities in unconstrained handwriting recognition. Technical Report
TM 11352-920929-01, AT&T Bell Labs.

[32] T. Fujisaki, H.S.M. Beigi, C.C. Tappert, M. Ulkeson, C.G. Wolf (1992) On-line
recognition of unconstrained handwriting: a stroke-based system and its evaluation.
Preprint

r. Guyon, J. Bromley, N. Matic, M. Schenkel, H. Weissman 279

[33] R.E. Gorin et al. (1991) UNIX™ man-page for ispell, version 3.0.06 (beta).
09/17/91.

[34] A. Weissbuch, Y. Le Cun (1992) Private communication

[35] J. Keeler, D.E. Rumelhart, W-K. Leow (1991) Integrated segmentation and recog­
nition of hand-printed numerals. In: Advances in Neural In/ormation Processing
Systems 9, R. Lippmann et al. (Eds.) (Morgan Kaufmann, San Mateo, CA), pp.
557-563

[36] J. Keeler, D.E. Rumelhart (1992) A self-organizing integrated segmentation and
recognition neural net. In: Advances in Neural In/ormation Processing Systems 4,
J.E. Moodyet al. (Eds.) (Morgan Kaufmann, San Mateo, CA), pp. 496-503

[37] D. Rumelhart et al. (1992) Integrated segmentation and recognition of cursive
handwriting. In: Third NEC Symposium Computational Learning and Cognition
(Princeton, New Jersey) (to appear)

8

Topology Representing
Network in Robotics
Kakali Sarkar and Klaus Schulten!

with 6 figures

Synopsis. We consider the visually guided control of the grasping move­
ments of a highly hysteretic five- joint pneumatic robot arm. For this
purpose we apply a modified version of the so-called topology represent­
ing network algorithm, a vector quantization algorithm that also learns
to represent neighborhood relationships. The notion of neighborhood re­
lationships allowed us to average the behavior of neurons which represent
similar tasks, both during the training and in generating control signals in
the mature state. Based on visual information provided by two cameras,
the robot learns to position and orient its end effector properly for the
object to be grasped. For simplicity, we consider the grasping of cylindri­
cal objects only. The control is comprised of two stages. In the first stage,
the end effector approaches the side of the cylinder facing the robot base;
and in the second stage, the end effector grasps the cylinder. Training of
the first stage involves a brief episode of supervised learning to prime the
network. The control is achieved through a visual feedback loop: for both
stages of the motion the system detects the error to target and applies a
linear correction. This correction is achieved through a training that yields
a vector-quantized representation of a zero-order signal of joint pressures
and a first-order correction through Jacobian tensors which relate the error,
expressed in terms of camera coordinates, to correct joint pressures. The
network is trained satisfactorily after about 300 trial movements, with a
residual average error of 1.35 camera pixels. Besides a demonstration of the
technical feasibility of control through topology representing networks, this
chapter provides a tutorial for technical applications of such networks. The
algorithm behind a topology representing network, its training and employ­
ment for task control, is described in complete detail to provide the reader
with a comprehensive view of this important class of neural networks in
the context of a technical application.

lDepartment of Physics/Beckman Institute, University of Illinois, Urbana, IL
61801, USA.

282 8. Topology Representing Network in Robotics

8.1 Introduction

In the early days of research in neurocomputing, networks were seen as de­
vices that were capable of computing logic functions [1]. Such a mechanistic
view of neurocomputing became popular mainly because of the fact that
computation traditionally was viewed in light of logic gates and switching
algebra. However, we have gradually come to know the bottlenecks of the
traditional deterministic computer; we observe that the human brain can
easily outperform today's supercomputers in tasks where it processes mul­
tidimensional analogue data and probabilistic, noisy information. It is now
generally believed that an understanding of boolean logic and switching
algebra may not enhance our perspective about neuronal information pro­
cessing in the brain. The quest for a theoretical framework to quantify the
underlying computation process has brought computer scientists, physi­
cists, and biologists together. Vigorous research efforts during the last two
decades have helped to develop a different perspective about neurocomput­
ing. This interdisciplinary effort has resulted in many promising real-world
applications such as speech processing [2], optimization [3], complex control
systems [4, 5], and more.

Grasping of objects is one of the most common tasks frequently per­
formed by human beings. Even though this seems to be easy and often
spontaneous to most of us, from the control system perspective grasping
is complicated. The object to be grasped has to be identified in the envi­
ronment by its location and by other features. Then the trajectory of the
arm movement has to be planned in such a way that it does not collide
with any obstacle. Recently, many efforts have been made [6-10] to under­
stand the control mechanism of such complex maneuvers and to make use
of these fundamental control techniques to develop viable artificial neural
control systems. In this chapter we focus mainly on the control of the ex­
ecution of grasping motions, assuming an extremely simplified solution for
the recognition of the target and the arm's current posture: we provide a
set of suitable light-emitting diodes (LEDs) on the arm and the target in
an otherwise darkened space.

Nevertheless, the problem of executing motions to grasp a cylinder placed
in all possible positions and orientations in a robot's workspace is a dif­
ficult one. The motion must involve at least five degrees of freedom and
be sufficiently precise. The precision must be achieved for an arm that is
subject to random and hysteretic behavior. In fact, in the present case, the
controlled arm is driven pneumatically with effectors which are subject to
strong hysteresis and oscillations as characterized in [11, 12]. The required
control only can be achieved when the network, besides learning the con­
trol signals for a sufficiently fine set of arm postures, also learns tensors
which allow the arm to linearly correct deviations from the target due to
hysteresis and other effects.

The corresponding control problem, in principle, can be formulated in

Kakali Sarkar and Klaus Schulten 283

terms of a table look-up algorithm that provides for each target cylinder a
table entry which produces the suitable air pressures to move the arm. As
was already stated, the entries of the table need to be a set of pressures
to move the five degrees of freedom of the arm (see Section 2) as well as
a tensor, the Jacobian connecting the deviation from the target, expressed
as a vector of five coordinates, to the vector of pressures driving the arm
(see Sec. 3). Obviously, such a table look-up program cannot be arbitrarily
fine. However, even a coarse grid of, say, 10 points along each coordinate
for a five-dimensional space leads to a very large number (100,000) of table
entries. Obviously, an optimal choice which, for a given number of entries,
produces the smallest error is very desirable. An important ingredient of
the criterion stated is the probability distribution of arm postures under
normal working conditions. The neural networks used in our study obey
such criterion in that they assign their table entries as a result of a training
in which arm postures are requested with a frequency distribution which
matches that occuring in normal working conditions. In fact, the algorithm
allows life-long learning such that the table entries can be continuously
adjusted to the work experience.

The problem to optimally assign a finite number of table entries to a con­
tinuous space, often of very high dimension, is called the vector quantization
problem. The neural network algorithm adopted here provides a solution
for vector quantization as discussed in [13]. However, there is another im­
portant attribute of the control problem that also must be captured by
the look-up algorithm in order to be efficient, namely the topology of the
control space. This implies that the table entries develop threads between
each other which connect entries assigned to arm postures which are very
close to each other. These threads serve two purposes, one during training
and one after training. The threads can be employed when the table en­
tries are generated, i .. e., when the networks are trained. Entries connected
through threads contain similar information, and, hence, they can share
the improvements to their entries during the training period. The result
is a dramatic decrease of the training period since any training episode is
shared by many table entries. A particularly important aspect of the shar­
ing of information among table entries is that this feature makes the system
much less sensitive to the initial, usually random, entries in the table. In
many instances, when table entries are trained separately, convergence to a
suitable control program depends on the initial table entries, i.e., the radius
of convergence of the training algorithm is not infinite. However, the shar­
ing of table entry updates increases the radius of convergence enormously,
as was demonstrated in [14].

The threads between entries are also very beneficial after training, when
the system is used to control the arm. The threads allow one to average the
control signals (pressures) to the arm over table entries connected through
a thread. Such an average improves performance at the early stages of
training and can also increase the accuracy of the control: if N units are

284 8. Topology Representing Network in Robotics

(Air SUPPlY)

Servo-valve
Unit

Servo-drive
Unit

Serial Interlace Circuit Board ('mage)
___ P_r~o~c~e~s~s_ln~g~ __ ~

(Neural Network software) (RObot Control software)

Fig. 8.1. Block diagram of the SoftArm robot system [11].

pooled, each with an error €, the error after averaging (assuming, for the
sake of simplicity, that the table entries are coded for exactly the same
posture) is f/v'N.

The threads between the table entries reflect the topology, i.e., neighbor­
hood relationships, of the control space. In the present case, the topology
of the control space is obviously that of]R5 since all arm postures required
to grasp a cylinder form a manifold embedded in the five-dimensional Eu­
clidean space. In fact, in the algorithm presented below, the threads be­
tween the table entries are never actually established. Rather, we use the
Euclidean metric to establish a closeness ranking among table entries and
use this ranking instead of threads. However, in many cases, a dimension
or metric is not obvious and needs to be established while a system is
confronted with training tasks. In an early neural network scheme for con­
trol based on Kohonen networks [15, 16J, such a dimension needed to be
specified beforehand. Theses schemes preserved the given dimension (topol­
ogy) in that they assigned table entries to the task space while keeping
the threads, e.g., those representing a two-dimensional grid, intact. Exam­
ples addressing the control of robots in computer simulations are found in

Kakali Sarkar and Klaus Schulten 285

[17, 10, 18, 19, 14]. A comprehensive presentation of these networks in a
variety of applications, ranging from brain maps to robot control, can be
found in [20]. This textbook also discusses at length the statistical mechan­
ical analysis of the convergence properties of the network and fluctuations
of the network's table entries. A particularly interesting application of these
networks to visual brain maps can be found in [21].

When we attempted to apply neural network algorithms to control real,
i.e., not simulated, robot arms, we established that networks with an a
priori topology, like generalized Kohonen networks, are not optimal. In­
stead, we appended the vector quantization scheme described in [13] with
Hebbian rules which provided the required threads between table entries.
The resulting topology representing the network had been introduced in
[22] and discussed at length in [23]. The network has been applied succes­
fully to control an industrial robot with precise response to ~ontrol signals
[24,25] and also to a pneumatically driven robot [11], the same as the one
employed in the present study.

In this chapter we present an extension of our previous work [11] on the
control of a pneumatic robot arm by incorporating a control mechanism for
the grasping of cylinders of arbitrary orientation. In the following section
we first characterize the control problem describing the arm geometry and
the ideosyncracies of the pneumatic actuators of the robot arm used. In
Sec. 3 we present the topology representing network algorithm employed
for control. The section provides all of the algorithmic steps involved in
complete detail, but it does not explain the algorithm exhaustively as is
done in [23]. However, the detailed presentation of the algorithm in the
present contribution might be considered by many readers a better expla­
nation of topology representing networks than any general exposition. In
Sec. 4 we demonstrate how the algorithm, after training, performs grasping
motions.

8.2 Problem Description

The robot-camera system is shown schematically in Fig. 8.1. This system
has been described in detail in [11]. The robot contains a pneumatic arm
with five joints. At each joint, two or four rubber tubes are connected by
chains across sprockets. The rubber tubes are supplied with compressed air
from an air compressor. When differential air pressures are supplied to the
tubes, differing equilibrium lengths result, which induce a rotation of the
joint to a new equilibrium point.

There are five servo drive units for five joints, each of which takes signals
from the host computer and sends current output to the servo valve unit.
The servo valve unit then converts this electrical signal to pressure infor­
mation, i.e., it controls the pressures inside the rubber tubes by opening or
closing the electrical valves. Two cameras observe the location of the end

286 8. Topology Representing Network in Robotics

-~----- ------~---

400

200

~--.-------~~-.~ -.-- ~ -,-, --._----j

400 800 1200 1600

pressure

Fig. 8.2. Pressure versus position plot for joint 1. Hysteretic behavior of joint 1,
of the softarm. The pressure difference in the agonistic and antagonistic tubes of
joint 1 was first increased and then decreased.

effector or the cylinder to be grasped and send back the information to the
host computer, which then finds the image coordinates in pixels with the
help of two parallel image processors.

The servo drive units can be used to control the robot arm in two modes,
a pressure-control mode and a position-control mode [11]. The present work
has been carried out in the pressure-control mode. The relation between the
joint pressures and position is highly nonlinear and also exhibits hystere­
sis. When the pressure is increasing, the pressure-position relation follows
a particular path, but it follows a different path while the pressure is de­
creasing again. Figure 8.2 shows such type of behavior for joint 1.

The end effector of the robot arm is a two-fingered one and is presented
schematically in Fig. 8.3. The movement of the end effector is controlled
by the fourth and fifth joints. Each joint produces a motion which is a
combination of rotational motions about the axes X X' and YY'. Pure
rotation about X X' and YY' also can be produced, but each of them is a
function of both the fourth and fifth joint pressures.

In the present work, we consider the grasping of cylindrical objects only.
In order to grasp such an object, several issues need to be addressed. First,
the point of grasping should be very close to the center of mass of the
cylinder. If the center of mass is far from the chosen grasping position, the
generation of undesirable torques makes it difficult to hold the cylinder.
The angle between the axis of symmetry(ZZ') of the cylinder and that of
the end effector(XX') is another important factor. The end effector should
be placed perpendicular to the symmetry axis of the cylinder. In other
words, axis Z Z' should be perpendicular to the plane containing axes X X'

Kakali Sarkar and Klaus Schulten 287

z
p
~---<:J::::! a

y

b

y'

Fig. 8.3. A sketch of the end effector (gripper) and the cylinder to be grasped.

and YY' . These two aspects have played the role of prime significance in
all of our grasping algorithms.

8.3 Topology Representing Network Algorithm

The visually controlled motions for grasping cylinders placed in the arm's
workspace are carried out in two stages: In the first stage, the arm's gripper
is placed in front of the cylinder at a proper orientation as shown in Fig.
(8.3); in the second stage, the arm moves toward the center of the cylinder
and actually grasps it by closing the gripper's fingers. The training proce­
dures of each stage will be described separately below. Control of the first
stage is by far the more difficult problem.

8.3.1 TRAINING OF FIRST-STAGE MOTION

The goal of the first stage of the grasping motion is to generate a set of
pressures in the arm's tubes which place and orient the gripper in front of
the cylinder in a configuration suitable to carry out the second stage of the
grasping motion and actually grasp the cylinder. We refer to the suitable
configuration reached at the end of the first grasping stage as the target
configuration. This configuration is realized through application of a set of
vectors to the tubes of the arm which are collected in a pressure vector P .

The target position for the initial placement of the gripper is determined

288 8. Topology Representing Network in Robotics

as follows: As is shown in Fig. 8.3, we fix two lights at the positions p
and q such that the line joining p and q is coplanar as well as parallel to
the cylindrical axis abo The images of these lights give the representation
of the endpoints of another imaginary cylinder of the same size as the
original, which, however, is placed at a small distance in front of the original
one. The lights appear in the two cameras at points characterized by the
coordinates (Ul,U2,U3,U4)T and (U5,U6,U7,Us)T. As a result, the position
of the target is characterized through an eight-dimensional vector Utarget =
(Ul,U2,U3,U4,U5,U6,U7,US)T. The set of all vectors Utarget in the robot's
workspace form the so-called feature space V c !WI. We seek a training
procedure which, for the first stage of the grasping motion, develops a map
Utarget E V -+ P(Utarget) E:F which assigns to Utarget the proper pressure
vector for P, positioning and orienting the gripper in front of the cylinder.

The robot arm is moved through ten tubes which pairwise act in an
agonistic-antagonistic manner to rotate the arm's joints. The sum of the
two pressures in each agonist-antagonist tube pair determines the stiffness
of the motion. In the present study, the total pressure for each joint was
kept constant during the operation of the system. As a result, the arm
was moved through five independent pressures, one for each joint. The
corresponding pressure vector P is then five-dimensional and the space :F
of joint pressures is then embedded in !R5 •

The goal of the training of the N neurons controlling the first stage of
the grasping motion is to develop first a set of Voronoi cells covering the
feature space V with centers Wk E V, k = 1,2, ... N, and then to develop
a map V -+ :F. The latter map is established through local affine maps
in each of the Voronoi cells, i.e., in the Voronoi cell assigned to neuron k,
through

(8.1)

where Pk and Ak are constants (a vector and a tensor) which are acquired
through the training.

As was stated earlier, the neurons actually achieve their control through
averaging their output P(Utarget). The average involves the neurons that
have Voronoi cells adjacent to each other in the feature space V. To de­
termine the corresponding average, one first needs to determine a ranking
among the neurons which describes which neuron's Voronoi cell contains
the target vector Utarget, which Voronoi cell is second closest, third closest,
etc. Such ranking is achieved as follows: One determines for each neuron
k, k = 1,2, ... N, the distance

Dk(Utarget) = II Utarget - Wk II (8.2)

and then determines a ranking ka, k lo ••. kN-l such that

for m < n.

Kakali Sarkar and Klaus Schulten 289

One then defines

k(r, Utarget) = kr
r(£, Utarget) = m, where km = i.

(8.3)
(8.4)

This ranking can be employed to achieve the desired averaging. We choose
for this purpose the functional form

N

P(Utarget) = 2: a(r(k, Utarget))
k=l

with

a(r) = e- r / 10 .

(8.5)

(8.6)

The softarm poses a challenging control problem due to drift in the re­
lationship between pressures applied to the arm's joints and the resulting
arm configuration. This drift manifests itself on various time scales; on a
very short timescale it is characterized by the hysteretic behavior of the
arm shown in Fig. 8.2. On longer time scales a drift arises due to tem­
perature sensitivity and dependence on time of usage of the mechanical
characteristics of the arm's tubes. Finally, over the lifetime of the softarm
the characteristics of the tubes are subject to wear. The long time changes
can be overcome by retraining the arm. In fact, the algorithms for training
and control of the arm are essentially identical, such that retraining can be
realized during actual usage of the softarm.

The hysteretic properties of the softarm require that one linearly cor­
rects the arm posture to reduce the error d = IIx - Xtargetll, where x
characterizes the current arm posture and Xtarget is the desired posture.
As was specified above, and for the second-stage gripper movement further
below, the posture is characterized by certain vectors of camera coordinates
such that d is measured in units of camera pixels. The corrections of arm
postures seek to reduce the error d below a tolerance

tol(t) = 0.1 + 100· e-t / 120 pixels. (8.7)

Here t counts the number of training steps. The tolerance is chosen large
at the beginning of the training and reduces towards a small final value.

Obviously, one cannot enforce an overall accuracy of less than a camera
pixel. In fact, the remaining final average error measures a little less than
a pixel for each network, and a little over one pixel for the two networks
controlling stage-one and stage-two movements combined (see Sec. 4). To
reduce the error d below the tolerance [Eq. (8.7)J usually requires several
linear correction steps. Accordingly, the control system linearly corrects
the arm posture repeatedly until the tolerance is met. In the course of

290 8. Topology Representing Network in Robotics

the training, when the tolerance is already at a small value, e.g., after 200
training steps, the system typically requires eight correction moves, whereas
it requires only about two to three such moves after training is completed.

The final result of a training procedure is optimal quantities Wk and
Pk, Ak for all N neurons k. At the beginning of the training, these quan­
tities need to be assigned initial values. In many cases [10, 14], the initial
values of quantities to be acquired are chosen randomly. However, such
choices lead to long learning periods that are particularly unfavorable in
cases where "real-world" systems are trained. In the present case, the robot
arm requires about 30 s for a single training step, a period that can lead
to long overall training times. Furthermore, the radius of convergence of
a training procedure [14] might not be infinite, such that some initial as­
signments, will not lead to convergence. Averaging as in Eq. (8.5) increases
the radius of convergence [14], but the radius need not necessarily become
infinite. A finite radius of convergence would require that the initial values
of Wk and P k , Ak be chosen closer to the correct values. For this reason
and, in particular, to speed up the overall training period, we acquired ini­
tial values in a supervised learning scheme. The learning was continued,
after a brief phase, in an unsupervised form. For the sake of a more sys­
tematic exposition of the training schemes chosen, it is more suitable to
present first the unsupervised learning scheme adopted here and then the
supervised scheme, even though the schemes were applied in the opposite
order.

Unsupervised Learning Scheme

The unsupervised learning scheme consists of several hundred training
steps, each of which results in an update of the quantities Wk and Pk, Ak.
The values of these quantities before the learning step are defined as wk1d

and paid A old and after the learning step as w new and pnew A new
k'k k k'k'

We now outline how any particular step proceeds. The learning steps are
numbered t = 1,2, ... , and each learning step consists of ten substeps.

1. A cylinder is placed in a new, usually randomly chosen position in the
workspace of the arm. To ascertain that the cylinder is actually placed
in the workspace, one often adopts a "split brain" procedure [24],
having the robot itself position the cylinder, but then "forgetting"
the control signals (joint pressures in the present case). The cameras
detect the cylinder and provide the vector (VI. ... ,vS)T characterizing
the cylinder position. For the following we define

(8.8)

Actually, the position Vtarget used for the stage-one motion does not
coincide with the cylinder position, but rather is a position between
the robot base and the cylinder, close to the cylinder as defined above.

Kakali Sarkar and Klaus Schulten 291

2. The closeness ranking k(r, Vtarget) of the neurons and its inverse
r(k, Vtarget) is determined, as described in Eqs. (8.3) and (8.4) above:
k(O) is the index of the neuron with its wield closest to Vtarget, k(1)
is the index of the neurOn with its wield second closest to Vtarget,
etc. Conversely, r(119) is the rank of the neurOn with index 119, i.e.,
r(119) = 5 implies that the particular neuron 119 has its wyii sixth
closest to Vtarget.

3. The vectors (weights) wield are updated according to

wi:ew = wield + 'Yw (r(k, Vtarget) , t) . (Vtarget - wield) . (8.9)

'Yw is a function that decays exponentially with the number t of the
learning step as well as with the closeness rank r(k, Vtarget)

'Yw(r, t) = e· e-r/ue-t />..

with e = 0.7, (j = 5, and), = 100.

(8.10)

4. The pressure that is supposed to move the robot arm toward the tar­
get Vtarget then is determined according to the averaging procedure
[Eq. (8.5)]

N

P(Vtarget) = La: [(k, Vtarget]]
k=l

(8.11)

5. The pressure [Eq. (8.11)] is applied to the robot arm's tubes and
the robot moves its gripper. The resulting gripper configuration is
detected by the cameras and the vector of camera coordinates viE V
is supplied. This motion was termed in our previous studies [11] the
coarse movement of the arm.

6. The values Pleld then are updated according to

Pi:ew = Pleld + 'Yp (r(k), t) . [p(Vtarget) - pield - Ak(Vi - Wk)] ,
(8.12)

where P(Vtarget) is the pressure determined in substep 4 and

'Yp(r, t) = e' . e-r/ue-t />..

with e' = 0.8.

(8.13)

7. The system now determines an improved vector of pressures which
attempt to correct the remaining differences between Vtarget and Vi:

S

P fine = P(Vtarget) + L a:(r) [Ak(r) . (u - Vi)] , (8.14)
r=O

292 8. Topology Representing Network in Robotics

where P(Vtarget) is again the pressure determined in substep 4 and
a(r) is given in Eq. (8.6).

8. The pressure P line is applied to the arm's tubes and the robot arm
assumes a new gripper position. This position is detected by the cam­
eras and corresponding camera coordinates v I are supplied. This mo­
tion had been termed fine movement in our previous studies [11].

9. The system employs the remaining error between v I and Vtarget to
update the tensors Ak according to

A;:ew = Ak1d + 'Yj(r, t) . (LlP - Ak~~)Llv).LlvTIILlvlI-2, (8.15)

where

(8.16)

with foil = 0.01 and where we defined LlP = P line - P(Vtarget),
P(Vtarget) as again being the pressure vector of substep 4, and Llv =
vI - Vi'

10. The system determines the error d = IlvI - Vtargetll between the
present gripper position and the target position. In the case where d
exceeds the tolerance [Eq. (8.7)], another correction move is executed
and, accordingly, the system carries out steps 7-9 again; otherwise,
the system goes to the next step. In the case where steps 7-9 are
executed once more, one first redefines Pkew _ Pkld and Akew _
Aold k •

11. The unsupervised learning scheme either terminates when a set num­
ber of steps has been executed or starts another round of substeps,
beginning with substep 1 above.

Supervised Learning Scheme

The supervised learning scheme described now was employed to obtain bet­
ter starting values for the quantities Wk and Pk, Ak, which specify how the
neurons k, k = 1,2, ... N control the initial stage of the grasping motion.
The supervised learning scheme defines a sequence of target camera coordi­
nates Vtarget by actually moving the gripper to the respective configuration
and communicating the respective pressures to the learning scheme. The
procedure, applied in the first nsup = 50 steps of the learning scheme, is as
follows:

1. A random pressure vector P target is chosen.

2. Ptarget is applied to the tubes of the arm and the arm moves to a
new position. The gripper configuration is detected by the cameras
and the corresponding camera coordinates Vtarget are supplied.

Kakali Sarkar and Klaus Schulten 293

3. The closeness ranking k(r, Vtarget) , r(k, Vtarget) of the neurons is de­
termined as in the unsupervised scheme.

4. The vectors (weights) wr/d are updated, as in the unsupervised
scheme, according to

new _ old + «k) t) (old) Wk - Wk 'Yw r ,Vtarget, • U - Wk , (8.17)

where 'Yw is as defined in Eqs. (8.3) and (8.4).

5. The pressure vectors p~ld are updated according to

p~ew = p~ld + 'Yp (r(k, Vtarget) , t) (8.18)

x [Ptarget - p~ld - Ak(Vtarget - Wk)] ,

where 'Yp(r, t) is as defined in Eq. (8.9).

6. The system then determines a pressure vector

N

P(Vtarget) = La trek, Vtarget)] • [Pk(r,vturget}

k=l

+Ak(r,Vturget} . (Vtarget - Wk(r»] .

(8.19)

7. This pressure is applied to the arm's tubes, and, as a result, the arm
moves its gripper to a new position.

8. The cameras detect the new gripper position and supply the corre­
sponding camera coordinates Vi.

9. The system now determines an improved vector of pressures which
attempt to correct the remaining differences between Vtarget and Vi:

S

P fine = P(Vtarget) + 2: a(r) . (Ak(r) • (Vtarget - Vi». (8.20)
r=O

10. The pressure P fine is applied to the arm's tubes and the gripper
moves to a new position.

11. The cameras detect the new gripper position and supply the corre­
sponding camera coordinates V f.

12. The system then updates the tensors A~ld according to

A~ew = A~ld + 'Yj(r(k, Vtarget) , t) (8.21)

[- ~] x (Ptarget-Pfine(Vtarget) - Ak(r)(vtarget-V/»

x (Vtarget - vf)Tllvtarget - vfll-2 .

294 8. Topology Representing Network in Robotics

Note that both expressions updating p~ld and A~ld, i.e., Eqs. (8.18)
and (8.21), include Ptarget, i.e., knowledge of the pressure which
would have guided the arm, except for hysteretic effects, exactly to
the target gripper position characterized by Vtarget.

13. The system determines the error d = Ilvl - Vtargetll between the
present gripper position and the target position. In the case where d
exceeds the tolerance [Eq. (8.7)], another correction move is executed,
and, accordingly, the system carries out steps 9-12 again; otherwise,
the system goes to the next step. In the case where steps 9-12 are
executed once more, one redefines first p~ew -+ p~ld and A~ew -+
Aold

k •

14. In the case where nsup training steps have been completed, the system
terminates; otherwise, it begins another round of substeps beginning
with substep 1 above.

8.3.2 TRAINING OF FINAL GRASPING OF THE

CYLINDER - SECOND STAGE OF MOVEMENT

After the gripper has been placed and oriented properly in front of the
cylinder (see Fig. 8.3) in the first stage of the movement, the gripper needs
to be translated toward the cylinder until the fingers of the gripper enclose
the cylinder sufficiently, i.e., until the center of the gripper coincides with
the center of the cylinder. This translation is referred to as the second stage
of the gripper movement. Since this movement does not require rotation of
the gripper, only three degrees of freedom are active in the second stage
of the movement. This considerably simplifies the control problem which
requires, hence, a lower resolution of the neural network representation such
that 200 neurons suffice.

The algorithm employed here for control and training of stage-two move­
ment has been described in [11]; for the sake of completeness and consis­
tency of notation, we review the algorithm below.

The aim of the algorithm is to guide the center of the gripper g to the
center ofthe cylinder. The latter is characterized through two sets of camera
coordinates, (CI' C2) and (C3, C4), corresponding to the image of the gripper
center in the left and in the right camera, respectively. For the control of
stage-two movement, the map

c-+p (8.22)

is required, where c = (CI' C2, C3, C4) is a four-dimensional vector and p de­
fines the set of pressures to translationally move the gripper. Since the last
two joints of the five-jointed softarm are involved in gripper rotation, they
are not required for the second-stage movement and only three pressures
need to be specified. Accordingly, the map to be determined is ~ -+ !R3 •

Kakali Sarkar and Klaus Schulten 295

The embedding spaces !R4 and !R3 define a (Euclidean) metric " ... II that
will be employed.

The strategy of the present neural network approach, as outlined in [11J,
is to represent the relevant three-dimensional manifold n of gripper centers
C E !R4 through vector quantization involving n neurons, where n = 200.
The neurons labeled i, i = 1,2, ... n are to be assigned positions Wi E ~,
which represent the manifold n of possible gripper centers. To each of the
neurons we also assign a pressure vector Pi E ~ and 3 x 4-tensor ai. The
latter are to be chosen to establish affine maps

(8.23)

which optimally approximate the exact map [Eq. (8.22)J in the Voronoi cell
of neuron i in the manifold n, i.e., in the space of all gripper centers C with
IIc - Will :5 IIc - wmll, m = 1,2, ... n.

In order to determine the pressure that guides the gripper to the cylinder
center Ctarget in stage two of the movement, one determines, in analogy to
the case of stage-one movements, the closeness ranking i(r, Ctarget) and, in­
versely, r'(i, Ctarget). As in the case of a stage-one movement, the pressures
supplied to the robot arm are actually averages of the pressures [Eq. (8.23)J
contributed by neurons of neighboring Voronoi cells. The corresponding av­
erages for the control of stage-two movements are given by

n

P(Ctarget) = L a:(r'(i, Ctarget))
1.=1

where a:(r) is as defined in Eq. (8.6).

(8.24)

The final result of the training procedure is optimal quantities Wi and
Pi, ai for all n neurons i. At the beginning of the training procedure these
quantities are assigned random values. Stage-two movement control does
not require supervised learning to improve the initial values and cuts down
the training period; the reason for this is that the three-dimensional posture
control of a robot arm with averaging of control signals converges rapidly
with an infinite convergence radius, as is demonstrated in [14J.

Learning Scheme

The unsupervised learning scheme consists of several hundred training
steps, each of which results in an update of the quantities Wi and Pi, ai.
The quantities before the learning step are defined as wl'd and pl'd, a1'd ,

and after the learning step wrw and piew , aiew . We now outline how any
particular step proceeds. The learning steps are numbered t = 1,2, ... ,
and each learning step consists of nine substeps.

1. A target position Ctarget is chosen randomly to operate the robot in a
"split brain" fashion: a random set of pressures (Pl,P2,P3) is applied

296 8. Topology Representing Network in Robotics

200~---,

U)

~ .is.
.5 150
g
CD
til
<:
·2

100
~
0
Co
"C
<: .,
<:
0

50

~
<:
CD
.~

200 400 600 800 1000

number of training steps

Fig. 8.4. Positioning and orientation error versus number of steps. This figure
shows the learning curve for the network controlling the first stage of the gripper
movement.

to the tubes of the first three joints of the softarm. The arm moves
to a corresponding position. This position is detected through the
cameras and communicated to the system in the form of the four­
dimensional vector Ctarget. This procedure ascertains that the chosen
positions Ctarget actually belong to the workspace of the arm.

2. The closeness ranking l(r, Ctarget) and its inverse r(l, Ctarget) are es­
tablished.

3. The values wl1d are updated using the expression

wrw = wl1d + 'Yw(r(l,Ctarget),t)· (Ctarget - wl1d). (8.25)

Here 'Yw(r, t) is chosen as

'Yw(r, t) (8.26)

where (J2 = 5.

4. The pressure vector p(Ctarget), which is supposed to move the gripper
center toward Ctarget, then is determined according to the averaging
procedure in Eq. (8.24).

5. This pressure is applied to the tubes of the robot arm and the arm
moves the gripper. The resulting position of the gripper center is
detected by the cameras and the vector Ci of camera coordinates is
supplied.

Kakali Sarkar and Klaus Schulten 297

6. The values Pl1d are then updated according to

p~ew = Plld + I';(r(l, Ctarget) , t) (8.27)

x [P(Ctarget) - Plld - alld(ci - wild)] ,

where p(Ctarget) is the pressure vector determined in substep 4 and
where

1'; (r(l, Ctarget) , t) = e"· e-r/ u2 e-"fi/9

with e" = 0.8 and 0'2 = 5.

(8.28)

7. The system now determines an improved vector of pressures which
attempt to correct the remaining differences between Ctarget and Ci:

n

PJine = P(Ctarget) + La:(r'(l,Ctarget»' a£(r)' (Ctarget - Ci),
r=l

(8.29)
where p(Ctarget) is again the pressure vector determined in substep 4
and where a:(r) is as defined in Eq. (8.6).

8. The pressure PJine is applied to the arm's tubes and the arm assumes
a new gripper position. This position is detected by the cameras and
the corresponding camera coordinates C J are supplied.

9. The system employs the remaining error between Ctarget and cJ to
update the tensors aild :

a~ew = af.:ld + elll e-r/ u . af.:ld(Ctarget - CJ)~cTII~clI-2 (8.30)

with elll = 0.01,0' = 5, and ~C = CJ - Ci.

10. The system determines the error d = IIcJ - Ctargetll between the
present gripper position and the target position. In the case where d
exceeds the tolerance [Eq. (8.7)J, another correction move is executed
and, accordingly, the system carries out steps 7-9 again; otherwise,
the system goes to the next step. In the case where steps 7-9 are
repeated, one first redefines p~ew -+ Pl1d and a~ew -+ al ld .

11. The learning scheme either terminates when a set number of steps
have been executed or starts another round of substeps, beginning
with substep 1 above.

8.4 Experimental Results and Discussion

8.4.1 ROBOT PERFORMANCE

Target locations for the training were selected by moving the end effector
to a position that was chosen by supplying random pressures to the joints.

298 8. Topology Representing Network in Robotics

200~--

200 400 600 800 1000
number of training Steps

Fig. 8.S. Positioning error of the end effector for the neural network controlling
the second stage of gripper movement.

Maximum and minimum pressures for each joint were stated such that
the robot arm picked target positions within a workspace of size 375 mm
x 750 mm x 750 mm.

The camera viewed the resulting position and orientation of two lights
that were fixed at positions p and q (Fig. 8.3) and sent the corresponding
Vtarget to the system.

In each learning step, after the target location Vtarget was chosen, the
robot arm went to a particular arbitrarily chosen position from where it
tried to reach the target location v target using one coarse movement and
several fine movements.

All of the weights Wk, pressures Pk, and Jacobians Ak initially were
assigned randomly. The initial nsup = 50 learning steps followed the super­
vised procedure, introduced in Sec. 3, in which the knowledge of the pres­
sures P target corresponding to the target positions v target were provided.
After the first 50 steps, the robot started to learn in an unsupervised mode,
i.e., the pressures P target no longer were provided. Each trial, on average,
took 30 s to complete. Two networks were trained separately in this way.
One network, consisting of 1000 neurons, was employed for stage-one move­
ments which positioned and oriented the gripper in front of the cylinder.
For S, introduced in Eqs. (8.14) and (8.20), a value of 400 was chosen.
The robot learned a set of five pressures Pk and a set of 5 x 8 Jacobian
matrices. A smaller network of 200 neurons was employed for second-stage
movements leading to grasping. In the later case, only three joints were
used, and here the robot learned a set of 3 x 4 Jacobian matrices in an
unsupervised way, as was already described in [11]. The tolerance level for

Kakali Sarkar and Klaus Schulten 299

30

150

number of trials

Fig. 8.6. Grasping error versus number of trials; the figure here shows the com­
bined error for both of the networks.

error (Utarget - v f) for each learning step was an exponential function of
time [Eq. {8.7)J.

As in Eq. (8.7), in the initial stages the tolerance was set to a high level,
and as the network became mature it became lower and lower. Both of the
networks took 400 steps to reduce the error for both the positioning and
orientation below 3 pixels. Figures 8.4 and 8.5 show error levels for both
of the networks after 1000 learning steps. For a mature network, three fine
movements were sufficient to reduce the error below the tolerance level.

8.4.2 COMBINATION OF Two NETWORKS

FOR GRASPING

After the training was completed, the mature networks were tested for
grasping a cylinder. The combined network, trained first by the supervised
and then by the unsupervised algorithm, was used to place the robot grip­
per in front of the actual cylinder by sending visual inputs from two lights at
positions p and q (Fig. 8.3). After this initial positioning, the visual inputs
were changed to the images of the center of line abo The network consisting
of 200 neurons then became activated and the gripper approached that cen­
ter slowly by small movements. The results for the two networks then were
combined and are shown in Fig. 8.6. Figures 8.5 and 8.6 demonstrate that
the network is satisfactorily trained after only about 300 trial movements,
with a residual average error of 1.35 camera pixels.

300 8. Topology Representing Network in Robotics

8.4.3 DISCUSSION

Control of positioning and grasping movements of robot arms often has
been addressed in the literature, in particular by researchers in control
theory and artificial intelligence [26]. The major problem with the control
theory and the artificial intelligence approaches is that they both depend on
the domain knowledge and, therefore, require cumbersome efforts to design
the control system. Moreover, these approaches are not robust when one
deals with real life, e.g., hysteretic, robots. In this work we have taken a dif­
ferent approach which is based on our understanding of the map-generating
mechanism in human brains [21]. Our previous effort to control the position­
ing of the end effector of a pneumatic robot [11] was successful but limited
to a restricted set of target configurations. In the present study we allow
arbitrary orientations of a target cylinder to be grasped and thereby have
made the problem of grasping control more difficult to accomplish. Never­
theless, the topology representing network algorithm along with supervised
tuning accomplished control of grasping after only a modest number (300)
of training episodes. Presently, we extend this study to network architec­
tures that closely resemble biological motor pathways, in particular those
that involve cortical as well as cerebellar components. We also employ a
more sophisticated method for visual recognition of target and arm posture.

Acknowledgments. We would like to thank Ted Hesselroth for the algo­
rithms of Sec. 3.2, Hillol Kargupta for helpful discussions about the su­
pervised algorithm, Joerg Walter for the vision system code, and Volker
Ehrlich and Benno Puetz for help with Fig. 8.1. The authors express their
gratitude to the Carver Charitable Trust for support. Funds for the robot
system were provided by the Beckman Institute through the Capital Devel­
opment Board of the University of Illinois. The computations were carried
out in the National Institutes for Health Resource for Concurrent Biological
Computings (grant 1 P41 RR05969*01).

REFERENCES

[1) W. Mc Culloch, W. Pitts (1943) A logical calculus of the ideas immanent in the
nervous activity. Bull. Math. Biophlls., 5:115-133

(2) O. Ghitza (1987) Robastness against noise: The role of timing-synchrony measure­
ment. Proc. Int. ConI. on Acoustics Speech and Signal Processing, ICASSP-87,
Dallas, April 1987

(3) D.W. Tank, J.J. Hopfield (1986) Simple neural optimization networks: An AjD
converter, signal decision circuit and a linear programming circuit. IEEE 7rans.
Circuits SlIst. CAS-33:533-541

(4) K. Furuta, M. Sampei (1988) Path control of a three-dimensional linear motional
mechanical system using laser. IEEE 7rans. Indust. Electron. 35(1):52-59

Kakali Sarkar and Klaus Schulten 301

(5) L.E. Weiss, A.C. Sanderson, C.P. Neuman (1987) Dynamic sensor-based control of
robots with visual feedback. IEEE J. Robotics Automat. RA-3(5}:404-417

(6) M. Kuperstein (1987) Neural model of adaptive hand-eye coordination for single
postures. Science 239:1301-1311

(7) M. Kuperstein (1987) Adaptive visual-motor coordination in multijoint robots us­
ing parallel architecture. IEEE Int. Automat. Robotics (Raleigh, NC), 1596-1602

(8) J. A. Walter, T. M. Martinetz, K. Schulten (1991) Industrial robot learns visuo­
motor coordination by means of "neural-gas" network. In: Proc. Int. Conf. Artifi­
cial Neural Networks, Helsinki, 1991 (Elsevier, Amsterdam)

(9) H. Miyamoto, M. Kawato, T. Setoyama, R. Suzuki (1988) Feedback-error-Iearning
neural network for trajectory control of a robotic manipulator. Neural Networks
1:251-265

(10) T. Martinetz, H. Ritter, K. Schulten (1990) Three-dimensional neural net for learn­
ing visuo-motor coordination of a robot arm. IEEE 7hlns. Neural Networks 1:131-
136

(11) T. Hesselroth, K. Sarkar, K. Schulten, P.P. van der Smagt (in press) Neural net­
work control of a pneumatic robot arm. IEEE 7hlns. Syst., Man Cybernet.

(12) P. van der Smagt, K. Schulten (1993) Control of pneumatic robot arm dynamics by
a neural network. In: Proc. World Congress on Neural Networks, Portland, OR,
July 11-15, Vol. 3, pp. 180-183

(13) T. Martinetz, S. Berkovich, K. Schulten (1993) "Neural gas" for vector quantization
and its application to time series prediction. IEEE 7hlns. Neural Networks 4:558-
569

(14) T. Martinetz, K. Schulten (1993) A neural network for robot control: Cooperation
between neurons as a requirement for learning. Comput. Electr. Engrg. 19:315-332

(15) T. Kohonen (1982) Analysis of a simple self-organizing process. Bioi. Cybern.
44:135-140

[16) T. Kohonen (1982) Self-organized formation of topologically correct feature maps.
Bioi. Cybern. 43:59--69

(17) H. Ritter, T. Martinetz, K. Schulten (1989) Topology-conserving maps for learning
visuo-motor coordination. Neural Networks 2:159-168

(18) T. Martinetz, H. Ritter, K. Schulten (1990) Learning ofvisuo-motor coordinaation
of a robot arm with redundant degrees of freedom. In: Parallel Processing in Neural
Systems and Computers, R. Eckmiller, G. Hartmann, G. Hauske (Eds.) (Elsevier,
Amsterdam), pp. 431-434

(19) T. Martinetz, K. Schulten (1990) Hierarchical neural net for learning control of a
robot's arm and gripper. In: International Joint Conference on Neural Networks,
San Diego, CA, Vol. 2 (Institute of Electrical and Electronics Engineers, New
York), pp. 747-752

(20) H. Ritter, T. Martinetz, K. Schulten (1992) Neural Computation and Self­
Organizing Maps (revised English Edition) (Addison-Wesley, Reading, MA)

(21) K. Obermayer, G.G. Blasdel, K. Schulten (1992) Statistical mechanical analysis
of self-organization and pattern formation during the development of visual maps.
Phys. Rev. A 45:7568-7589

302 8. Topology Representing Network in Robotics

[22] T. Martinetz, K. Schulten (1991) A neural gas network learns topologies. In: Ar­
tificial Neural Networks, T. Kohonen, O. Simula, J. Kangas (Eds.) (Elsevier, Am­
sterdam), pp. 397-402

[23] T. Martinetz, K. Schulten (1996) Topology representing networks. Neural Networks
1:507-522

[24J J. A. Walter, K. Schulten (1993) Implementation of self-organizing neural networks
for visuo-motor control of an industrial robot. IEEE 7\-ans. Neural Networks 4:86-
95

[25] T. Martinetz, K. Schulten (1993) A neural network with hebbian-like adaptation
rules learning visuo-motor coordination of a PUMA robot. In: Proc. IEEE Int.
Con!. Neural Networks (ICNN-YS), San Francisco, pp. 820-825

[26J P. H. Winston (1984) Artificial Intelliyence (Addison-Wesley, Reading, MA)

Index
A
Abelian avalanche models, 15
Action, framework of, 121
Action potentials, 5

generated, 6
synchronization of, 42-48

Activity-dependent neural devel­
opment, 56

Activity of cortical neurons, 61
ADALINE algorithm, 184-186

order parameters for, 206-
207

Address patterns, 82
Agreement rule, 86, 96
Amplitudes, 129
Analog neurons, 6
Anti-Hebbian learning, 72
Arbor function, 61
ARD (automatic relevance deter­

mination) model, 236-
237

Association capacity, 98-99
defined, 99-100

Associative computation, 50
Associative data storage and re­

trieval in neural net­
works, 79-116

Associative memories, 74
Associative memory models, 80
Asymptotic capacities, 100
Asymptotic fidelity requirements,

100
Asymptotic memory capacities,

100
Asymptotic results, 109
Asymptotic scaling of learning er-

ror, 178-181
Attractor neural networks, 2
Attractor structure, 1
Attractors, fixed-point, 18-33
Autoassociation, 83, 109-110,

111-112

Automatic relevance determina­
tion (ARD) model, 236-
237

Axon, 4
Axonal activity, 84

B
Backpropagation networks, 221

Bayesian methods for, 211-
252

Bayes algorithm, 158
Bayes error, 173, 174
Bayes Formula, 156
Bayesian methods, 156

for backpropagation net­
works, 211-252

data analysis and, 215-216
statistical mechanics and,

155-159
Bayesian probability theory, 211
Bayesian rankings, 216-222
Binary classification networks,

225
Binary storage, 101-104

Hebb rule in, 113-116
Binary storage procedure, 87, 90-

91
Binding problem in full general­

ity, 120
"Bits back" encoding method,

250
Bounded complexity, 154
Brain, 55-56

C
Caianiello's model, 12
Calculus of propositions, 122
Cell, 166

cortical, 60
monocular, 57, 64
OFF-center, 58, 59

304 Index

Cell (Cont.)
ON-center, 58, 59

Cell body, 4
Cell-specific connectivity, 69
Cerebral cortex, 56
Classification, error bars in, 232-

233, 234
Classification networks, 225
Classifier, Penacee system, 260-

261
Clustering hypothesis, 173
Clusters of cortical cells, 60
Cognitive system(s)

model for, 126-127
sieves and, 145

Column, defined, 56
Columnar organization, 57
Completion capacity, 99-100
Complexity, 128

bounded, 154
generalized, 133
inductive inference and, 134-

135
minimization of, 128
stochastic, 161n

Computation, associative, 50
Computational significance of

correlation-based rules,
71-74

Conditional information, 98
Connectivity, cell-specific, 69
Consistent algorithms, 154
Consistent tasks, 127
Content patterns, 82
Continuous neurons, 200-201
Continuous-time dynamics, 12-

15,38-42
Convergence, rapid, 45-48
Correlation-based models, 59-

68
Correlation-based rules, compu­

tational significance of,
71-74

Cortical cells
activity of, 61

clusters of, 60
receptive fields of, 56, 63-

64
Cortical maps, periodic, 59
Cortical neurons, see Cortical

cells
Counting, 137-139
Coupling matrices, stationary,

129
Covariance matrix, 62
Covariance rule, 61

D
Data, mean information content

of, 97-98
Data analysis, Bayesian methods

and, 215-216
DD (distributed dynamics), 10,

26-29
Decision process of neurons, 8
Decision theory, 216n
Deductive inference, 121, 140-

146
Defined association capacity, 99-

100
Delayed feedback, neurons with,

time evolution of, 40
Delayed graded-response neur-

ons,32-33
Dendrites, 4
Dendritic potential, 84-85
Dendritic trees, 4
Density estimation, 155
Diluted networks, 198-200
Dimension-reducing mappings,

73-74
Dirac's t5-function, 174
Discontinuous learning, 193-195
Discrete-time dynamics, 8-12,

34-38
Discrete-time updating schemes,

11
Distributed dynamics (DD), 10,

26-29

Distributed pattern, 81
Distributed storage, 87-88
Distributions, predictive, 241-

242
Drift velocity, 196
Drifting concepts, learning of,

195-198

E
Effective VO dimension, 245-

246
Elementary mappings, 127
Elementary motions, 127
Elementary operations, 127
Elementary tasks, 127
Energy landscape, 2
Ensemble learning, 251-252
Error backpropagation, 184
Error bars

in classification, 232-233,
234

in regression, 232
Estimators, 211
Evolution equation, 39, 40
Excitatory couplings, 72
Excitatory synapse, 5
Experiences, model for, 127-

128
Extended synaptic symmetry,

18
External memory, 135-137

limited use of, 137-140

F
Fair sampling dynamics, 10
Fault tolerance, 103, 106
Fault-tolerant memory retrieval,

82
Feature map, self-organizing

(SOFM), 69-70, 73
Feedback networks, 32, 123n
Feedback retrieval model, 81
Fidelity requirements, 83

asymptotic, 100

Index 305

Final prediction error (FPE),
244-245

Finite-size systems, 109-110
Finite Turing machines, 127
Firing rate, instantaneous, 13
Fisher Information, 165
Fixed-point attractors, 18-33
Fixed-point retrieval, 80, 85
Fixed-point theorem, 129-130
Forgetting, 197
Formal logic, 125
FPE (final prediction error), 244-

245
Full network states, 120

G
Gauss integral, estimation of, 116
General recursive functions, 120n
Generalization

statistical mechanics of, 151-
207

theories of, 244-246
Generalization error, 152
Generalized complexity, 133
Generalized maximum likelihood,

228
Generalized prediction error

(GPE), 244-245
Gibbs algorithm, 159, 179

perceptron and, 171-173
Gibbs distribution, 157
Gibbs error, 172, 173

total, 179
Glauber dynamics, 10, 30
Global analysis of recurrent neu­

ral networks, 1-50
Global optimization techniques,

Penacee system, 264-
265

GPE (generalized prediction
error), 244-245

Graded-response (GR) neuron, 6,
13, 22-24

delayed, 32-33

306 Index

Gradient system, 3
Greedy dynamics, 10

H
Hand-printed word recognition,

Penacee system, 268-
273

Handwriting, on-line, Penacee
system, 255-276

Hebb rule, 30, 86, 96, 97, 125-
126, 181-184

in binary storage, 113-116
with success, 126

Hebbian couplings, 199
Hebbian learning, 15-18, 183
Hebbian networks, 184
Hebbian synapses, 59
Heteroassociation, 82, 107-111
Hopfield model, 12, 19-21
Hopfield rule, 86, 126
Hypothesis space, 220

I
1M (iterated-map networks), 12,

24-26
Implicit priors, 238-239
Incremental storage, 104-107
Incremental storage procedure,

87, 91-97
Inductive inference, 121, 131-135

complexity and, 134-135
neural network learning as,

224-225
optimal, 132-133
unique, 133

Inference(s), 120
deductive, 121, 140-146
inductive, see Inductive in­

ference
Information

conditional, 98
efficient representation of,

71-73
Information content

mean, of data, 97-98
relative, 31

Information gain, 159-163
Information processing, 1
Information theory of memory

process, 97-100
Inhibitory couplings, 72
Inhibitory synapse, 5
Input-output relation, sigmoid,

22-24
Instantaneous firing rate, 13
Integrate-and-fire neurons, 6, 13-

14
Interaction matrix, intracortical,

62
Internal change, framework of,

121
Intracortical interaction matrix,

62
Intuitionistic logic, 120n
Ising model, 5n
Isolated character recognition,

Penacee system, 266-
268

Iterated-map (1M) network, 12,
24-26

Iterative retrieval procedure, 85

K
Kohonen networks, 284-285

L
Learning

anti-Hebbian, 72
discontinuous, 193-195
of drifting concepts, 195-198
ensemble, 251-252
Hebbian, 15-18, 183
neural networks and, 151-

153
noise-free, 153
on-line, 250
one-step, 86
simple, 181-184

Learning (Cont.)
statistical physics approach

to, 157
unsupervised, 201-203

Learning error, asymptotic scal­
ing of, 178-181

Learning process, 86
Learning rules, 86

explicit, signal-to-noise
ratios for, 93-94

optimal, 94-95
Learning theory, 246-248
Limit cycles, periodic, 33-42
Linear-separable functions, 166
Little model, 21-22
Local field, 7-8
Local synaptic rule, 86
Locations, 135-136
Logical operations, 123
Long-term potentiation (LTP),

16
Look-up-table task, 82-83
Loss calculator, Penacee system,

263-264
LTP (long-term potentiation), 16
Lyapunov functions, 2n
Lyapunov's "direct" or "second

method," 2-3

M
Map, see Mapping(s)
Map structure, 68-71
Mapping(s)

dimension-reducing, 73-
74

elementary, 127
McCulloch-Pitts, 122
retinotopic, 56
self-organizing, 73-74

Marginalization, 231
Master mechanism, 121

for problems (MMP), 141
Maximal stability, 187-191
Maximum-field dynamics, 10

Index 307

Maximum likelihood estimation,
155

Maximum likelihood strategy,
159

McCulloch-Pitts mapping, 122
MDL (minimum description

length), 246,248-250
Mean-field theory, 88-89
Mean-firing rates, 42
Membrane potential, 5, 8
Memories, 34

associative, 74
representation and, 81-82

Memory capacities, asymptotic,
100

Memory process, information
theory of, 97-100

Memory retrieval, 82
fault-tolerant, 82

Memory tasks, 82-83
Minimum description length

(MDL), 246, 248-250
MMP (master mechanism for

problems), 141
Model performance, 101-107
Monocular cells, 57, 64
Multiclass classification net-

works, 225
Multimodal distributions, 230-

231
Multiplicative renormalization,

66n

N
Negation task, 130
Nervous system, 79-80
Network performance, 29-32
Networks

backpropagation, see Back-
propagation networks

diluted, 198-200
Hebbian, 184
Kohonen, 284-285
regression, 223-224

308 Index

Networks (Cont.)
smooth, 163-165
time-delay, see Time-delay

networks
Neural associative memory mod­

els, 83-88
Neural development, activity-de­

pendent, 56
Neural dynamics, framework for ,

4-18
Neural feature extractor, Penacea

system, 258-260
Neural network learning as infer­

ence, 224-225
Neural networks

associative data storage and
retrieval in, 79-116

attractor, 2
complete attractor structure

of,l
computational capabilities

of,2
inferences modeled with

119-147
learning and, 151-153
phase space of, 153-154

,

as probabilistic models, 222-
226

recurrent, see Recurrent neu­
ral networks

with signal delays, 4
Neural transfer function, 85
Neurocomputing, 282
Neurons, 83

continuous, 200-201
decision process of, 8
with delayed feedback, time

evolution of, 40
description of, 4-8
integrate-and-fire, 6, 13-14
postsynaptic, 5
presynaptic, 5

Neurophysiological postulate, 86
Neurotransmitters, 5
Noise, variance of, 92

Noise-free learning, 153
Noisy input patterns, ensemble

of, 89
Nonsparse patterns, 82,

107
Normalization factor, 30

o
Occam factor, 219

for several parameters, 221
Occam's razor, 212-215
Ocular dominance, 57
Ocular dominance columns, 56,

57,60
defined, 57
spacing of, 70
understanding, 66-67

OFF-center cells, 58, 59
Off-neurons, 90
ON-center cells, 58, 59
On-line handwriting, Penacea

system, 255-276
On-line learning, 250
On-neurons, 90
ON/OFF competition, 64
One-step learning, 86
One-step retrieval, 80-81, 84
Optimal inductive inference, 132-

133
Optimal learning rules, 94-95
Order parameters, 170
Orientation columns, 58, 60

understanding, 66-67
Oscillation within receptive

fields, 64
Output capacity, 101-103, 104-

106
Output noise, 158
Overfitting, 184-187
Overlapping delays, 48

p
Parallel dynamics, 21-22
Pattern capacity, 97

Pattern capacity (Cont.)
obtaining, 112n

Pattern classification, 83
Pattern completion, 83
Pattern generation, random, 89-

90
Pattern types, 81-82
Pea.no arithmetic, 124
Penacee system, 255-276

applications of, 265-276
Perceptron, 151-152, 166-174

Gibbs algorithm and, 171-
173

one-layer, 181
optimal, 187

Perfect address pattern, 89
Perfect input patterns, ensemble

of,89
Periodic cortical maps, 59
Periodic limit cycles, 33-42
Phase locking, 43-45
Phase space

geometry in, 175-178
of neural networks, 153-154

Posterior distribution, 157
Posterior probability distribu­

tion, 222
Postsynaptic neurons, 5
Predictive distributions, 241-

242
Presynaptic neurons, 5
Priors, implicit, 238-239
Probabilistic models, neural net-

works as, 222-226
Projective fields, 64
Pruning, 233-235

Q
Queries, 191-193
Quiescent cells, 5

R
Random pattern generation, 89-

90

Index 309

Rapid convergence, 45-48
Rate coding models, 85
Receptive fields (RFs), 59

of cortical cells, 56, 63-
64

oscillation within, 64
structure of, 59, 65
in visual cortex, 55-75

Recognition preprocessor,
Penacee system, 257-
258

Recurrent neural networks, 1
global analysis of, 1-50

Refractory period, 5
Regression, error bars in, 232
Regression networks, 223-224
Regularization, 224
Regularization constants

multiple, 228-229
optimization of, 240
setting, 226-229

Relative information content,
31

Renormalization
multiplicative, 66n
subtractive, 66n

Replica method, 204
Replica symmetry, 170
Replica symmetry breaking

(RSB),194
Replica. theory, 168-171
Replica trick, 169
Representation of information, 81

efficient, 71-73
memories and, 81-82

Representation theorems, 246
Retinooptic map, 56
Retrieval errors, 83
Retrieval process, 83, 84-85

analysis of, 88-97
RFs, see Receptive fields
Robotics, topology representing

network in, 281-300
RSB (replica symmetry break­

ing),194

310 Index

S
Sandpile models, 15
Sauer's lemma, 154

proof of, 204-205
Scalar delay differential equation,

38
Segmentation preprocessor and

postprocessor, Penacee
system, 261-262

Self-organized criticality, 15
Self-organizing feature map

(SOFM), 69-70, 73
Self-organizing maps, 73-74
Semilinear models, 62-68
Sequential dynamics, 19-21
Shift operation, 8
Sieves, 144-146
Sigmoid input-output relation,

22-24
Signal-to-noise calculation, 92-

93
Signal-to-noise ratios, 92, 111

for explicit learning rules,
93-94

Signal transmission, 8
Signature verification, Penacee

system, 273-276
Similarity measurer, Penacee sys-

tem, 262-263
Simple learning, 181-184
Singular patterns, 81
Site averaging, 90
Smooth networks, 163-165
SOFM (self-organizing feature

map), 69-70, 73
SoftArm robot system, 284

combination of two networks
for grasping, 299

description, 285-287
experimental results and dis­

cussion, 297-300
performance, 297-299
supervised learning scheme,

292-294
topology representing net-

work algorithm, 287-
297

training of first-stage mo­
tion, 287-294

training of second-stage mo­
tion, 294-297

unsupervised learning
scheme, 290--292

Soma, 4
Sparse patterns, 82, 108-109
Spike, 5
Spike coding models, 85
Spike generation, 6
Spike rate, 85
Stability, 187

maximal, 187-191
Stationary coupling matrices, 129
Statistical mechanics

Bayesian approach and, 155-
159

of generalization, 151-207
Statistical physics approach to

learning, 157
Stimulus-induced oscillations, 43
Stochastic complexity, 161n
Storage

distributed, 87-88
of extensively many pat-

terns, 97
Storage process, 83, 86-87
Subtractive renormalization, 66n
Symmetrical coincidence rule, 86
Symmetry breaking, analysis of,

130--131
Synapses, 4-5, 83

Hebbian, 59, 126
Synaptic couplings, 33, 34
Synaptic noise, 9
Synaptic symmetry, 35

extended, 18
Synaptic weights, 151-152
Synchronization of action poten­

tials, 42-48
Synchronization processes, 42-43
Synchronous dynamics, 10

T
Tasks,127
TD, see Time-delay networks
Teacher-student overlap, 182
Thermodynamic limit, 89, 155
Threshold setting, 90
Threshold value, 85
Time-delay networks (TD), 12

dynamics of, 36
Time lags, 8
Topology representing network in

robotics, 281-300
Training energy, 157
Training situation, 127
Transfinite induction, 124
Turing machines, 125

finite, 127

U
Unique inductive inference, 133
Unsupervised learning, 201-203

V
Vapnik-Chervonenkis (VC) di­

mension, 154-155
effective, 245-246

Index 311

Vapnik-Chervonenkis method,
204

Variance of noise, 92
VC (Vapnik-Chervonenkis) di­

mension, 154-155
effective, 245-246

Vector quantization problem, 283
Visual cortex

layers of, 56
primary, 56
receptive fields in, 55-75

Visual system, schematic of, 56
Visually-induced activity, 58
Von der Malsburg model, 60-61

W
Weight decay, 224
Wittgenstein's paradox, 125, 126,

139-140
Word recognition, hand-printed,

Penacee system, 268-
273

Z
Zero-average input condition, 96,

110

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

